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ABSTRACT Despite CNN-based deblur models have shown their superiority when solving motion blurs,
restoring a photorealistic image from severe motion blur remains an ill-posed problem due to the loss of
temporal information and textures. Event cameras such as Dynamic and Active-pixel Vision Sensor (DAVIS)
can simultaneously produce gray-scale Active Pixel Sensor (APS) frames and events, which can capture fast
motions as events of very high temporal resolution, i. e., 1µs, can provide extra information for blurry APS
frames. Due to the natural noise and sparsity of events, we employ a recurrent encoder-decoder architecture
to generate dense recurrent event representations, which encode the overall historical information. We con-
catenate the original blurry image with the event representation as our hybrid input, from which the network
learns to restore the sharp output. We conduct extensive experiments on GoPro dataset and a real event blurry
dataset captured by DAVIS240C. Our experimental results on both synthetic and real images demonstrate
state-of-the-art performance for 1280× 720 images at 30 fps.

INDEX TERMS Event-based vision, high speed, image deblurring, real-time.

I. INTRODUCTION
Motion blur is one kind of image degradation due to the long
exposure time of a conventional camera. Object movement
and camera shake during exposure contribute to complex blur
kernels in captured pictures. Traditional deblurring models
try to estimate blur kernels via a variety of priors or regu-
larizations, and most of these approaches require intensive
parameter-tuning and expensive computation.

Recent deep learningmethods have shown their superiority
in motion deblurring tasks. Early methods follow the idea
of traditional methods, which leverage regularization priors,
or substitute some operators with learned models [18], [19],
[22]. Recent methods try to design end-to-end networks to
learn the connections between blurry images and the corre-
sponding sharp images without estimating the blur kernels
[12], [20], [25], [26].

Non-uniform motion deblurring remains a highly ill-posed
problem due to the loss of some important information,
such as time information and image textures are destroyed.
Although previous methods have made significant progress
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in advancing the deblurring performance, they may fail
in challenging cases, e. g., images with severe motion
blur and high dynamic range. As shown in Fig. 1(d), the
state-of-the-art deep deblurring model [25] cannot restore the
challenging motion blur information in such conditions.

Numbers of approaches, e. g., the use of the coarse-to-fine
scheme and increasing model depth with finer-scale levels,
have been proposed to address this problem, however, their
benefits are marginal. Instead of merely relying on the blurry
images, our work proposes to leverage the complete record
of temporal information obtained by an event camera to solve
the above issue.

Reference [3] are bio-inspired vision sensors that work
differently from a traditional camera. Instead of accumulat-
ing light intensity during the fixed exposure time, the event
camera records the changes of intensity asynchronously
in microseconds. The output of event camera is a stream
of events shaped in a four-dimensional array (x,y,t,p) that
encodes time, location, and polarity of brightness changes at
a very high dynamic range (140dB) respectively. As shown
in Fig. 1(a), though the image is severely blurred, the cor-
responding event information Fig. 1(b) is abundant, and the
recurrent event representation Fig. 1(c) used in this work
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FIGURE 1. Motivation of our model. A Severed motion-blurred image
(a) can hardly be restored with the state-of-the-art deep learning model
[25] (d) with an only blurry image. (e) [14] formulates the relationship
between events (b) and blurry image (a) via a Event-based Double
Integral (EDI) model. (f) refers to our proposed hybrid deblurring
network, which learns to combine recurrent event representation
(c) with a blurry image to restore a photorealistic image.

FIGURE 2. The PSNR vs. runtime of state-of-the-art learning-based
motion deblurring models on the GoPro dataset [12]. The blur region
indicates real-time inference. Our models achieve the best performance
with the PSNR of 32.25dB for 1280× 720 images.

include clear outlines, which are beneficial to restore blurry
images.

In this work, we propose a two-phase hybrid deblurring
network to capture motion blurs photorealistic. To deal with
the noise and sparsity of event data, we employ a recurrent
encoder-decoder architecture at phase 1 to generate recurrent
event representations, then we concatenate the blurry image
with its recurrent event representation (output of phase 1) as
the input of phase 2 to restore the blurry images.

