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ABSTRACT This paper proposes multi-frequency inertial and visual data fusion for attitude estimation. The
proposed strategy is based on the locally weighted linear regression (LWLR), multi-layer perception (MLP),
and cubature Kalman filter (CKF). First, we analyze the discrepant-frequency and the attitude divergence
problems. Second, we construct the filter equation for the visual and inertial data and attitude differential
equation for inertial-only data, which are used to estimate the attitude in time series. Third, we employ LWLR
to compute the vision discrepancies between actual vision data and fitted vision data. The vision discrepancy
is used as the input of MLP training. In MLP, the discrepancy is used as weights of the sums through the
activation function of the hidden layer. To address the divergence problem, which is inherent in a multi-
frequency fusion, the MLP is utilized to compensate for the inertial-only data. Finally, experimental results
on different environments of pseudo-physical simulations show the superior performance of the proposed
method in terms of the accuracy of attitude estimation and divergence capability.

INDEX TERMS Attitude estimation, multi-frequency, locally weighted linear regression, multi-layer

perception, cubature Kalman filter.

I. INTRODUCTION

Accurate and stable attitude estimation is an essential element
in broad applications such as positioning, navigation, track-
ing, and augmented reality [1]-[3]. In the helmet tracking
system [4], [5], robot control, and positioning [6], [7], atti-
tude measuring method [8] obtains the spatial attitude of
the object by outputting pitch, yaw, and roll angles. The
typical approaches are inertial measurement and vision mea-
surement. Inertial sensors are low cost with high sampling-
frequency [9]-[11]. However, the measuring error of inertial
sensors is rapidly accumulated over time because of the
bias drift phenomenon and unstable calibration coeffi-
cient [12]-[14]. The visual sensor is stable, while the
sampling-frequency is low compared with inertial sensors.
Thus, the visual sensor is hard to track fast-moving objects.
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In order to overcome the limitation of a single sensor and
ensure accuracy and stability, an integrated measurement
system was actively exploited in attitude estimation. In this
paper, we integrate inertial and vision sensors, utilizing the
complementary advantages of them. The integration of iner-
tial and vision sensors improves the attitude estimation in
terms of stability and estimation accuracy.

Non-linear Kalman filter was used to integrate inertial and
vision data in EKF [15], UKF [16], and CKF [17], [18]. The
EKEF [15] modeled the system by the first-order linearization.
Thus, the EKF provided poor performance for non-linear
dynamic systems [19]. The UKF [16] addressed the
non-linear state estimation based on the controlling theory,
achieving preciser accuracy than EKF. The CKF [17], [18]
realized the non-linear filter under the Bayesian filtering
framework, providing more stable performance.

In the CKF, the sampling-frequency discrepancy phe-
nomenon exists between vision and inertial data [20], which
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FIGURE 1. The discrepant frequency of sampling between IMU and camera.

is decided by vision sensors and inertial sensors self-
characteristics. The performance of the attitude estimation
is decreased by the discrepancy between vision data and
inertial data. The performance degradation is inevitable in the
inter-sampling of slow vision data. The differential operation
causes the divergence phenomenon during invalid vision data
intervals, where only inertial data is available. An artifi-
cial neural network (ANN) [21] was employed to enhance
the attitude precision by using machine learning. Attitude
determination (AD) model and partial ambiguity resolution
(PAR) [22] were developed to meet the required reliability of
attitude estimation. Also, they obtained an optimal balance
between reliability and accuracy. SVD and UKF were fused
with non-linear measurements [23], [24]. These methods pro-
vided accurate and stable results but were limited in multi-
frequency. In case that vision data is unavailable, the accuracy
of attitude estimation is decreased due to the discrepancy of
sampling-frequency.

In order to address the problem, a data fusion method is
proposed based on the combined LWLR and MLP with CKF.
The contributions of this paper can be concluded as:

(1) The filter equation is constructed for the visual and
inertial data and attitude differential equation for inertial-only
data, which are used to estimate the attitude in time series;

(2) LWLR is employed to compute the vision discrepancies
between actual vision data and fitted vision data.

The proposed method reduces the effect of the discrepant
sampling-frequency, and consequently, the attitude diver-
gence between inertial and vision data. The remainder of
the paper is organized as follows. The problem exposition
and system modeling are given in Section II. The proposed
method is described in detail in Section III. The experiment
and comparison with other methods are given in Section IV.
In Section V, this paper is summarized and concluded.

