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ABSTRACT How to limit the drifts of the navigation errors in an inertial navigation system (INS) with
low-cost sensors is one of the main challenges for the land vehicle navigations. In this paper, we present a
novel hybrid navigation strategy to integrate the Micro-Electric-Mechanic-systems (MEMS) INS, odome-
ter (OD) and global navigation satellite systems (GNSS), with aim to enhance the positioning accuracy of the
inertial system during GNSS outages. To accurately estimate the INS error states, the neural network (NN)
is proposed to mimic the velocity of the navigation frame with the data from the MEMS INS, odometer,
as well as the non-holonomic constraints (NHC). The long short-term memory (LSTM) NN is adopted in
our approach due to its ability to adaptively use the data in the past. The road tests are conducted with two
different MEMS IMUs to verify the proposed navigation strategy. Comparing to the traditional integrated
MEMS INS/OD/GNSS system based on the extended Kalman filtering (EKF), our hybrid approach provides
over 60% improvements in terms of the root mean square (RMS) and maximum horizontal position errors
during GNSS outages.

INDEX TERMS Artificial intelligence, global navigation satellite system, inertial navigation, sensor fusion,
parameter estimation.

I. INTRODUCTION
The strapdown inertial navigation system (INS) usually con-
sists of a triad of accelerometers and gyroscopes, which mea-
sures the vehicle’s acceleration and rotation rate with respect
to the inertial frame. A set of mathematical transformations
and integrations with respect to time are applied to the inertial
measurements to calculate the position, velocity and attitude
information. The main drawback of INS is that the navigation
errors, including position, velocity and attitude errors accu-
mulate over time because of the intrinsic property of dead
reckoning [1]. Due to the merits of low-cost, small-size and
low power-consumption [2], the Micro-Electric-Mechanic-
systems (MEMS) inertial sensors have beenwidely employed
for the land vehicle navigations. However, they feature sig-
nificant sensor errors, such as high-frequency noise, bias
instability and misalignment errors [3], [4]. As a result,
the navigation errors grow dramatically for an MEMS INS.

The associate editor coordinating the review of this manuscript and
approving it for publication was Huiyu Zhou.

To eliminate the error accumulations of an inertial system,
the global navigation satellite systems (GNSS) was widely
employed, and the Kalman filtering (KF) is the most popular
technique to fuse the GNSS and INS data. In such integrated
systems, the GNSS position and velocity are used as mea-
surements to estimate the INS position, velocity and attitude
errors, as well as the inertial sensor errors [5]–[7]. However,
the GNSS signals are easily to be blocked when the vehicle
travels through urban areas or tunnels, then the navigation
errors still accumulate when the INS works in standalone
mode during GNSS outages. Typically, the position errors
accumulate to hundreds of meters in tens of seconds for the
MEMS INS [8], [9].

Because of the advantages in nonlinear mapping between
inputs and outputs without the pre-defined mathematical
model [10]–[12], the artificial neural networks (ANN) were
proposed to reduce the INS navigation errors during GNSS
outages. A brief summary of related research is introduced
as follows. The position update architecture (PUA) was
proposed with the multiplayer perceptron (MLP) neural
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networks to predict the position increment over time with
the inputs of the INS velocity and azimuth [13]. When the
GNSS is available, the neural network is trained with the
GNSS-derived position increments, while it is used to predict
them based on the INS outputs during GNSS outages. More
complex architectures, which incorporate the prediction of
vehicle velocity or azimuth, were also designed and proved
to be able to offer better positioning performance [14], [15].
The limitation of MLP is that it is difficult to determine
the optimal internal structure, such as number of layer and
number of neurons in each layer [13]. Other than predicting
the position increments, the P − δP model and V − δV
model were proposed to mimic the INS position and velocity
errors with inputs of INS position and velocity, respectively.
The employed neural networks includes radial basis func-
tion (RBF) [16], [17], adaptive neuro-fuzzy inference system
(ANFIS) [18]–[21] and the input-delayed neural networks
(IDNN) [22]. Comparing to theMLP, the RBF could dynami-
cally generate the internal structure to achieve the best system
performance [23]. ANFIS shows advantages in dealing with
the imprecision, uncertainty, and high level of stochastic of
input data in nonlinear dynamic environments [24], however
its parameter optimization leads to an enormous computa-
tional burden and long design time [18], [19]. By using the
input-delayed mechanism, the IDNN is able to take the past
samples into account. In addition to the INS velocity and
attitude, the raw measurements from inertial sensors are also
added as inputs, and different learning algorithms, such as
ensemble learning algorithm [25] and back propagation (BP)
with stochastic gradient descent (SGD) algorithm [26] are
employed in the training procedures. The hybrid approaches
of integrating KF and neural network were also studied. The
neural network aided KF was proposed for the integration of
INS and GPS, in which the neural networks is employed to
identify the system states andmeasurement covariancematrix
in real time [27], [28]. Moreover, the neural networks were
trained to predict the KF error states with inputs of the vehicle
dynamic variations during GNSS outages [29].