Inspired by [25], we use a simple multi-patch hierarchical
encoder-decoder architecture at phase 2 to learn the residual
between the abundant concatenated input and the target sharp
image. We generate the simulated event data with ESIM
[15], and evaluate the performance of our model on GoPro
dataset [12]. Both qualitative and quantitative results show
state-of-the-art performance w. r. t. Peak Signal to Noise
Ratio (PSNR) as depicted in Fig. 2. We further evaluate
our model on a real event camera dataset [14], which is
captured by DAVIS240C [3]. Our qualitative results show our
hybrid deblurring model can effectively restore a photoreal-
istic sharp image in challenging conditions. To the best of

our acknowledge, our proposed model is the first event-based
deep learning deblurring model.

Our contributions in this paper are listed as follows.
• We formulate the motion deblurring as a residual
learning task and propose to leverage recurrent event
representations as latent image-like complementary.

• We propose a novel two-phase hybrid deblur net,
in which phase 1 uses a recurrent encoder-decoder
model to convert sparse events into detailed event rep-
resentation, while phase 2 uses a multi-patch model
to deblur in a fine-to-coarse manner. The deblur net
concatenates a blurry image with the output of phase 1 to
restore the image from non-uniform motion blurs.

• Our proposed hybrid architecture achieves
state-of-the-art results on both synthetic and real blurry
datasets and can deblur 1280× 720 images at 30fps.

II. RELATED WORK
A. CONVENTIONAL IMAGE DEBLURRING
Early research into image deblurring usually presents many
priors and assumptions. A lot of works [5], [13], [24] fail to
remove non-uniform motion blur to estimate the global blur
kernel. Recently, [14] formulation a deblurring method to an
optimization problem by solving a single variable non-convex
problem called the Event-basedDouble Integral (EDI)model.
It performs well to solve the motion blur problem under low
light and complex dynamic conditions. However, the natu-
ral noise of the event camera introduces accumulated noise
and the loss of details, which makes the restored image
non-photorealistic.

B. LEARNING-BASED IMAGE DEBLURRING
Reference [19] proposes a convolution neural network to
estimate locally blur kernel, then used the conventional
energy-based optimization to estimate the latent sharp image.
Reference [6] uses a fully convolutional neural network to
estimate optical flow from a single blurry image, then restore
the blurry image from the estimated optical flow. Reference
[12] proposes a multi-scale CNN to restore sharp images
in an end-to-end manner without estimating the blur ker-
nel. Reference [20] proposes a coarse-to-fine SRN-Deblurnet
to restore the blurry image on different levels. Reference
[7] proposes to take consecutive multiple frames as input,
restoring the middle sharp image. Reference [25] proposes
a deep hierarchical multi-patch network via a fine-to-coarse
hierarchical representation, exploiting the deblurring cues at
different scales. It is the first real-time deepmotion deblurring
model for 720p images at 30fps.

C. EVENT BASED INTENSITY IMAGE RECONSTRUCTION
Event cameras such as DAVIS [3] and Dynamic Vision
Sensor (DVS) [10] recording intensity changes at a microsec-
ond level do not suffer from motion blur. Reference [1]
proposes to estimate optical flow and intensity images
simultaneously by minimizing energy. Reference [11]
restores intensity images through manifold regularization.
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FIGURE 3. Our proposed Hybrid Deblurring Network(HDN) has two phases. Phase 1 uses a recurrent encoder-decoder network to generate a detailed
event representation(a). Then we concatenate the representation with a corresponding blurry image to pass them into the 3-level multi-patch
hierarchical network. Symbol + is a residual-like summation.

DAVIS camera uses a share camera sensor that can simul-
taneously output events and intensity images (APS). Due to
the noise and loss of details reconstructed with only events,
[17] proposes an asynchronous event-driven complementary
filter to combine the APS frame with events. However, if the
APS frame suffers frommotion blur, the complementary filter
can reconstruct the intensity image events only. Reference
[29] directly integrates events to an APS frame and resets
the integration to avoid accumulated noise. But this method
lost the historical information of events. Reference [16] pro-
poses a full convolutional recurrent Unet-like architecture to
reconstruct intensity images from events only.

