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ABSTRACT Humans strongly rely on visual cues to understand scenes such as segmenting, detecting
objects, or measuring the distance from nearby objects. Recent studies suggest that deep neural networks can
take advantage of contextual representation for the estimation of a depth map for a given image. Therefore,
focusing on the scene context can be beneficial for successful depth estimation. In this study, a novel network
architecture is proposed to improve the performance by leveraging the contextual information for monocular
depth estimation. We introduce a depth prediction network with the proposed attentive skip connection
and a global context module, to obtain meaningful semantic features and enhance the performance of the
model. Furthermore, our model is validated through several experiments on the KITTI and NYU Depth
V2 datasets. The experimental results demonstrate the effectiveness of the proposed network, which achieves
a state-of-the-art monocular depth estimation performance while maintaining a high running speed.

INDEX TERMS Monocular depth estimation, contextual information.

I. INTRODUCTION
Depth estimation is a key problem in computer vision that can
be applied to a variety of fields such as autonomous driving,
3D modeling, or robotics. In particular, monocular depth
estimation aims to generate a corresponding depth map for
a given image, which is an ill-posed task. This is because
a number of distinct 3D scenes can be mapped to a single
2D image. However, humans can estimate the distance to
objects even with one eye because they can exploit semantic
features [1] and monocular cues. Recent papers support that
convolutional neural networks (CNNs) also take advantage
of a similar property. Hu et al. [2] trained an auxiliary mask
network that can predict the minimum set of relevant pixels
in the image that can contribute to the inference of the depth
map. Through visualization of the predicted mask, they have
found that CNNs can use visual cues, such as edges or bound-
aries in input images, and inside the region of individual
objects. This study indicates that semantic features can play
a crucial role in depth estimation for humans and deep neural
networks. Hence, focusing on the contextual information in
input images can be beneficial for effective monocular depth
estimation.
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Since the emergence of the deep neural networks, there has
been a rapid rise in the state-of-the-art performance inmonoc-
ular depth estimation. By adopting a good backbone network
trained on a substantially large-scale dataset, it became easier
to extract more powerful features. Thus, many researchers
have studied methods for applying the knowledge acquired
from this powerful encoder for depth estimation [3]–[6].
Moreover, several papers have attempted to leverage con-
textual features in this area. Reference [7], [8] employed an
encoder–decoder structure with a skip connection; however,
their methods focus more on refining the coarse local fea-
tures than contextual information itself. Some studies have
used additional knowledge such as pretrained weights or a
segmentation dataset [9] to achieve semantic supervision;
however, these methods limit the datasets that can be applied
and it complicates the training methodology. Therefore, it is
worth formulating a training strategy that allows the net-
work to concentrate on significant regions and uses semantic
representations without employing any external information.

This paper proposes a new network architecture to leverage
the contextual information for effective monocular depth esti-
mation. The first contribution of this paper is the proposed
attentive skip connection which enables the use of encoded
features in the decoding phase. As previously discussed,
objects with different positions and sizes can play a crucial
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FIGURE 1. Generated depth maps on the KITTI dataset. The first and third rows are the input RGB images. The second and fourth rows are
visualized with the depth maps from the input images.

role in depth estimation. Therefore, a multi-scale skip con-
nection with self-attentive modules is added to highlight the
feature maps from the diverse objects in a different scale.
The second contribution of this paper is a novel global con-
text module, which leverages global features to understand
the scene context comprehensively in a global scale. The
global context module receives the bottleneck feature as an
input and captures rich contextual information. These addi-
tional units are adoptive for all networks and it consumes a
small amount of computation, which yields a high inference
speed. By focusing on significant regions and representation
with effective light weight augmented modules, the model
shows a high performance with a reasonable inference time.
To summarize, the main contributions of this study are as
follows:
• Contextual information plays an important role in many
scene understanding tasks, including monocular depth
estimation. To generate an accurate depth map for
a given image, we introduce a novel network archi-
tecture that leverages contextual information using an
encoder–decoder structure.

• The novel attentive skip connection delivers the features
that are obtained from the encoder to the decoder; hence,
the model can take advantage of the encoded features
in the decoding phase. In contrast with previous studies
involving skip connections [10], an attentive skip con-
nection infers an attention map to learn the regions on
which the network should focus.