The random errors of the inertial system (such as the
noise and bias instability) may cause the inconsistency to
the pre-trained ANN model, which deteriorate its prediction
accuracy. Therefore, the ANN-based approaches can only
partially compensate the INS navigation errors, and the resid-
ual errors still accumulate over time [16]–[22]. Moreover,
due to the high-level noise and bias instability of the MEMS
inertial sensors, the ANN has shown a very limited success
when applied to a MEMS INS [30]. As a result, aiding
sensors are still required to further limit INS error drift dur-
ing GNSS outages. The odometer (OD) is one of the most
common sensors used for the land vehicle navigation, and
the integrated INS/GNSS/OD system was usually proposed,
in which the forward velocity derived from the odometer
can be used to control the INS error drifting during GNSS
outages [30]–[32]. The estimation approaches includes the
federated KF [30], the extended KF [31], [32] and the particle
filter [33]. The measurements of the GNSS position and

velocity derived in the navigation frame directly provide the
estimates of the INS position and velocity error states, which
maintains system positioning accuracy. Moreover, the aiding
odometer data also contribute to the attitude estimation [34].
During GNSS outages, only the forward velocity measure-
ments are available to estimate the INS error states, which
leads to the reduced stochastic observability of the position
and velocity errors. As a result, the position and velocity
solution still drift over time, which remains as a challenge
for the land vehicle navigations.

In this paper, we aim to enhance the positioning perfor-
mance of theMEMS INS during GNSS outages by proposing
a hybrid navigation strategy to integrate the MEMS INS,
odometer and GNSS based on both of the Kalman filtering
and neural networks. When GNSS is available, the navi-
gation data from the inertial system, odometer and GNSS
is fused with an extended KF. Meanwhile, a neural net-
work is proposed to mimic the velocities in the east and
north directions of the navigation frame to accurately esti-
mate the INS error states during GNSS outages. The inputs
include the MEMS INS data, odometer data, and the non-
holonomic constraints (NHC), which assumes the velocity
components in the upward and transverse axes are zeroes
for land vehicles when they run normally [35]–[38]. Due
to the ability to adaptively use the data in the past [39],
the long short-term memory (LSTM) neural network (NN)
is employed in our approach. Comparing to the traditional
neural networks, the LSTM NN shows the advantage in
modelling the time correlated sequential data, as it is able
to memorize the long-term dependencies of the sequential
data. The road tests are conducted with two different MEMS
IMUs, namely NAV440 and Crista, to verify the proposed
navigation strategy. Comparing to the traditional integrated
MEMS INS/OD/GNSS system based on the extended KF, our
hybrid approach provides over 60% improvements in terms
of the root mean square (RMS) and maximum horizontal
position errors during GNSS outages.

The remainder of this paper is organized as follows.
Section 2 introduces the overall navigation strategy with the
system flowchart. Section 3 presents the integrated MEMS
INS/OD/GNSS systems based the extended KFwith focus on
the data fusion algorithm and the system error analysis from
analytic point of view. The proposed LSTM NN to derive the
velocity of navigation frame is given in Section 4, followed
by the road tests and results analysis present in Section 5.
Finally, the conclusions are summarized in Section 6.

