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ABSTRACT In this study, it is proposed that a newmatrix projective synchronization of fractional-order (FO)
chaotic maps in discrete-time. A new synchronization error is introduced and a control law is constructed,
which makes the synchronization error converge towards zero in sufficient time under the stability theory of
linearization method of FO systems. Numerical simulation results are presented to illustrate the feasibility
of the scheme. Finally, a secure communication scheme based on FO discrete-time (FODT) systems was
proposed.

INDEX TERMS Control law, FO calculus, FODT system, matrix projective synchronization.

I. INTRODUCTION
Chaos theory, in nonlinear dynamical systems, is a very
attractive phenomenon, which has been extensively inves-
tigated and studied in the last decades. Due to its initial
value sensitivity, non-periodic, continuous bandwidth spec-
trum, trajectory unpredictability and pseudo-random, chaos
has wide application in secure communication, cryptography,
image encryption, signal processing and other fields [1]–[8].

In the past three centuries, the study of fractional calculus
theory has been carried out mainly in the purely theoretical
field of mathematics, but in recent decades, fractional differ-
ential equations and fractional difference equations have been
used more and more to describe optical and thermal systems,
mechanics systems, signal processing, system identification,
robotics and other applications [9]–[15]. A great number of
FO chaotic maps in continuous-time and discrete-time were
investigated in recent years, including FO Chen map [16], FO
Rossler map [17], FO Lorenz map [18], FO Lu map [19],
FO Ikeda map [20], FO Sine map [21], FO cubic Logistic
map [22]. In recent years, many scholars have also studied
the sliding mode control and circuit implementation of FO
chaotic systems [37]–[42].

Chaos synchronization, in nonlinear science, is one of the
hot topics. Since Pecora and Carroll proposed the complete
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synchronization method of chaotic system in 1990s, great
strides have been made in chaotic synchronization [23], [24],
[24]–[28], [30]. However, there are few references on the
synchronization of FODT chaotic systems. In 2014, Hu [31]
studied FO Henon map, which has made an unprecedented
contribution to the high dimensional FODT chaotic synchro-
nization method. In 2015, Wu and Baleanu [32] proposed
synchronization of the FO Logistic map, and this synchro-
nization method is only suitable for master-slave systems
with the same dimension. In 2017, Shukla and Sharma [33]
studied generalized FO Henon map and proposed active
control synchronization, and this synchronization method is
also only suitable for master-slave systems with the same
dimension. Ouannas et al. [34] proposed a general synchro-
nization of FODT chaotic systems in 2018. Though this syn-
chronization method can be suitable for master-slave systems
with different dimensions, it’s hard to find the right bijection
function f to meet requirement.

In order to better synchronize FODT chaotic systems with
different dimensions, a new matrix projective synchroniza-
tion, in this article, is proposed. This new synchronization
method relies on an invertible matrix P and an arbitrary
matrix M, so it is called P-M synchronization. Compared
with the existing synchronization methods, P-M synchro-
nization, constructs a controller U to make the synchro-
nization error meet the requirements. Secondly, compared
with matrix projection synchronization, P-M synchronization
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can realize synchronization of different dimensions of the
same master-slave system. Lastly, compared with one-to-one
mapping f , it is easy to construct an invertible matrix P.

This article is organized as follows. In Section 2, some
preliminary knowledge of discrete fractional order equations
is given. In Section 3, we give the P-M synchronization
criterion and the stability theory of discrete fractional order
system. Section 4 present some numerical simulation results
related to concrete examples to show the feasibility of this
synchronization scheme. In Section 5, a secure communica-
tion scheme based on fractional-order discrete-time systems
was proposed. Finally, a general summary of this article is
drawn in Section 5.