A. MATERIALS AND METHODS
B. PROBLEM EXPOSITION
Different sampling-frequency inevitably causes the mis-
match problem in the integrated system of inertial and
vision sensors. The integrated attitude estimation system
employs a camera sensor and a gyroscope sensor for cap-
turing the vision and inertial data, respectively. Typically,
the sampling-frequency of gyroscope is hundreds of Hertz,
while that of a camera is dozens of Hertz. The discrepancy of
sampling-frequency is depicted in Fig. 1.

The discrepant-frequency problem causes divergence of
inertial and vision integrated attitude estimation. CKF fuses
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inertial and vision data to dispose of the non-linear problem.
Inertial vectors are the input of the filter, and vision vectors
are outputs computed from the filter. The non-linear filter is
composed of state and measurement vectors, which is defined
as follows.

ey

Xk = f(Xk—1, Up—1) + wr_1
Zk = Hgxp + vy,

where x; and u;_; represent a state vector and a con-
trol vector from the angular velocity of the gyroscope,
respectively. zx is an observation vector from the vision
sensor. Note that u;_; is high-frequency and z; is low-
frequency. Hj represents the measurement matriX, wg_i
and v; indicate the Gaussian random noises with different
covariances.

Inertial and vision data are fused to estimate the optimal
attitude. However, during the invalid vision data intervals,
much inertial gyroscope data is still there. We employ a differ-
ential equation to update angles of attitude, which ensures the
high frequency of estimated attitude. Specifically, the formula
is given in the following.

o] At sin (_lw\zAt>
I+2

q(k + 1) = (cos(——)I+ ] Qw)qk), ()
where q and I represent a rotation qruaternion and a unit
matrix, respectively. w = [a)xa)ywz] is angular velocity.

Moreover, £(w) is defined as follows:

0—wy, —wy— o,
wx 0w, — wy
wy — w00y
w;wy — ;0

1
o) = 3 3

During solving (2) to update the attitude, the measurement
errors are accumulated over time because of the gyroscope
bias error drift. The problem is mainly caused by the MEMS
gyroscope sensor has non-negligible bias and noises. Further-
more, such bias and noise are accumulated due to the integral
operation. Thus, we cannot guarantee that the inter-sampling
of vision data is converged, especially when the interval is
long.

C. SYSTEM MODELING

The proposed attitude estimation system is composed of the
inertial and vision modules, as depicted in Fig. 2. In the vision
module, visual attitude is obtained by the image processing
module with the stereoscopic target with four feature points
as an input. In the inertial module, attitude velocity is obtained
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FIGURE 2. The proposed attitude estimation model with inertial and vision data.

by the built-in gyroscope of the IMU. When both inertial and
vision data are available, they are fused by CKF. However,
when the vision data is unavailable, the observation noise and
Kalman gain approach to infinity and zero, respectively. As a
result, the system only utilizes the inertial module and results
in divergence.

Il. THE ENHANCED FUSION METHOD BASED ON LWLR,
MLP, AND CKF

A. BASIC FILTER PROCESS OF SKF ALGORITHM

In order to address the discrepant-frequency problem,
an enhanced fusion method is proposed based on LWLR,
MLP, and CKF. CKF utilizes a set of cubature points
to approximate the probability distribution of non-linear
function in moderate computation complexity. Also, the
complex parameter selection process is not required
in CKF since the unique weights and cubature points
are selected according to the dimension of the state
vector. The filtering process is described in detail as
follows.

1) COMPUTATION OF VOLUME POINT

& = /n[l];, 4
w,-:i, i=1,2,...,2n, (@)
2n

O k=1 = /Pr—1lk—1& + Xk—1jk—1, (6)

where [1] is a symmetric matrix whose dominant diagonal
lines are 1. A subscript i indicates the i column.

2) UPDATE OF TIME
The estimated attitude and covariance matrix are defined
as (7) and (8), respectively, where k is the time.