• We propose a global context module to enhance the
obtained bottleneck feature and to exploit the global
context for a comprehensive scene understanding.

• The experimental results demonstrate that the proposed
model accomplishes a state-of-the-art performance on
the KITTI and NYU depth V2 datasets. Owing to the
easy integration of the lightweight modules, the network

shows a high running speed while improving the
performance in comparison to previous methods.

II. RELATED WORK
A. MONOCULAR DEPTH ESTIMATION
There has been significant development in monocular
depth estimation. Wang et al. [11] solved semantic seg-
mentation and depth estimation tasks jointly by devel-
oping a unified framework. They employed joint global
and regional CNNs to predict potential and inferred final
results through the hierarchical conditional random field.
Laina et al. [12] proposed fully convolutional networks with
the fast up-projection method using residual learning to
model the mapping between RGB images and depth maps.
Furthermore, they introduced the reverse Huber loss, which
tackles the heavy-tailed distribution of the depth dataset.
Godard et al. [13] suggested unsupervised training objec-
tive to replace the use of labeled depth maps. The network
generates the left and right disparity maps and calculates
the reconstruction, smoothness, and left-right consistency
terms. Kuznietsov et al. [14] introduced a semi-supervised
approach to overcome the deficiency and limitation of sparse
ground truth lidar maps. They trained the network with
sparse depth maps in a supervised manner and provided
image alignment loss to generate photoconsistent dense
maps based on stereo images. Li et al. [15] showed the
two-streamed network that produces depth and depth gradi-
ents with the given RGB image and combines each result
to obtain a final dense depth map. Fu et al. [3] modeled
the monocular depth estimation as a classification task and
tackled this problem with a spacing-increasing discretiza-
tion strategy. Gan et al. [5] employed an affinity layer to
integrate relative and absolute features within a network.
In addition, they used vertical max pooling to focus on
vertical characteristics of depth maps and improved accuracy.
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FIGURE 2. The entire architecture of the proposed monocular depth estimation network. It consists of an encoder–decoder network
with the proposed attentive skip connection (ASC) and the global context module (GCM) for effective depth prediction. The ASC (green
blocks and lines) is located between each encoder and the decoder block. The GCM (orange block) is placed between the encoder and the
decoder network.

Guo et al. [6] incorporated a synthetic depth dataset to acquire
a considerable amount of ground truth images. Subsequently,
they trained a network with synthetic data and fine-tuned
with a real dataset. Finally, they mitigated the domain gap
between the ground truth and synthetic dataset by distill-
ing stereo networks. Qi et al. [16] utilized the relation
between the depth and surface normal by employing two
networks: depth-to-normal and normal-to-depth networks.
Hu et al. [17] proposed a network that extracts a multi-scale
feature to preserve spatial resolution. In addition, they defined
a new loss that considers the depth, gradients, and surface
normal of depth maps. Yin et al. [4] emphasized the impor-
tance of geometric constraints in the 3D space to improve the
performance of monocular depth estimation. They generated
a 3D point cloud from the estimated and ground truth depth
maps, and followed by computing the virtual normal loss by
randomly sampling points of pair maps. Zhang et al. [18]
suggested a new framework that predicts depth, surface
normal, and semantic segmentation jointly. This framework
utilizes cross-task patterns by calculating the affinity matrix
while performing each task.

B. CONTEXTUAL INFORMATION
Contextual information is an essential cue in many computer
vision tasks, especially in scene understanding tasks such
as 3D object detection, semantic segmentation, or depth
estimation. Reference [10] constructed an encoder–decoder
architecture with skip connections to combine contracted
high-resolution features with an expanded output for seg-
mentation. To achieve depth estimation, Eigen et al. [7]
and Garg et al. [8] employed the encoder–decoder struc-
ture with skip connections that use encoded features in the
decoding phase. Liu et al. [19] suggested a network that
performs semantic segmentation first and uses the predicted
labels for depth estimation. Jiao et al. [20] proposed a syn-
ergy network to incorporate semantics in depth prediction
by using an information propagation strategy as well as

knowledge sharing. Amirkolaee and Arefi [21] constructed a
depth prediction network with the encoder–decoder and skip
connection structure to integrate the global and local con-
texts. Unsupervised methods use additional information to
overcome the absence of labeled data; such methods include
those that leverage semantic information. Ochs et al. [9]
performed semantic segmentation and depth estimation using
two independent CNNs, one for each task. Through this
approach, the network learns more stable features and can
leverage semantic labels. Chen et al. [22] combined the depth
and segmentation modalities by minimizing self-supervised
objective losses, the left–right semantic consistency, and the
semantics-guided disparity smoothness.