II. PROPOSED HYBRID NAVIGATION STRATEGY
Figure 1 illustrates the flowchart of the proposed hybrid nav-
igation strategy, which works in two different modes related
to the GNSS availability. When GNSS signals are available,
the hybrid system works in the training mode, where the
MEMS INS, odometer and GNSS are integrated based on
the EKF as shown in (a). The ANN is proposed based on the
LSTM to predict the velocities in the east and north directions
of the navigation frame with the inputs being the specific
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FIGURE 1. Flowchart of the proposed hybrid system of integrated INS/OD/GNSS.

force f b and the angular rate ωbib from the accelerometers and
gyro biases, respectively, the azimuth from the INS mecha-
nizations, as well as the body frame velocity formed from the
odometer data and NHC. The inertial sensor data is added
to the inputs to mimic the vehicle dynamics. The learning
targets are the velocities of the east and north directions
derived from GNSS. The hybrid integrated system works
in the prediction mode during GNSS outages as shown in
(b), where the velocity predicted from the trained LSTM
NN is used as measurements to estimate the INS errors and
therefore tomaintain the positioning accuracywithout GNSS.

III. DATA FUSION OF MEMS INS, ODOMETER AND GNSS
The reference frames used in this study includes the inertial
frame [1], navigation frame, as well as the body frame. The
navigation frame is defined as East-North-Up frame, while
the body frame is defined as the Right-Forward-Up frame.
The reference transformation matrix between inertial frame
and body frame, Cb

i , can be calculated as C
n
i C

b
n, where C

b
n is

the transformation matrix from the navigation frame and the
body frame, determined by the roll, pitch and azimuth, while
Cn
i is the transformation matrix from the inertial frame to the

navigation frame, which is defined in [1]. By considering the
error characteristics of the land vehicle navigation, a 15-error
states vector, which includes the position errors, velocity
errors, and attitude errors in the navigation frame, as well

as the accelerometer and gyro biases in the body frame,
is chosen as the system states vector as shown in Eq. (1).

x =
[
δrn δvn εn γ b db

]T
(1)

where x represents the filter state vector, δrn =[
δφ δλ δh

]T represents the position errors in the navi-
gation frame, δφ, δλ and δh represent the latitude error,
longitude error, and height error, respectively, δvn =[
δvE δvN δvU

]T represents the velocity errors of the nav-
igation frame; δvE , δvN and δvU represent the velocity
errors in the east, north and vertical direction, respectively,
εn =

[
εE εN εU

]T represents the attitude errors of the
navigation frame, εE , εN and εU represent the attitude errors
in the east, north and vertical direction, respectively, γ b

=[
γX γY γZ

]T represents the accelerometer bias vector in
the body frame, and γX , γY , γZ represent the accelerom-
eter biases along X, Y and Z axes, respectively, db =[
dX dY dZ

]T represents the gyro bias vector of the body
frame, and dX , dY and dZ represent the gyro biases along X,
Y and Z axes, respectively.

Based on the perturbation analysis, the error equations for
the position error, velocity error, as well as attitude error can
be formulated as shown in Eq. (2)–(4) [1].

δṙn = Frrδrn+Frvδvn (2)

δv̇n = Fvrδrn+Fvvδvn+Fvεε
n
+Cn

bγ
b (3)
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ε̇n = Fεrδrn+Fεvδvn+Fεεεn+Cn
bd

b (4)

where,

Frr =


0 0 −

φ̇

M + h

λ̇ tanφ 0 −
λ̇

N + h
0 0 0

 and

Frv =


0

1
M + h

0

1
(N + h) cosφ

0 0

0 0 −1

 ,
φ̇ and λ̇ represent the latitude and longitude rate, respectively.