2n
. 1
Tlk—1 = - > Xikwor (N
i=1
2n
1 . R
Prlk—1 = n ZXi,k|k—1X,-,Tk|k,1 —Xk\k—lka‘k,l (®)

i=1
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3) UPDATE OF MEASUREMENT
the volume point is computed as (9):

Xi k=1 = /Prik—1& + Xrjk—1 9

The volume point is then propagated using measurement
equation as follows:

Zikik—1 = h(X; kjk—1) (10)
1 2n

A1 = 5= Y Zikik-1 (1D
2n P

The predicted measurement and covariance matrix are
defined as follows, where £k is the time.

2n
T 2 AT
sz,klk—l = ZwiXi,klk—IZi,k\kfl = Xkelk—13k |k —1 (12)
i=1
2n
P = Zi zr — Xek—12l (13)
2z klk—1 = Wil klk—14 k|k—1 — Xklk—12k k-1

i=1

Kalman filter gain is computed as follows:
Ky = szﬁk‘k_lpz_z,lklk—l (14)

The estimated attitude and the covariance of the error of
attitude are defined as follows.

Xk = Xkqr—1 + Ki(@e — Xje—1) (15)
Pik = Pijk—1 — KiPokp—1 K (16)

B. LOCALLY WEIGHTED LINEAR REGRESSION
ALGORITHM

LWLR is a linear regression, which fits data by solving unbi-
ased estimates of minimum mean squared error. Each point
near the predicted point is given a certain weight in the LWLR
algorithm. When predicting, only some samples similar to
the experimental data are used to calculate regression coeftfi-
cients. The points near the predicted points have high weights,
and the weights decrease with the increase of distance. In this
paper, the LWLR algorithm uses the Gauss kernel function to
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give higher weights to the stores near the measuring points.
The weight expression of the LWLR algorithm is as follows:

. @@ —x?

(i) = exp( ys

where w is the weight of the points near the measured points,
and x means the points to be measured. k is a parameter
that controls the rate of weight variation. k is set to 1 in the
proposed LWLR algorithm to avoid over-fitting (when k is
small) and under-fitting (when k is large).

LWLR algorithm can avoid the problem of under-fitting,
because the influence of noise can be mitigated by weight,
and more accurate data can be obtained. LWLR relies less on
feature selection, so a simple linear model can be used to train
a better fitting model. Each prediction is based on the original
training samples to learn and calculate the weights again so
that the data itself is adaptive, and the prediction accuracy is
high.

), 7

C. MLP ALGORITHM

MLP is a forward-structured neural network, which is com-
posed of one or multiple hidden layers with input and output
layers. The network shows a high degree of connectivity, and
its strength is determined by the weight of the network. MLP
overcomes the weakness that perceptron cannot recognize
linear non-separable data. Each neuron is composed of multi-
ple inputs and outputs. Each output is computed with weights,
bias, and activation function. The sigmoid function is adopted
as the activation function in hidden layers, which is defined
as follows.

(18)

sigmoid(x) = T
e

MLP is composed of several simple processing units, and
it is executable in parallel. MLP stores weights and biases
through its network structure, which makes the network have
benign fault tolerance. The weights are learned with a training
dataset in MLP, which reflects its strong learning ability and
adaptability to the environment. Fig. 3 shows a typical three
layers of network structure.

D. THE ENHANCED FUSION METHOD BASED ON LWLR,
MLP, AND CKF
In order to address the discrepant-frequency problem, the
enhanced fusion method is proposed based on LWLR, MLP,
and CKF algorithms for the attitude estimation system. MLP
predicts the vision error, which is trained using the discrep-
ancy in vision data. The discrepancy is calculated by the sub-
traction of the visual sensory data and the fitted data obtained
by LWLR. The predicted vision error is used to compensate
for the attitude when the vision data is unavailable. The fitted
vision data is obtained by the LWLR, where each point near
the vision data is given a certain weight. Thus, the LWLR
algorithm can reduce the impact of noise data on the overall
data.

In the hidden layer, the vision error is used to weight
the sum of the output layer by the kernel function. In the
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FIGURE 3. Three layers of MLP structure.

prediction process, the MLP neural network model predicts
the vision data. CKF generates the attitude angles by fusing
the gyroscope inertial data and the predicted vision data from
MLP. CKF is employed for data fusion when both inertial and
vision data are available. During the interval of invalid vision
data, the combination of MLP and CKF estimates the attitude.
Through such a complementary way, an accurate attitude can
be stably estimated.