In addition, there have been several papers that have
employed an attention architecture to focus on the contexts
that are significant for depth estimation. Xu et al. [23] pro-
posed an attention module which parameterized by binary
variables to control the flow between the encoder and the
decoder. Then, the proposed attention module was inte-
grated with a conditional random field. Chen et al. [24]
proposed an attention-based context aggregation network
to solve the depth estimation problem. They placed a
pixel-level self-attention module at the bottleneck of net-
work and trained it with attention loss. Takagi et al. [25]
proposed a two-branch depth estimation network with
mutual learning and employed channel attention with
squeeze–and– excitement [26] attention module.

III. METHOD
This section first introduces the entire architecture of the
network and an attentive skip connection with the global
context module in the sequence.

A. NETWORK ARCHITECTURE
As depicted in Fig. 2, the proposed model adopts the
encoder–decoder architecture with the suggested attentive
skip connections and the global context module. The encoder

147810 VOLUME 8, 2020



D. Kim et al.: Leveraging Contextual Information for Monocular Depth Estimation

is initialized with the weights of a pretrained ImageNet [27]
classification model to extract the dense features. We develop
a remarkably simple decoder network to restore the obtained
features to the image scale and to generate a depth map. The
decoder is designed to have the same number of blocks as the
encoder. Each block consists of a 3× 3 deconvolution, batch
normalization, and ReLU layer. To strengthen the power of
the decoder, residual blocks are placed between the 2nd and
3rd block. Similar to the decoder blocks, the residual blocks
have two 3 × 3 convolution layers with batch normalization
and a ReLU layer.

B. ATTENTIVE SKIP CONNECTION
We consider a depth estimation network as a mapping func-
tion for the image to depth map translation, which shares
an underlying structure. The objects and structure in a given
RGB image are roughly aligned with those in the output
depth map. As previously described, the location of impor-
tant edges plays a major role in depth inference. Therefore,
it would be desirable to flow acquired information through
the network. In this study, to shuttle the low-level features,
we append the skip connections between the encoder and
the decoder. Unlike previous studies [4], [7], [8], this study
does not simply sum the feature values or apply a concise
convolution. An attention mechanism is applied to the skip
connection. As discussed earlier, there are some studies that
have used the attention mechanism for monocular depth esti-
mation [23]–[25]. However, our approach differs from pre-
vious works in two aspects. First, we design a task–specific
attention module with two branches and attach it to the skip
connection to deliver refined multi-scale features to each of
the blocks of the decoder. Second, our module is light-weight
and requires only a small amount of additional computation.
The proposed attention module is detailed in Fig. 3.

An attentive skip connection is provided for each encoder
block to propagate the meaningful features to the decoder
block. For every convolutional block in the encoder, the out-
put feature maps FM pass through two branches. Similar to
the implementation in [28], the attentive skip connections
generate attention maps along the spatial and channel dimen-
sions. In the first branch, a spatial attention map is obtained
through its branch in parallel with the channel attention
branch. We consider that the computational graph for the
spatial attention map should be task-specific. Previously pro-
posed attention modules are usually employed for the classi-
fication task [26], [28], [29]. It is needed to derive the highest
possibility from the whole image in the classification task;
however, the regression network infers continuous values for
all of the pixels in the image. Therefore, in this study, an atten-
tive skip connection is designed to specifically understand the
scene in multiple scales. As it is necessary for our network
to focus on multiple locations, important edges, and objects
during depth estimation. We adopt atrous spatial pyramid
pooling (ASPP) to broaden the fields-of-view and to capture
the objects at multiple scales. The intermediate feature map
FM for each block of the encoder is forwarded to the ASPP