II. PRELIMINARIES
The drive and response maps considered in presented article
are in the following forms,

C1αaX (t) = AX (t + v− 1)+ φ (X (t + v− 1)) ,

∀t ∈ Na+1−α (1)
C1βaY (t) = BY (t + v− 1)+ ϕ (Y (t + v− 1))+ U ,

∀t ∈ Na+1−β (2)

where the n-tuple vectors X (t) = (x1(t), x2(t), . . . , xn (t))T

and the m-tuple vectors Y (t) = (y1(t), y2(t), . . . , ym (t))T

are state vectors of the drive and response maps, respectively,
A ∈ Rn×n, and B ∈ Rm×m are the linear parts of the drive
and response maps, respectively, and the map φ : Rn

→ Rn,
ϕ : Rm

→ Rm are the nonlinear functions of the above maps
and U = (u1, u2, . . . , um)T is a vector controller, which is
to be determined by the control law of the synchronization
scheme.
Remark 1: v denotes the order of fractional difference

equation, and 0 < v ≤ 1.
Remark 2:Na denotes the set of natural numbers beginning

from a. The notation C1αaX (t) denotes the Caputo type delta
difference of X (t) defined over Na.
Definition 1 [36]: Caputo type delta difference of X (t) on

Na is defined as,

C1v
aX (t)=

1
0 (n− v)

t−(n−v)∑
s=a

(t − σ (s))(n−v−1)1n
sX (s) (3)

where n = [a] + 1, σ (s) = s + 1, and the notation 1n
sX (s)

denotes the v-th fractional sum of xi.
Lemma 1 [37]: The Caputo type delta difference in the

form of equation (4) below is equivalent to the discrete inte-
gral equation in the form of equation (5) below.{

C1v
au (t) = f (t + v− 1, u (t + v− 1))

1ku (a) = uk , n = [v]+ 1, k = 0, 1, . . . .n− 1
(4)

u (t) = u0 (t)+
1

0 (v)

t−v∑
s=a+n−v

(t − σ (s))(v−1)

×f (s+ v− 1, u (s+ v− 1)) , (5)

where σ (s) = s+ 1, t ∈ Na+n, and u0 (t) =
n−1∑
k=0

(t−a)
(k)

k! uk .

III. STABILITY CRITERIA FOR DISCRETE FRACTIONAL
ORDER LINEAR SYSTEMS
In this section, we will introduce a new matrix projective
synchronization based on FODT chaotic system.
Definition 1: Matrix projective synchronization is said to

be achieved between drive system (1) and response system
(2) if there exists a matrix M ∈ Rm×n such that the dynamic
synchronization error

lim
t→∞
‖e (t) := Y (t)−MX (t)‖ = 0. (6)

Based on matrix projection synchronization, we propose a
new synchronization scheme, namely, P-M synchronization.
Definition 2: P-M synchronization is said to be achieved

between drive system (1) and response system (2) if there
exists an invertible matrix P ∈ Rn×n and a matrixM ∈ Rm×n

such that the dynamic synchronization error

e (t) := PY (t)−MX (t) (7)

satisfies the condition lim
t→∞
‖e (t) = 0‖.

The v order Caputo fractional difference of equation (7) is
as the following form.

C1ve (t) = C1v (PY (t)−MX (t))

= PBY (t + v− 1)+ Pφ (t + v− 1)+ PU

−MAX (t + v− 1)+Mϕ (t + v− 1) (8)

Equation (8) can be further derived as follows:
C1ve (t) = (B− C) e (t + v− 1)+ P× U + R, (9)

where C ∈ Rm×m is a control matrix and

R = (C − B) e (t)+PBY (t)+ Pϕ (t)−MAX (t)−Mφ (t) .