Frr =


0 0 −

φ̇

M + h

λ̇ tanφ 0 −
λ̇

N + h
0 0 0

 ,

Fvr =

 2ωe(vU sinφ + vN cosφ)+ vN λ̇/ cosφ 0 0
−2ωievE cosφ − vE λ̇/ cosφ 0 0

−2ωievE sinφ 0
2γ
R

 ,

Fvv=


−vU+vN tanφ

N + h
(2ωie+λ̇)sinφ −(2ωie+λ̇) cosφ

−(2ωie + λ̇) sinφ
−vU
M + h

−φ̇

(2ωie + λ̇) cosφ 2φ̇ 0

,

Fvε =

 0 fU −fN
−fU 0 fE
fN −fE 0


and fE , fN , fU represent the specific force in the navigation
frame, γ represents the normal gravity that varies with the
altitude, and R =

√
MN ,

Fεr =


0 0

φ̇

M + h

−ωie sinφ 0 −
λ̇ cosφ
N + h

ωie cosφ + λ̇/ cosφ 0 −
λ̇ sinφ
N + h

 ,

Fεv =


0 −

1
M + h

0

1
N + h

0 0

tanφ
N + h

0 0

 , and

Fεε =

 0 (ωie + λ̇) sinφ −(ωie + λ̇) cosφ
−(ωie + λ̇) sinφ 0 −φ̇

(ωie + λ̇) cosφ φ̇ 0

 ,
ωie represents the earth rotation rate,Cn

b is the transformation
matrix from the body frame to the navigation frame.

By arranging the terms of Eq. (2)-(4), the system dynamic
model can be obtained as described in Eq. (5) with the inertial
sensor biases modelled as 1st order Gauss-Markov random
process [5], [6].

ẋ = Fx+Gw (5)

where

F =


Frr Frv 03×3 03×3 03×3
Fvr Fvv Fvε Cn

b 03×3
Fεr Fεv Fεε 03×3 Cn

b
03×3 03×3 03×3 βa 03×3
03×3 03×3 03×3 03×3 βg


represents the system dynamic matrix,G represents the shape
matrix of the system noise, w represents the system noise,
βa and βg represent the correlation length matrix regarding
to accelerometer and gyros, respectively, and 03×3 represents
the null matrix with size of 3 by 3.

The measurements from the GNSS are the position and
velocity in the navigation frame, therefore, the corresponding
measurement model is straightforward, and the design matrix
HGNSS can be described as

HGNSS =

[
I3×3 03×3 03×3 03×3 03×3
03×3 I3×3 03×3 03×3 03×3

]
.

The body frame velocity formed from the odometer data and
the NHC is used as the system measurements, and the corre-
sponding measurement model can be obtained by perturbing
the equation vb = Cb

nv
n as shown in Eq. (6)

δvb = Cb
nδv

n
+ VbCb

nε
n
= Hbx (6)

where δvb represents the velocity errors in the body
frame, Vb is the skew-symmetric matrix of veloc-
ity vector in body frame vb, and the design matrix
Hb =

[
03×3 Cb

n VbCb
n 03×3 03×3

]
.

When GNSS is available, the measurements of the GNSS
velocity derived in the navigation frame directly provide the
estimates of the system states δvn. Then other error states are
estimated from the time derivatives of δvn [40]. Although the
azimuth error εU will be drifted when the vehicle maneuvers
are weak, as its stochastic observability is poor under such
conditions [41], it will not cause the drifting of the INS veloc-
ity and position solutions. This is because the INS velocity
error and position errors can be directly corrected by the
GNSS measurements.

During the GNSS outages, the body frame velocity
becomes the only measurement to estimate the INS errors.
The measurement model in Eq.(6) can be reformulated as
shown in Eq.(7), as shown at the bottom of the next page.
Apparently, the attitude error states are coupled with the
velocity error states, and none of them can be inferred from
the measurements. According to Eq. (3) and (4), the 1st and
2nd time derivatives of the body frame velocity errors are cal-
culated in Eq. (8) and (9), as shown at the bottom of the next
page, respectively, with the following assumptions: 1) the
vehicle travels on a flat surface that both roll and pitch are
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zeroes, 2) the body frame is aligned with the vehicle frame,
3) integration time periods are limited to a fraction of the
Schuler period (up to 8minutes) and therefore Earth rotation
and Schuler frequency can be neglected; 4) the inherent biases
are treated as random constants [38].