Figs. 4 and 5 show the specific processing diagrams of
MLP during training and prediction processes, respectively.
Fig. 4 shows how MLP trains when the vision sensor is avail-
able. The vision error is the input of MLP, and the sigmoid
function is employed to convey the error to the output layer
for the weighting sum. The estimated attitude is obtained by
fusing the inertial data and actual vision data. The prediction
flow of MLP during the interval of invalid vision data is
shown in Fig. 5. Actual vision error is used to train MLP, and
the trained MLP predicts the vision error. Inertial data from
gyroscope are corrected by MLP prediction result to provide
final attitude angles.

The reliably estimated attitude is obtained by integrat-
ing data based on MLP and CKF. The adverse effect of
discrepant sampling-frequency can be lessen by the pro-
posed method. The divergence problem led by different
sampling-frequency is reformed and the precision of esti-
mated attitude is improved.

Ill. EXPERIMENT AND COMPARISON

We evaluate the performance of the proposed method on
the semi-physical simulation platform for attitude estimation
system (Fig. 6). Following a platform proposed in [25], the
camera was fixed onto the bracket, while IMU and the target
were fixed onto the turntable. Four infrared LEDs are located
onto the target. Only four feature points were used to reduce
the workload of computational processing while improving
the efficiency of data fusion. The angular velocity and the
vision data were respectively collected with an external PC
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FIGURE 4. Processing of MLP training with vision error.
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FIGURE 5. Processing of MLP prediction with vision error.
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FIGURE 6. The experimental device setting.

from the built-in gyroscope of IMU and the camera. The used
parameters of the built-in gyroscope of IMU are given in
Table 1.

A. TIMES SYNCHRONIZATION IN SENSOR FUSION
SYSTEM

In order to address the discrepancy between inertial and visual
data, the time synchronization is proposed. The program

VOLUME 8, 2020

Calculagraph obtains the running time of the system from
the beginning. Whenever the gyroscope of IMUS obtains
the angular velocity, the time is recorded. Similarly, the
time is recorded in the camera as well. The recorded times
are aligned in the calculation process by minimizing the
difference between two times. As shown in Fig. 7, data
from two different sensors are synchronized in the fusion
system.
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TABLE 1. Parameters of the gyroscope.

Parameter type

Parameter value

In-run bias stability
Gyro Bandwidth (-3 dB)

A/D resolution
Noise density

10 deg/h
450 Hz
16 bits
0.01 (deg/s)/NHz

IMU /s

JERRRGREY
-

Camera /s

1T

Time
_b synchronization

I N

1]

FIGURE 7. Time synchronization of the IMU and camera in the proposed system.

B. COORDINATE SYSTEM NORMALIZATION

In the multi-sensor system for attitude estimation, different
sensors have different coordinates. Two different coordinates
need to be transformed into the arbitrary coordinate. There
are coordinate systems for the arbitrary, camera, IMU, and
the target. Fig. 8 describes the normalization across these
coordinates.

The relative angles are measured between the body and
camera coordinates. The relative coordinate is represented
by a rotation matrix R’g(t), where ¢ represents time. The
coordinate is normalized by transforming inertial and vision
measurements to the R?(t). The rotation transformation of
inertial and vision quantities from ¢ system to b system is
defined as follows.

b _pb
{Rc(t) = R/R.(1) (19)

Rb(t) = RPRL(1),

where RL(¢) is the rotation matrix from x coordinate to y
coordinate. In (19), ¢ and i indicate the vision sensor and
the inertial sensor, respectively. Since the target and IMU are
fixed, R? and R? can be computed by calibration.

The rotation transformation between two coordinates is
described by triple rotation parameters along x, y, and z
axes, which correspond to «, § and 0 angles. The specific
conversion process is shown in Fig. 9.

C. COMPARISON WITH OTHER METHODS ON REPEATED
EXPERIMENTS

The performance of the proposed MLP-CKF is compared
with other methods: EKF, CKF, and backpropagation CKF
(BP-CKF). We designed the motion trajectory of an object,
named as round-trip-step-up motion. Fig. 10 shows the tra-
jectory where the pitch and yaw angles vary from -20
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FIGURE 9. The rotation transformation of two coordinate system.

degrees to +20 degrees in round-trip and step-up forms,
respectively.