(10)

Lemma 1 [38]:The zero equilibrium of the linear fractional
order discrete system:

C1ve (t) = Me (t + v− 1) , (11)

is asymptotically stable, if

λ ∈

{
z ∈ C : |z|<

(
2 cos

|arg z|−π
2− v

)v
and |arg z|>

vπ
2

}
,

(12)

where e (t) ∈ Rn, 0 < v ≤ 1,M ∈ Rn×n, ∀t ∈ Na+1−v and λ
is the eigenvalues of the matrixM . Based on Lemma 3.1, P-M
synchronization can be achieved if there exists a controllerU
such that the eigenvalues of the coefficient matrix of the error
function e (t) meet the requirements of equation (12). Next,
we are now ready to present the P-M synchronization.
Theorem 1: system (1) and (2) can be achieved P-M

synchronization if

U = −QR (13)

where matrix Q is the inverse of matrix P and the control
matrix C is chosen such that all the eigenvalues λ of the
matrix (B− C) is satisfy

−2v < λ < 0. (14)
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FIGURE 1. x-y phase space of the 2D FO generalized Henon map.

Proof. By substituting equation (10) into equation (9), the
synchronization error system (8) reduces to

C1ve (t) = (B− C) e (t + v− 1) . (15)

Furthermore, according to the equation (14), it is easy to see
that all eigenvalues of the matrix (B− C) satisfy

|arg λ| = π >
vπ
2
, and |λ| <

(
2 cos

|arg λ| − π
2− v

)v
. (16)

IV. NUMERICAL EXAMPLES
In this section, we consider some numerical examples to show
the validity of synchronization scheme illustrated above. The
2D FO Henon map as expressed in [32] is given by:

C1v
ax1 (t) = x2 (t + v− 1)+ 1− a1x21 (t + v− 1)

−x1 (t + v− 1)
C1v

ax2 (t) = b1x1 (t + v− 1)− x2 (t + v− 1) ,

(17)

when parameter v = 0.984 and (a1, b1) = (1.4, 0.3), The
FO Henon map exhibits chaotic behavior. The phase portrait
with the initial values (x1 (0) , x2 (0)) = (0, 0) is depicted
in Fig.1. It can be seen from Fig. 1 that the 2D FO Henon
map become chaotic under certain parameters. The 3D FO
generalized Henon map as expressed in [34] is given as

C1v
ax1 (t) = −b2x3 (t + v− 1)− x1 (t + v− 1)

C1v
ax2 (t) = b2x3 (t + v− 1)+ x1 (t + v− 1)

−x2 (t + v− 1)
C1v

ax3 (t) = 1+ x2 (t + v− 1)+ a2 (x3 (t + v− 1))2

−x3 (t + v− 1) ,

(18)

when the parameters (a2, b2) = (0.99, 0.2) and the
order v = 0.984, system (18) is chaotic system. The
chaotic trajectories is shown in Fig.2 with the initial values
(x1 (0) , x2 (0) , x3 (0)) = (0.1, 0.2, 0.5). It can be seen
from Fig. 2 that the 3D FO Henon map become chaotic under
certain parameters.

A. P-M SYNCHRONIZATION IN 3D
In order to unify the notation, equation (17) can be rewritten
as the following expression:

C1v
aX (t) = AX (t)+ φ (X (t)) , (19)

where

A =
(
−1 1
−b1 −1

)
and φ =

(
1− a1x21 (t)

0

)
. (20)

The 3D FO Henon map is selected as response system.
Map (18) can be written as

C1v
aY (t) = By (t)+ ϕ (Y (t))+ U , (21)

where

B =

−1 0 −b2
1 −1 b2
0 1 −1

 andϕ =

 0
0

1− a2x23 (t)

 . (22)

Given the approach presented in last section, the error system
is given by

(e1 (t) , e2 (t) , e3 (t))T = P1 (y1 (t) , y2 (t) , y3 (t))T

−M1 (x1 (t) , x2 (t))T , (23)

where matrix P1 and M1 are selected as followings:

P1 =

 1 0 0
0 1 0
0 0 1

 , M1 =

 1 2
3 4
5 6

 . (24)

Based on our approach proposed in Section 3, a controlmatrix
C1 is selected such that the whole eigenvalues of matrix
(B− C1) satisfy the condition of Theorem 3.1. Matrix C1 is
selected as following:

C1 =

 0 0 0
1 0 0
0 1 0

 , (25)

then, the error system is given by C1ve1 (t)
C1ve2 (t)
C1ve3 (t)

=
−1 0 −b2

0 −1 b2
0 0 −1

 e1 (t + v− 1)
e2 (t + v− 1)
e3 (t + v− 1)

 .
(26)

It easy to say that the whole eigenvalues of matrix (B− C1)

satisfy the condition of Theorem 3.1. The initial value of the
error iteration is given e1 (0)

e2 (0)
e3 (0)

 =
 0.1
0.2
0.5

 . (27)

The synchronization error of system (17) and (18) is depicted
in Fig.3. It is clear to see that the synchronization error
quickly converges to a very small value that satisfies the
requirement, which indicate that drive system (17) and
response system (18) can achieve P-M synchronization in
3 dimensions.
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FIGURE 2. Phase space of the 3D FO generalized Henon map.

FIGURE 3. The synchronization error of the discrete-time system.

B. P-M SYNCHRONIZATION IN 2D
The 3D FO Henon map is selected as drive system, and the
2D FOHenonmap is selected as response system.We are just
interchanging the matrix A and B, and the mapping φ and ϕ,
so we are not dividing the linear part from the nonlinear part.

Given the approach presented in last section, the error system
is given by

(e1 (t) , e2 (t))T = P2 (y1 (t) , y2 (t))T

−M2 (x1 (t) , x2 (t) , x3 (t))T , (28)

where matrix P2 and M2 are selected as followings:

P2 =
(
1 0
0 1

)
, M2 =

(
1 2 3
4 5 6

)
. (29)

Matrix C2 is selected as following:

C2 =

(
0 1
0.3 −0.5

)
, (30)

then, the error system is given by( C1ve1 (t)
C1ve2 (t)

)
=

(
−1 0

0 −
1
2

)(
e1 (t + v− 1)
e2 (t + v− 1)

)
. (31)

The initial value of the error iteration is given as follows:(
e1 (0)
e2 (0)

)
=

(
−2
−4.4

)
. (32)
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FIGURE 4. The synchronization error of the discrete-time system.

FIGURE 5. The original speech signal.

FIGURE 6. The mixed signal containing noise.

The synchronization error of system (18) and (17) is
depicted in Fig.4. It is clear to see that the synchronization
error quickly converges to a very small value that satisfies
the requirement, which indicate that drive system (18) and
response system (17) can achieve P-M synchronization in
2 dimensions.

FIGURE 7. The signal processed by the filter.

FIGURE 8. The restored signal.

V. A SECURE COMMUNICATION SCHEME BASED
ON FODT SYSTEMS
A. THE SPEECH ENCRYPTION SCHEME
Secure communications can be classified into three major
security technologies: chaotic masking technology, chaotic
parameter modulation technology and chaotic keying tech-
nology. Chaos masking technology belongs to chaos ana-
log communication, chaos parameter modulation and chaos
keying technology belongs to chaos digital communication
technology. Compared with chaotic parameter modulation
technology and chaotic keying technology, chaos masking is
easy to implement, short encryption time and low complexity
because it is simple addition and subtraction. The speech
encryption scheme is mainly based on chaos masking, and
the block diagram of communication is shown in Fig.9.

The FO discrete-time chaotic map (19) is used as master
system, and map (21) is used as slave system. Speech signal
s (t) and state variable C1v

aX (t) are masked into the signal
E (t), then, the signal E (t) is sent to the receiver end via the
public channel. However, the transmission channel will be
contaminated by chaotic noise. Suppose the noise is White
Gaussian Noise w (t).At receiver end, the recovered signal
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FIGURE 9. Discrete chaotic secure communication scheme.

s′ (t) can be obtained through the signal E2 (t) and state
variable C1v

aY (t), where E2 (t) is the signal processed by
a filter.