FIGURE 3. Detailed structure of an attentive skip connection. FM is an
intermediate output feature from the encoder. F ′M , F ′′M are attention maps
from each spatial and channel branch. The dilation rate of the atrous
spatial pyramid pooling (ASPP) module in spatial branch
d = {d1, d2, · · ·dn} is obtained through experiment.

module with the dilation rate d = {d1, d2, · · · , dn}. The
value of d is obtained via experiments. We choose {3, 6, 9}
for this investigation and this process will be discussed in the
Experiment section. Furthermore, the feature that passed the
ASPP module goes through a 1 × 1 convolution for effec-
tive integration. The integrated feature are passed through
the ASPP module and the 1 × 1 convolution once more to
enhance the effectiveness of the module. Ultimately, a batch
normalization layer is employed at the end of the spatial block
to ensure stable training. Thus, the spatial attention map F ′M
is acquired.

In the second branch, average-pooling is applied for the
intermediate feature map FM in the channel dimension to
encode the contextual information in each channel. Then,
the pooled feature is forwarded to a multi-layer percep-
tron (MLP) with one hidden layer. To make the model com-
pact and effective, a hidden layer is constructed to have a
reduced number of units compared to that of the input and
output layers of the MLP. The value of 16 is used as the
reduction ratio for the dimensions of the hidden and input
layers. Thus, a refined spatial attention map, F ′′M , is obtained.
After the spatial attention map F ′M and the channel attention
mapF ′′M are acquired, eachmap is multiplied with the original
feature map FM element-wisely and they are merged by
summation. Finally, the calculated refined feature is added
with the original feature map FM .

C. GLOBAL CONTEXT MODULE
To further exploit a global context representation, we do
not directly deliver the bottleneck feature of the encoder to
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FIGURE 4. Illustration of the global context module. FB is the bottleneck
feature from the encoder, with a size of C ×H ×W . F ′B and F ′′B denote the
processed feature from each branch and dh is the hidden dimension of
the branch. We determine the optimal value of dh through additional
experiments.

the decoder. The global context module is placed at the end
of the encoder to obtain the global context information and
pass meaningful features to the decoder. The structure of the
global context module is illustrated in Fig. 4. The bottleneck
feature FB ∈ RC×H×W is fed into two paths. The goal
of the global context module is to capture important fea-
tures in a global scale with a simple additional computation.
Hence, the pooling method is applied to reduce the dimen-
sions of the feature and obtain significant representations
with small parameter overhead. In the first branch, average
pooling is applied in the channel dimension to utilize the
inter-dependencies between the channel-wise feature maps
and to help the model concentrate on the useful regions
since average-pooling has been commonly used for captur-
ing spatial information [26]. Then, the feature is convolved
with the kernel having H × W × dh weights where dh
denotes the dimension of the intermediate refined featuremap
FB′. The appropriate dimension for the best performance is
determined to be 512 via ablative experiments. Regarding
the second branch, a max-pooling operation for FB is used
to capture the most informative spatial information. Similar
to the case of the attentive skip connection, the max-pooled
feature is forwarded to the multi-layer perceptron comprising
one hidden layer with a reduced dimension, and the reduction

ratio 16. Then, the refined feature is reshaped into dh× 1× 1
to aggregate it with FB′.

After the refined feature maps FB′ and FB′′ are obtained
from both branches, the output vectors are combined using
element-wise summation. Additionally, a 1 × 1 convolution
layer is employed to fuse the added features, and it is upsam-
pled by bilinear interpolation such that it has the same size
as that of the original feature map FB. Finally, this obtained
feature is multiplied and added with the original feature map
FB and used as an input to the decoder.

D. TRAINING
In the training phase, a scale-invariant log loss function [7]
is used as the objective function. For a generated depth map
y and the ground truth y∗, there are n pixels indexed by i.
The final loss function is as follows:

Lobj(y, y∗) =
1
n

∑
i

di2 −
1
2n2

(∑
i

di2
)

(1)

where di = log yi − log yi∗.