The system states can be inferred from the measurements
and their time derivatives [40], [41]. As the vehicle usually
travels with a relatively constant velocity, we assume the
horizontal accelerations fE and fN are zeroes for the following
error analysis. By examining Eq. (8) and (9), we find that
only the accelerometer bias of the vertical axis, γZ , and the
gyro biases of horizontal axes, dX and dY , can be uniquely
estimated from themeasurements with no vehicle maneuvers.
None of the rest error states, including attitude error state
vector, εn, velocity error state vector δvn, as well as the
horizontal accelerometer biases, γX and γY , and gyro bias of
vertical axis, dZ , can be uniquely estimated, although some
linear combinations of them can be calculated. Although the
horizontal accelerations, fE and fN , can enhance the estima-
tion of the azimuth error εU and gyro bias dZ according to
Eq. (8) and (9), the local gravity g is usuallymuch greater than
those accelerations, which make the stochastic observability
of those errors are still poor. As a result, the residual gyro bias
dZ would cause the accumulation of the azimuth error.
The velocity error state vector δvn can be reformulated

based on the measurement model as shown in Eq. (10), as
shown at the bottom of the page. Apparently the accumulated
azimuth error would cause the drifting in the velocity errors
of the east and north directions. As the gyro biases, dX and
dY , can be uniquely estimated, it prevents the accumulation
of roll and pitch errors. As a result, the velocity error of the
vertical direction, δvU can be maintained converged.
With only the measurement of the body frame velocity,

the position and velocity solutions of the east and north
directions, as well as the azimuth, will drift during GNSS
outages. To maintain the accuracy of the integrated system,
the measurements of the velocity of the east and north direc-
tions in the navigation frame is required. In the next section,
we present a NN-based approach to predict such measure-
ments based on the data collected from the INS, odometer
and GNSS.

FIGURE 2. Structure of the LSTM NN.

IV. PREDICTION OF VELOCITY MEASUREMENT BASED
ON ANN
The LSTM NN can be considered as one of the recurrent
neural networks (RNN). Comparing to the traditional neu-
ral networks, the LSTM shows advantages in modelling the
time correlated sequential data, as it is able to memorize the
long-term dependencies of the sequential data.

Therefore, it has been successfully applied to many fields,
such as wind speed prediction [42], voice detection [43],
pedestrian trajectory prediction [44], traffic flow predic-
tion [45] and navigation [46], [47]. Given the superior ability
to model the sequential data, it is employed in this paper to
predict the velocity of the east and north directions in the
navigation frame with the inputs of INS and odometer data.

Figure 2 illustrates the typical structure of the LSTM
NN. With the input sequential data, x = (x1, x2, · · · , xn),
and the output sequential data, y = (y1, y2, · · · , yn),
the system input-output equations can be described as shown
in Eq. (11)-(17).

in = σ (wxixn + whihn−1 + bi) (11)

fn = σ (wxf xn + whf hn−1 + bf ) (12)

on = σ (wxoxn + whohn−1 + bo) (13)

gn = tanh(wxcxn + whchn−1 + bc) (14)

 δvXδvY
δvZ

 =
 cosAδvE − sinAδvN + vY εU

sinAδvE + cosAδvN
δvU − vy cosAεE + vy sinAεN

 (7)

 δv̇Xδv̇Y
δv̇Z

 =
−g sinAεE − g cosAεN + (fN cosA+ fE sinA)εU + γX + vY dZ

g cosAεE − g sinAεN + (fN sinA− fE cosA)εU + γY
−fN εE + fEεN + γZ − vY dX

 (8)

 δv̈Xδv̈Y
δv̈Z

 =
−gdY + (fN cosA+ fE sinA)dZ

gdX + (fN sinA− fE cosA)dZ
−fNdE + fEdN − vY dX

 (9)

 δvEδvN
δvU

 =
 δvX cosA+ δvY sinA− vZεN − (vX sinA− vY cosA)εU
−δvX sinA+ δvY cosA+ vZεE − (vX cosA+ vY sinA)εU

δvZ − vN εE + vEεN

 (10)
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cn = fn � cn−1 + in � gn (15)

hn = on � tanh (cn) (16)

yn = whyhn + by (17)

where in is the input gating vector, fn is the forget gating vec-
tor, on is the output gating vector, gn is the state update vector,
hn is the hidden sate of memory cells,wxi,whi are the weight-
ing matrix corresponding to input gate, wxf ,whf are the
weighting matrix corresponding to forget gate, wxo,who are
the weighting matrix corresponding to output gate, wxc,whc
are the weighting matrix corresponding to the state update
vector, why is the weighting matrix corresponding to hidden
state. bi,bf ,bo are the bias vectors corresponding to the input
gate, forget gate, and output gate, respectively, bc,by are the
bias vectors corresponding to the state update vector and the
output vector, respectively. σ (·) represents the standard logis-
tics sigmoid function, and tanh (·) represents the hyperbolic
tangent function.