E (t) = s (t)+ C1v
ax1 (t)+ 2C1v

ax2 (t) (33)

E1 (t) = E (t)+ w (t) (34)

s′ (t) = E2 (t)− C1v
ay1 (t) (35)

Let the initial values of the systems (19) and (21)
be: (e1 (0) , e2 (0) , e3 (0))T = (0.1, 0.2, 0.5)T . The
time-domain and frequency-domain values of the speech sig-
nals at each stage were simulated, and the simulation results
were shown in Fig.5, Fig.6, Fig.7, Fig.8, respectively.

Fig.5 and Fig.8 proved that P-M synchronization in 3D
proposed in this article can be applied into secure
communication field from time domain and frequency
domain.

B. SECURITY ANALYSIS
1) KEY SPACE ANALYSIS
The initial keys of this encryption scheme are the initial
values of master system x0, y0 and the order of master
system v, respectively Floating point accuracy is 10−15, then
the key space is 1045, which is much larger than 100 2
Therefore, this scheme can provide security in terms of key
space.

2) SENSITIVITY ANALYSIS OF KEYS
According to the principle of cryptography, the stronger
the sensitivity of the key, the stronger the ability to resist
differential attacks Generally speaking, the small difference
of the same plaintext encryption key can cause a huge
change of the ciphertext sequence; the slight difference of
the same ciphertext decryption key can cause the decryption
results are quite different First, the encryption key r =
(x1 (0) , x2 (0)) = (0, 0) is used to complete the encryp-
tion operation of the encryption scheme, and then the error
decryption key r ′ = (r1, r2, r3) of the small difference is
selected, where r1 =

(
0+ 10−15, 0

)
, r2 =

(
0, 0+ 10−15

)
and r3 =

(
0+ 10−15, 0+ 10−15

)
.

TABLE 1. The mean square error of error decryption signal relative to
original voice signal.

Let the original speech signal be p(i) and the decrypted
speech signal be p′(i), then their mean square error is as

EMS =
1
N

N−1∑
i=0

[
p′ (i)− p (i)

] 2
. (36)

The mean square error of the r ′ decrypted signal and
the original speech signal calculated by ‘‘(36)’’ is shown in
Table 1 It can be seen that the decryption key has a slight error,
and the decryption result will be completely different, that is,
the key sensitivity of the algorithm is numerically proved.

3) PHASE SPACE RECONSTRUCTION ATTACK
This scheme can resist the phase space reconstruction attack
Because the mixed signal that the original speech signal after
chaos masking E(t) is transmitted in the common channel,
the phase space reconstructed from a series of values of E(t)
is not completely topologically equivalent to the real chaotic
system.

4) ROBUSTNESS
The robustness of this scheme is poor, since the chaotic
system is sensitive to the initial value and system parame-
ters If the system parameters are changed, the output of the
chaotic systemwill change Furthermore, from the perspective
of secure communication, if the system has better robustness,
it will lose confidentiality.

VI. CONCLUSION
In this article, we proposed a new matrix projective
of fractional-order discrete-time chaotic maps of different
dimensions. Comparedwithmatrix projection synchron-ization,
this synchronization can synchronize any n-dimensional

147456 VOLUME 8, 2020



W. Yan, Q. Ding: New Matrix Projective Synchronization of FODT Systems and Its Application in Secure Communication

chaotic map (drive system) with m-dimensional chaotic
system (response system) by selecting an invertible matrix
P ∈ Rn×n and an arbitrary matrix M ∈ Rm×n. Numerical
simulation results in Section 4 have shown the validity of
this synchronization scheme. In Section 5, a secure com-
munication scheme based on fractional-order discrete-time
systems was proposed, and through numerical simulation
results confirmed the feasibility of the scheme. In the
future work, we intend to implement the secure commu-
nication scheme mentioned in this article on the hardware
circuit.
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