In this work, we propose a two-phase hybrid deblurring
network to restore a sharp image by concatenating a blurry
image with its recurrent event representation as the input for a
simple multi-patch hierarchical deblurring model. Compared
with conventional deblurring methods, we leverage the event
information to help solve the ill-posed deblurring problem.
Compared with event only image reconstruction, by using a
detailed intensity image, our restored images are noise-less,
dense, and photorealistic.

III. HYBRID DEBLURRING MODEL
A. FORMULATION
We denote the blurry image input as B, our objective
is to restore a sharp image from the blurry image with
its corresponding events. E(t) refers to a set of events.
Inspired by [14],

L(t) = L(t − T )+ cE(t) (1)

Equation (1) shows that the adjacent image can be achieved
by integrating the events between exposure time, where t
refers to the current timestamp, T refers to the exposure
time and L(t) refers to the latent sharp image of current
timestamp. Because the previous latent image is impossible
to get, we decide to exploit the complete information of

the event, with a recurrent representation of the event, we can
approximately get the similarly sharp image as L(t − T ).
In general, we formulate the deblurring task as a residual

learningmodel and exploit the complete information encoded
in the event stream. Due to the noise and sparsity of
events, we adopt a recurrent event representation to be latent
image-like input as L(t − T ) in Equation (1).

B. OVERVIEW
The pipeline of our hybrid model is depicted in Fig. 3. Given
blurry images with corresponding events, our network can
output a sequence of deblurred images. The network contains
two phases. Phase 1 is a preprocessing of event data. Inspired
by [16], we use a fully convolutional encoder-decoder archi-
tecture, composed of 2 recurrent layers E , followed by
1 residual block R and 2 decoder layers D, with skip con-
nections between symmetric layers. The encoders compose a
stride 2 convolution followed by a convLSTM [23]. Decoder
blocks use a transpose convolution. We use ReLU activations
and batch normalization after each layer, the last prediction
layer uses a sigmoid activation. We will discuss the differ-
ences between several event representations in Section 3.3 in
detail.

Phase 2 concatenates the output of phase 1 and the blurry
images as input, based on a multi-patch encoder-decoder
architecture, which has shown superior performance in the
deblurring task (refer to Section 3.4 for details.). We use the
same architecture of encoder and decoder as [25] as shown
in Fig.4. The numbers on each layer are their parameters.
From top to bottom are the input channels, output channels,
kernel size, and stride. Padding is 1 for all convolution layers.

C. EVENT REPRESENTATION (PHASE 1)
To process the event stream, we need to convert the event
stream into an image-like representation. A natural
choice is to directly integrate the event on a 2D plane.
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FIGURE 4. The architecture and layer configurations of our encoder and
decoder.

FIGURE 5. (a) A stacked frame that compresses events over exposure
time. (b) A kind of event representation of voxel [28]. (c) Recurrent event
representation of our phase 1 output. (d) Related sharp image.

Reference [28] proposes to encode the events in a
spatial-temporal voxel grad. The events over a period of time
will be discretized into B temporal bins, so the input of the
network is a H × W × B image-like event tensor as shown
in Fig. 5, where H andW are the sensor height and width.
The event tensor is usually using bilinear interpolation

where each event (x, y, t, p) contributes its polarity to its two
closest temporal bins according to:

E(x, y, tn) =
∑
i

pimax(0, 1− |tn − t∗i |) (2)

t∗i =
(ti − tmin)

(tmax − tmin)
(B− 1) (3)

where n is the index of the temporal normalized index, p is the
polarity, and t∗ is the normalized timestamp of the ith event.
Following [16], we set to B to 5.
As depicted in Fig.5, for directly integration(a),

spatial-temporal voxel(b), and others frames like represen-
tation [4], [21], [27], they may suffer from noise or lack
details because of sparsity with little events. We need a
representation that is similar to the latent sharp image with
rich information.

In this work, we propose a two-phase hybrid deblurring
network to restore a sharp image by putting a concatenated
blurry image with a recurrent event representation into a
simple multi-patch hierarchical deblurring model. Compared
with the conventional deblurring method, we join the event

information which encodes complete temporal information to
help solve the ill-posed deblurring problem. Compared with
event only intensity image reconstruction, by using a detailed
intensity image, our restored images are noise-less, dense,
and photorealistic.