The errors of the attitude angle in the pitch and yaw angles
are plotted in Fig. 11. In the proposed method, LWLR fits the
visual data in Os~10s and 40s~50s to get the fitted visual
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FIGURE 10. Round-trip-step-up motion. Top: pitch angle, bottom: yaw
angle.

data in pitch angle, while in 20s~30s and 60s~70s to get
the fitted visual data in yaw angle. Then, the obtained four
fitted vision data are used to predict the next ten seconds of
each fitted vision data. The four groups of predicted vision
data and the corresponding actual vision data are subtracted,
then the vision data errors are calculated. When the vision
data is accessible, MLP is used for training the vision data
errors and establish the training model. During the interval
of sampling in vision data, the MLP model is employed to
estimate the vision errors. Then, inertial data from gyroscope
are corrected by MLP estimated vision result to compute final
attitude angles.

As shown in Fig. 11, the proposed MLP-CKF outper-
forms the EKF, CKF, and BP-CKEF in terms of stability and
accuracy. The proposed MLP-CKF shows remarkable per-
formance, especially during the period of 25s-35s, 55s-65s
for the yaw axis and the 15s-25s, 45s-55s for the pitch axis.
More importantly, it indicates that the MLP-CKF algorithm
converges better during the interval of invalid vision data.

When visual measurements are available, compared meth-
ods estimate the attitude by fusing inertial and visual data.
In contrast, when the visual data is unavailable, EKF and
CKEF estimate the attitude by using inertial data only. BP-CKF
estimates the attitude by using inertial data compensated
by BP prediction results. Then, it is combined with CKF,
providing the estimated attitudes. In the proposed MLP-CKF,
the attitude angles are computed from inertial data. Then, the
attitude angles are compensated by MLP that is predicted
vision results, estimating the final attitudes. The optimal
estimation of MLP-CKF leads to superior performance over
the three compared methods. Table 2 and Fig. 12 present a
quantitative evaluation of the proposed method with the com-
pared methods in terms of Maximum errors and Root Mean
Squared Error (RMSE). The results show that MLP-CKEF is
more stable than the comparison methods.
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FIGURE 11. The attitude errors in the repeated experiments (a)-(c).
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TABLE 2. Max error and RMSE of three groups experiment.

pitch yaw
Max Error RMSE Max Error RMSE
EKF-1 0.9039 0.3515 -0.7013 0.2783
CKF-1 0.4784 0.1163 -0.3375 0.1233
BP-CKF-1 0.4795 0.2473 -0.3731 0.2531
MLP-CKF-1 0.3829 0.0532 -0.2464 0.0658
EKF-2 0.6617 0.2451 -0.5378 0.1785
CKF-2 0.4519 0.1055 -0.4187 0.1509
BP-CKF-2 0.5373 0.2501 -0.4821 0.1615
MLP-CKF-2 0.4035 0.0471 -0.3373 0.1265
EKF-3 0.7494 0.3438 -0.6702 0.2254
CKF-3 0.5035 0.1216 -0.4718 0.1801
BP-CKF-3 0.5932 0.2478 -0.5852 0.2017
MLP-CKF-3 0.3170 0.0769 -0.4043 0.1376
00; Mpitch Myaw
0.3
0.25
0.2
0.15
s i | || |
HER S EEE |
> N h > v v v v A o) o TN o)
FEFFFFFFT IS E S
§ & ¢ S SEES

FIGURE 12. RMSE comparison of three groups of experiments.

IV. CONCLUSION

An enhanced strategy for multi-frequency data fusion is pro-
posed based on MLP and CKF. The strategy improves the
attitude estimation of inertial and vision data by considering
the discrepancy of sampling-frequency and the filtering diver-
gence. The proposed method not only mitigates the diver-
gence problem in the interval of invalid vision data but also
guarantees the stable high-frequency attitude angles. Unlike
the existing methods, the predicted vision error is compen-
sated for the unstable inertial data when the vision data is
unavailable, and the present scheme fully utilizes the past
inertial and vision information. Experimental results under
different scenarios show that the proposed method reliably
estimates the attitude and achieves the enhanced convergence
capability. In future work, the influences of long motion
trajectory and larger variation of tilt angles on the system will
be invesgated.
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