IV. EXPERIMENT
The effectiveness of the proposed model is demonstrated by
performing various experiments on the KITTI [36] and NYU
Depth V2 [37] datasets. For the evaluation, this study uses the
following metrics from previous works [3], [7]:
• Threshold (δ):

% of yi s.t. max(
yi
y∗i
,
y∗i
yi
) = δ < thr

• Absolute relative difference (AbsRel):

1
|T |

∑
y∈T

|y− y∗|/y∗

• Squared relative difference (SqRel):

1
|T |

∑
y∈T

‖y− y∗‖2/y∗

• Root mean squared error (RMSE):√√√√ 1
|T |

∑
y∈T

‖y− y∗‖2

• RMSE (log):√√√√ 1
|T |

∑
y∈T

‖ log y− log y∗‖2

• log10:

1
|T |

∑
y∈T

| log10 y− log10 y
∗
|

where T is the available pixels in the ground truth, y is the
predicted value, and y∗ is the ground truth. Following the
illustration of our results on the dataset, an ablation study has
been provided.
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TABLE 1. Performance on the KITTI Dataset.

A. IMPLEMENTATION DETAILS
This model is implemented on the open deep learning frame-
work PyTorch [38]. The encoder is initialized with the
weights of the pretrained networks ResNet-50, ResNet-101
[39], ResNeXt-101 [40]. We use randomly cropped images
with a size of 352 × 704 from the KITTI dataset and
images with a size of 448 × 576 from the NYU Depth
V2 dataset. The learning strategy employs the ADAM opti-
mizer, and the learning rate is started from 0.0001 with a
weight decay of 0.9. The network is trained for 40 epochs
and the batch size is set to four. The images are aug-
mented by applying random brightness, contrast, color
adjustment, and rotation; the range for each of the aforemen-
tioned modifications is (0.5, 1.5), (0.8, 1.2), (0.8, 1.2), and
(-5, 5) degrees, respectively. In addition, random horizontal
flipping is applied.

B. DATASET
1) KITTI
The KITTI dataset [36] consists of 61 scenes of outdoor
images captured by driving a car with cameras and velodyne
sensors. The proposed model is trained based on the split
proposed by Eigen et al. [7]. They used 56 scenes from the
‘‘city’’, ‘‘residential’’, and ‘‘road’’ categories. The images are
split into training and testing sets, which contain 23,488 and
697 images, respectively.

2) NYU DEPTH V2
The NYU Depth V2 dataset [37] contains 464 indoor scenes,
which includes 249 scenes for training and 215 for testing.
The proposed model is trained on 24,231 images and tested
on 654 images.

TABLE 2. Performance on the NYU Depth V2 Dataset.

C. PERFORMANCE
The results obtained for the KITTI and NYU Depth
V2 datasets are listed in Table 1 and Table 2, where the
proposed model is compared with other previous works.
As described in the results, our approach outperforms the
other state-of-the-art methods for the outdoor and indoor
datasets. It proves that the proposed model is suitable for
various situations. As presented in Table 1, the results of our
method exceed those of the previous works by 2% ∼ 22%
in terms of all of the metrics on the KITTI dataset. From
Table 2, our model achieves state-of-the-art results for all of
the metrics, except for AbsRel on the NYUDepth V2 dataset.

In Fig. 5, the results are compared with those of prior
works, for the KITTI dataset. As previously highlighted,
the importance of contextual information in depth estima-
tion has been demonstrated. The proposed method shows
sharp boundaries on objects such as a person, a road sign,
or bicycles. In addition, our approach successfully locates the
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FIGURE 5. Qualitative comparison with the previous methods. The depth maps are generated from the test set of the KITTI dataset. From top to
bottom, the images are the input and the depth map of our method and those of the methods propsed by Yin [4], Fu [3], and Gan [5].

FIGURE 6. Comparison of the inference speed with the previous
methods: running time vs. RMSE error. The performance and running
time of the other methods are derived from [35].

objects in the image, in contrast with the previous methods,
even when there are multiple objects. The road sign in the
image in the first column is not presented in the result depth
map of [4], [5]; in contrast, our model provides an appropriate
inference for the depth of a given object.