D. RESIDUAL LEARNING MODEL (PHASE 2)
Reference [25] presents a hierarchical multi-patch network
inspired by Spatial Pyramid Matching [9]. The model makes
the lower level focus on local information to produce residual
information for the coarser level, and shows state-of-the-art
performance. Different from [25], which stacks several
(1-2-4-8)models to improve accuracy,We only adopt the sim-
plest (1-2-4) model and achieve significant improvement by
combining events. The notation (1-2-4) indicates the numbers
of image patches from the coarsest to the finniest level. i.e., a
vertical split at the second level, 2× 2 = 4 splits at the third
level.

Each level of our residual learning model consists of an
encoder-decoder pair. The input of each level i is denoted
as Bi, which is the sum of the concatenated input and the
output of a lower-level Si−1. Then the input Bi is into mul-
tiple non-overlapping patches as labeled by different colors
in Fig. 3. The output of both encoder and decoder from
a lower level will be added to the upper level so that the
top-level can gather all information inferred in finer levels.
Since two phases of our network can run parallelly, it takes
about 30mswhen processing 720p images in both two phases,
which can satisfy real-time applications.

IV. EXPERIMENT
A. DATASETS
1) SIMULATED EVENT SEQUENCE
Phase 1 requires training data in the form of event sequences
with corresponding ground-truth image sequences. We use
the E2VID [16] dataset, which consists of 1000 sequences
per 2 seconds.

2) SYNTHETIC DATASET
In order to quantitatively compare our experiment results,
we use the popular GoPro blurry dataset [12], which con-
sists of 3214 pairs of blurred and sharp images captured at
720 × 1280 resolution. To get the simulated event data,
we employ the ground-truth images to generate simulated
event data based on ESIM [15].

3) REAL DATASET
We evaluate our method on the real blurry event dataset [14],
captured by DAVIS [3] under different conditions, such as
indoor, outdoor, lowlighting conditions, and different motion
patterns such as camera shake, object motion.

B. TRAINING DETAILS
We use a phase-to-phase training strategy, training phase
1 alone with the simulated event sequence. Then we fixed
phase 1 to train phase 2 model. For the first stage, we split
the simulated event sequences into 950 training sequences
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FIGURE 6. Visual comparisons on GoPro dataset. In the top-down order, we show input blurry images, results of Tao et al. [20], Zhang et al. [25], Pan
et al. [14], and Our results(best view).

and 50 validation sequences follow the experience of [16],
[30].We augment the training data using random 2D rotations
in the range of ±20 degrees, horizontal and vertical flips,
and random cropping with a crop size of 128 × 128. For
the second phase, we take the synthetic dataset as our training
dataset, with 22 sequences for training and the remaining
11 sequences for testing.

All our experiments are implemented in Pytorch and
evaluated on a single NVIDIA Tesla P100 GPU. During
the training of phase 2, we randomly crop images to
256× 256 pixel size and forward the cropped images to the

inputs of each level. The batch size is set to 6 during training.
We use the Adam [8] as our optimizer set to 0.0001 and
decay rate to 0.1 for 500 epoch, totally train our models for
2000 epochs. We normalize image to the range of [0, 1] and
subtract 0.5. Besides, we use the mean-square error (MSE)
loss at the output of level 1.Models’ performance is measured
by PSNR and Structural Similarity (SSIM).

C. EXPERIMENT RESULTS
We compare our proposed network with state-of-the-art
deblurring methods including conventional deblurring
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FIGURE 7. Visual comparisons on real blurry event dataset [14] in low lighting and complex dynamic conditions. (a) Input blurry images.
(b) Corresponding events information. (c) Deblurring results of [20]. (d) Deblurring result of [25]. (e) Reconstrcution result of [29] with events and
intensity frames. (f)Reconstrcution result of [17]from only events. (g) Complementary filter reconstruction results of [17]. (h) Deblurring result of [14].
(i) Our deblurring result. (j) Our result with connecting consecutive 5 blurry images.