As shown in the figure, the LSTM structure consists of an
input gate, a forget gate, and an output gate. The input gate
determines if the input data will be used, and the forget gate
decides if the last state will be ‘‘forgotten’’, and the output
gate determines if the current state will be propagated [46].
Such network has a gating control mechanism which allows
the network to adaptively use the previous data.

In this paper, the body frame velocity formed from the
odometer data and NHC, the azimuth from the MEMS INS
solutions, as well as the specific force and angular rate from
the inertial sensors, which indicates the vehicle dynamics, are
chosen as the inputs of the LSTM to predict the velocity of
the navigation frame. The GNSS-derived velocities are con-
sidered to be the targets. As the data rate of the inertial data
is usually much higher than GNSS data rate, the integration
of the inertial data over the time span between consecutive
GNSS epochs is used, which also reduces the noise level of
the raw inertial data, as shown in Eq. (18).

xi =
[
ϕi vb

∫
fb

∫
ωbib

]T (18)

yi =
[
vnGNSS

]
(19)

V. FIELD TEST AND RESULTS ANALYSIS
Road tests are conducted with two different MEMS IMUs,
namely NAV440 and Crista, to verify the proposed hybrid
navigation strategy. For the road test #1, the GNSS receiver
from the NovAtel and the NAV440 from the Crossbow Inc.
are employed, while the Crista from the Cloud Cap Tech-
nology Inc. is employed in road test #2. The SPAN system
from the NovAtel, which includes a GNSS receiver and a
tactical-grade IMU, HG1700, is used as the reference in both
tests. The odometer data is read from the vehicle built-in
sensor thorough OBD II interface by using a device, namely
CarChip Pro, manufactured by Davis Instruments.

The error characteristics of both MEMS IMUs are sum-
marized in Table 1, which indicates the NAV440 provides the
inertial data with higher quality in terms of bias instability and
noise density. Both MEMS IMUs has a built-in GNSS pulse

TABLE 1. Error characteristics of the NAV440 and Crista.

per second (PPS) interface which facilitates the accurate time
synchronization of IMU and GPS data. The inertial data for
the twoMEMS IMUs is collectedwith the data rate of 100Hz,
while the GNSS data and the forward speed data are collected
with the data rate of 1 Hz.

Artificial GNSS outages are simulated to verify the ability
of the proposed LSTM NN to predict the velocity of the
navigation frame, and to evaluate the positioning accuracy of
the hybrid system duringGNSS outages. The EKF introduced
in Section 3 is employed to fuse the low-cost inertial data,
the body frame velocity, as well as the GNSS positions and
velocities to generate the solutions of the traditional inte-
grated MEMS INS/OD/GNSS system. Moreover, the col-
lected data is also processed by the proposed navigation
strategy to generate the solutions of the hybrid system. The
reference solutions are obtained by processing the SPAN data
using the Inertial Explorer from the NovAtel.

A. RESULTS ANALYSIS OF ROAD TEST #1
Six GNSS outages of 300 seconds are intentionally simulated
to the test trajectory. The vehicle dynamics during each out-
age are summarized in Table 2.

TABLE 2. Vehicle dynamics during each outage.

In this study, the first 1000 epochs are used for the training
procedure, though 600 epochs are required to achieve the
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pre-defined training accuracy (1e-3 in terms of RMSE). The
proposed hybrid system works in the predicting mode during
the GNSS outages, and the quality of the predicted veloc-
ity from the LSTM NN determines the system navigation
performance. According to Figure 3 and 4, which illustrate
the predicted velocity and the prediction errors during GNSS
outage #4, respectively, the predicted velocity from the LSTM
NN is highly consistent to the GNSS-derived velocity, and
the prediction error (the GNSS-derived velocity is used as
references) is maintained within 0.5 m/s.