To further emphasize the strength of the proposed method,
the mean RMSE versus the running time for the proposed
model on the NYU Depth V2 dataset is illustrated along
with that for some of the prior works. As shown in Fig. 6,
the inference speed of our method is higher than that of the
other compared methods; in addition, our model achieves

a higher accuracy. The results are represented from differ-
ent base networks including ResNet-50, ResNet-101, and
ResNeXt-101. Even though there is a trade-off between the
performance and the inference time, the suggested model
consistently provides reasonable results.

D. ABLATION STUDY
To demonstrate the effectiveness of the proposed model,
we conduct several ablation experiments with different set-
tings on the NYU Depth V2 dataset. First, experiments
are performed on the baseline method; then, the network
is amended with an attentive skip connection and a global
context module to verify the performance of the proposed
method. The quantitative and qualitative results are shown
in Table 3 and Fig. 7.

As listed in Table 3, the attentive skip connection and the
global context module significantly improve the performance
of the network. To demonstrate that this strategy can be gen-
erallized to a different base network, the model is trained with
ResNet-101 and ResNeXt-101. The results shows that the
proposed approach consistently exhibits good performance
even when applied to a different network. Furthermore,
the number of parameters increased only by 2.8M, as listed in
the table. A significant improvement in the performance and
fast inference are achieved with a small number of parameters
for the suggested modules. The qualitative results obtained
for the proposed modules on the NYU Depth V2 dataset are
illustrated in Fig. 7. It can be observed that the boundaries of
the objects becamemore accurate owing to the addition of the
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TABLE 3. Ablation study on the NYU Depth V2 dataset. Baseline: encoder–decoder network with the skip connections; ASC: attentive skip connection;
GCM: global context module. The encoder and the decoder are the same for all settings.

FIGURE 7. Qualitative results of the ablation study. (a) input RGB images; (b) ground truth; (c) baseline; (d) baseline and attentive skip connection
(e) baseline, attentive skip connection, and the global context module (ours).

TABLE 4. Comparison with previous attention modules.

proposed modules. Moreover, our model is able to accurately
detect the objects on the table (3rd row) that were not detected
accurately by the baseline method.

Table 4 shows the results of the comparison of the proposed
attentive skip connection with previous attention modules.
Squeeze–and–excitement (SE) [26], bottleneck attention
module (BAM) [28], and convolutional bottleneck atten-
tion module (CBAM) [29] are selected and tested on the
KITTI dataset based on ResNet-101 architecture. The pro-
posed attentive skip connection yields the best performance
for all metrics, as indicated by Table 4. This demonstrates that
the proposed attentive skip connection is more suitable for

depth estimation tasks and that it increases the performance
of the network further, in comparison with other attention
modules.

In addition, experiments are conducted by using different
dilation rates for the attentive skip connection and using var-
ious hidden dimensions for the global context module. These
experiments are performed to maximize the performance.
The results are presented in Table 5. The dilation value
of {3, 6, 9} provides the best results among those obtained
for the various settings. This result supports the notion that
applying a well-designed ASPP module for a skip connec-
tion can improve the performance of the model by deriving
useful features with enlarged receptive fields. With regard to
dh, the value of 512 in the hidden layer provides the best
performance among those obtained for the various settings.
If the size of the hidden dimension increases, the network
usually shows a better performance owing to the increase
in depth. However, using an excessively high value for this
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TABLE 5. Ablation study on the hyper-parameters. The dilation rate
denotes the value of the dilation rate in ASPP for the attentive skip
connection. dh is the size of the intermediate reduced dimension of the
global context module. This is validated on the eigen split of the KITTI
dataset.

parameter can cause overfitting, and the inference rate will
also be adversely affected. Therefore, it is important to find
an appropriate value for this task. In summary, based on the
ablation study, a dh value of 512 and dilation rate of {3, 6, 9}
are used in this study.

V. CONCLUSION
This paper presents a novel network architecture that
leverages the contextual information for monocular depth
estimation. Using the proposed modules, the multi-scale
attentive skip connections and the global context module,
our network captures meaningful contextual representation
in the multi-scale and global scale. Extensive experiments
and an ablation study demonstrate that the proposed model
effectively provides a more accurate predictions, compared
to other state-of-the-art methods. Furthermore, our network
achieves a significant performance improvement on the
KITTI and NYU Depth V2 datasets. Moreover, we plan to
investigate the structure of faster and lighter networks to
achieve real-time performance.
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