TABLE 1. Quantitative comparisons on the GoPro dataset 720p [12].
PSNR in dB, Runtime in ms, Model Size in MB. All models are tested
under the same blurry condition and we use the pre-training models
provided by these methods to conducting extensive testing. We train our
model three times to get the average performance.

methods [14], learning-based deblurring methods [7],
[12], [20], [25] and event-based image reconstruction
method [17], [29].

Evaluation on synthetic dataset is shown in Fig. 6 indicates
that our deblurred images have the best view which is sharp
and photorealistic. Qualitative comparisons in Tab.1 shows
our proposed model achieves a significant performance pro-
motion in terms of PSNR. We test these models in the same
experimental environment several times.

The evaluation of the real dataset is shown in Fig. 7.
The state-of-the-art deep deblur models (c)(d) fail to restore

the sharp images due to the lack of time information caused
by severed motion. (f) Reconstruction with only events lost
backgrounds and has artifacts. (e)(g) Reconstruction meth-
ods use events and intensity frames suffer still suffer from
artifacts and noise. Reference [14] first proposed an EDI
deblur model that uses both events and intensity frames.
(h) A clear image is restored by EDI but it suffers from noise
and is non-photorealistic. Our method first uses a deep deblur
model that uses the recurrent representation as supplemen-
tary information and successfully restores a sharp image (i).
As there are some artifacts in a small area of background,
we then concatenated 5 consecutive blurry images with event
recurrent representation to get more static information (j).

V. ABLATION STUDIES
We now present ablation studies to discuss the contribution
of each phase in our two-phase model.

A. PHASE 1
We perform an ablation study to prove that our used recurrent
event representation can provide more details and informa-
tion than directly accumulating events or using the event
voxel. (a)(d) We concatenate directly integrate event frames
with a blurry image as input. (b)(e) We concatenate the com-
monly used event voxel [27]. As shown in Fig. 8, the deblur
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FIGURE 8. Ablation study on event representations and results. (a,d) Direct integration. (b,d) one of five voxel. (c,f) Our results with recurrent event
representation.

FIGURE 9. Visual comparisons on GoPro dataset. In the top-down order, we show input blurry images, results of Tao et al. [20], Zhang et al. [25], Pan
et al. [14], and Our results(best view).

TABLE 2. Quantitative comparisons on the GoPro dataset 720p [12] of
ablation study. PSNR in dB, Runtime in ms, Model Size in MB. We train
each model three times and calculate the average performance.

results of those baselines are inferior to ours (c)(f). The
result without any event information can refer to Fig 7.(d)
and the result without the use of the blurry image can refer
to Fig.7(f).

B. PHASE 2
To measure the impact of our multi-patch hierarchical deblur
model in phase 2. We propose three baseline networks and
train these models under the same experimental conditions
three times. Tab.2 shows the performance of these models
on the GoPro dataset. Baseline-A uses a simple UNet-like
encoder-decoder model which is commonly used in image
restoring. Baseline-B is our phase 2 model without event
information. Baseline-C uses the phase 1 of our model and

the encoder-decoder model. The visual comparison of these
models on GoPro dataset is shown in Fig.9.

As shown in Fig.9 (c) and (d), our multi-patch hierarchical
deblur model in phase 2 increasing performance a lot com-
pared with the traditional encoder-decoder model. With-
out the event representation, the performance of Baseline-B
still exceeds Baseline-A a lot. Besides, from the compar-
ison results of Fig.9 (a)(c) and (b)(d), the use of event
representation can significantly improve the performance of
deblurring.

VI. CONCLUSION
In this paper, we propose a two-phase hybrid model to restore
blurry images with an event camera.We formulate the deblur-
ring task as residual learning in our pipeline. Experiment
results prove that use the recurrent event representation of our
phase 1 output can provide a latent image-like supplementary
information which is beneficial to deblur task. Phase 2 lever-
ages a multi-patch hierarchical architecture to effectively fuse
cues of blurs in local regions by levels. The experiments
on both synthetic and real datasets show that our model
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can restore sharp images from non-uniform blurry images.
Due to the low resolution of event camera, we consider
using event-camera to assist a high-resolution RGB camera
to deblur in the future.
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