FIGURE 3. LSTM NN-predicted velocity during GNSS outage #4 in road
test #1.

FIGURE 4. LSTM NN-predicted velocity error during GNSS outage #4 in
road test #1.

Figure 5 presents the attitude errors of the traditional
MEMS INS/OD/GNSS system and the proposed hybrid sys-
tem during GNSS outage #4. As aforementioned, the poor
stochastic observability of the azimuth error and gyro bias in
the vertical axis resulted in the accumulated azimuth errors
in the MEMS INS/OD/GNSS system during GNSS outages.
With the predicted velocity from the LSTM NN, the azimuth
is greatly reduced in the hybrid system as shown in the figure.
The gyro biases of the horizontal axes can be independently
estimated with the body frame velocity measurements, which
prevents the accumulations of the roll and pitch errors in the
MEMS INS/OD/GNSS system, therefore the predicted veloc-
ity from LSTM NN barely affect their estimation accuracy.

Figure 6 illustrates the calculated trajectories for both sys-
tems during GNSS outage #4. According to Eq. (10), the
accumulated azimuth error leads to the accumulated velocity
error, which eventually causes the estimated trajectory of
traditional MEMS INS/OD/GNSS system diverged from the
reference. Beneficial from the LSTM NN-predicted velocity
measurements in the east and north directions, the trajectory

FIGURE 5. Attitude errors of both systems during GNSS outage #4 in road
test #1.

FIGURE 6. Estimated trajectories of both systems during GNSS outage #4
in road test #1.

of the hybrid system is muchmore consistent to the reference.
By differencing with the reference solutions, the correspond-
ing horizontal position and velocity errors for both systems
are plotted in Figure 7. The proposed LSTM NN effectively
limits the position and velocity error accumulations. The
maximum horizontal position errors are reduced to less than
20 m. It is worthy to mention that although the results from
other outages also indicate the improvements on the position-
ing accuracy brought by the proposed strategy, only results
of outage #4 is visualized as the obtained positioning errors
are the smallest. The PF is also employed to fuse the inertial
and odometer data to provide a comparison to the proposed
strategy [33]. The obtained trajectory, the horizontal position
error and velocity errors during the same outage are illustrated
in Figure 6 and 7, respectively. With the predicted velocity
measurement from the LSTM NN, the proposed strategy
outperforms the PF in terms of positioning accuracy.

152518 VOLUME 8, 2020



S. Du et al.: Hybrid Fusion Strategy for the Land Vehicle Navigation Using MEMS INS, OD and GNSS

TABLE 3. Summary of the RMS and maximum horizontal position errors of both systems for all GNSS outages in road test #1.

FIGURE 7. Horizontal position and velocity errors of both systems during
GNSS outage #4 in road test #1.

Table 3 summarizes the RMS and maximum horizontal
position errors for all GNSS outages. The improvements
are calculated against to the EKF. Apparently, the pro-
posed LSTM NN greatly reduces the position errors in the
hybrid system. Comparing to the EKF method, the average
improvements of 66.3% and 77.4% are observed on RMS
errors and maximum errors, respectively. It maintains the
maximum errors within the range of 19.64-71.30 m (with
the RMS error from 14.49 to 32.03 m) during the outage
of 300 seconds, as opposed to the maximum error range from
126.63-604.18 m (with an RMS error from 45.31-278.74 m)
obtained by the traditional MEMS INS/OD/GNSS system.
As shown in Table 3, the proposed system strategy provides
the minimum improvements of 41.9% and 61.5% on RMS
and maximum errors, respectively. The results obtained from
PF are also present in Table 3. Although PF outperforms the
EKF in terms of positioning accuracy, the proposed strategy
can further reduce the positioning errors with the predicted
measurements and.

Although the length of the outages is the same, the obtained
positioning errors from the proposed strategy are different for
each outage. The positioning errors of the proposed strategy
mainly depends on the accuracy of the predicted velocity
from the proposed LSTM NN. As aforementioned that the
inputs are the accelerometer and gyro outputs, body frame

velocity and azimuth, which are strongly related to the ran-
dom errors of the inertial sensors and vehicle dynamics.
According to table 2, the vehicle dynamics for each outage
are similar, therefore, the different positioning errors during
each outage are mainly caused by the random errors of the
low-cost MEMS inertial sensors.

B. RESULTS ANALYSIS OF ROAD TEST #2
Comparing to the NAV440, the higher noise density and bias
instability error of the Crista IMU result in greater navigation
errors, which would degrade the prediction accuracy of the
neural networks. Therefore, shorter GNSS outages are simu-
lated in the second road test. A total of 5 GNSS outages are
simulated to verify the feasibility of the proposed navigation
strategy with the low-grade Crista IMU. Figure 8 illustrates
the predicted velocity from the LSTM NN of the hybrid
system during GNSS outage #4, and Figure 9 presents the
corresponding prediction errors. Due to the poorer quality of
the inertial data from Crista, the discrepancies between the
LSTMNN-predicted velocity and GNSS-derived velocity are
much greater comparing to the ones for NAV440. Moreover,
the prediction accuracy degrades over time.

FIGURE 8. LSTM NN-predicted velocity during GNSS outage #4 in road
test #2.

Figure 10 presents the obtained attitude errors of both
systems during GNSS outage #4. With the measurements of
the velocity from LSTM NN, the azimuth error is maintained
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TABLE 4. Summary of the RMS and maximum horizontal position errors of both systems for all GNSS outages in road test #2.

FIGURE 9. LSTM NN-predicted velocity error during GNSS outage #4 in
road test #2.

FIGURE 10. Attitude errors of both systems during GNSS outage #4 in
road test #2.

within 10 degrees in the hybrid system, whereas it grows
to over 50 degrees for the traditional integrated MEMS
INS/OD/GNSS system. Similar to the results in road test #1,
the roll and pitch errors for both systems are very close.

The corresponding estimated trajectories of both systems
are illustrated in Figure 11, followed by the horizontal posi-
tion and velocity errors given in Figure 12. Apparently,
the LSTM NN is able to greatly reduce the navigation errors
of hybrid system during GNSS outages, whereas the posi-
tion errors drift to hundreds of meters for the integrated
MEMS INS/OD/GNSS system in 150 seconds. By using
PF, the obtained trajectory, position and velocity errors are
given in Figure 11 and 12, respectively. Similar to the road
test #1, the proposed strategy still outperforms the PF in

FIGURE 11. Estimated trajectories of both systems during GNSS outage
#4 in road test #2.

FIGURE 12. Horizontal position and velocity errors of both systems
during GNSS outage #4 in road test #2.

terms of the positioning accuracy. Table 4 summarizes the
RMS and maximum horizontal position errors for both sys-
tems. Over all outages, the LSTM NN module provides the
average improvements of 64.1% and 64.6% on the RMS
and maximum position errors. Based on Table 4, the mini-
mum improvements on RMS and maximum errors are 47.2%
and 42.4%, respectively. Comparing to the results in road
test #1, the improvements are slightly degraded, as the high-
level noise and bias instability of Crista IMU increases the
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nonlinear complexity of the input/output functional relation-
ship being modeled. The obtained results by using PF are
also summarized in Table 4, which indicates that the proposed
strategy offers better positioning accuracy.

VI. CONCLUSION
With the aiding from the odometer, the navigation errors of
the inertial system still accumulate over time during GNSS
outages. In this paper, we present a hybrid navigation strat-
egy to integrate the MEMS INS, odometer and GNSS to
overcome such limitation. The LSTM NN is designed to
predict the velocity in the east and north directions of the
navigation frame with the inputs being the specific force
and angular rate from inertial sensors, the azimuth from the
MEMS INS, as well as the body frame velocity formed from
both the odometer and NHC. With the LSTM NN-derived
velocity, the INS error states can be accurately estimated,
and therefore the positioning accuracy of the MEMS INS
during GNSS outages is enhanced by the proposed navigation
strategy. The road tests are carried out with two different
MEMS IMUs, namely NAV440 and Crista, to verify the pro-
posed navigation strategy. Comparing to the traditional inte-
grated MEMS INS/OD/GNSS system based on the EKF, our
hybrid approach provides over 60% improvements in terms
of RMS and maximum horizontal position errors during
GNSS outages.
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