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ABSTRACT Several difficult-to-measure production qualities or environment pollution indices of industrial
process must be measured using offline laboratory instruments. Soft measurement method is often used
to perform online prediction of such parameters. Only small-sample modeling data with high-dimensional
input features can be obtained due to the limitations and complex characteristics of the measurement device
and process, respectively. Therefore, a new multisource latent feature selective ensemble (SEN) modeling
approach is proposed in this study. First, input features are divided into different subgroups according to
the characteristics of the modeling data. Second, the extracted multisource latent features evolve from the
multi-layered selection algorithms, which are specified by feature reduction ratio, feature contribution ratio
and mutual information value orderly for each subgroup. Finally, in order to construct candidate sub-models,
an adaptive hyper-parameter selection algorithm based on the multi-step grid search is employed in terms
of the reduced features. Sequentially, the optimized ensemble submodels with their weighting strategies are
adaptively determined to build the final SEN model. The proposed method is verified by using benchmark
near-infrared data, high dimensional mechanical frequency spectrum data and industrial dioxin emission
concentration data.

INDEX TERMS Multisource feature extraction, multi-layered feature selection, selective ensemble model-
ing, hyperparameter selection, high dimensional process data.

I. INTRODUCTION
Reducing energy consumption and pollution emission of
complex industrial processes by using control strategy to opti-
mize operation is an open issue that needs to be solved [1], [2].
To achieve the above target, most key process parameters rel-
ative to production qualities or environment pollution indices
of such industrial process should be measured online first [3].
Limited by the complexity and strong coupling characteristic
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of the industrial process, these process parameters must be
measured using offline laboratory instruments. These param-
eters, such as the dioxin (DXN) emission concentration of the
municipal solid waste incineration (MSWI) process [4] and
the mill load parameter of the mineral grinding process [5],
are difficult to measure. Offline methods based on domain
expert estimation and laboratory analysis experience are dif-
ficult to assist the realization of operational optimization
and control. Establishing soft measurement models for these
difficult-to-measure parameters by using offline historical
data effectively solves this problem [6]. Only a small sample
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of modeling data with high-dimensional input features can be
obtained due to the limitations and complex characteristics
of the measurement device and process, respectively. Thus,
the number of input features is always greater than the number
needed to build an efficient and concise model with character-
istics that can be physically interpreted. Moreover, an effec-
tive strategy based on prior knowledge to determine the input
features is difficult to obtain for industrial processes with
complex multidisciplinary mechanisms, such as the MSWI
process for measuring DXN emission concentration.

The increase in input features makes obtaining complete
training samples difficult [7]. Thus, the dimensions must be
reduced. Normally, feature selection and extraction methods
can be used to achieve this target [8]. To improve the stability
of feature selection, the number of modeling examples can be
increased [9], [10] or the dimensionality of the input features
can be reduced [11], [12]. This paper focuses on the issue of
dimensionality reduction in a new perspective. The ratio of
the training samples to the reduced features indicates that the
value should meet the requirements of constructing a robust
learning model. Normally, it must be satisfied. At present,
the commonly used method is feature selection based on
mechanism or experience. Thus, most features have to be
dropped, and certain information may be lost. Moreover,
input features in different regions may have various physi-
cal meanings [5]. In process industries, input features also
correspond to different stages of the whole process. Hence,
feature subgroups of the whole features have different mean-
ings. Extracting the latent features’ subsets that can represent
different feature subgroups may be a good choice. Thus,
feature selection may not be the best method for a small
sample of high-dimensional dataset. Fortunately, the latent
feature extraction method can extract implication changes of
high-dimensional data, among which principal component
analysis (PCA) is commonly used in modeling difficult-
to-measure parameters of industrial process [13]. However,
using principal component (PC) with low-contribution-rate
modeling reduces the stability ofmodel prediction.Moreover,
the correlation between the above latent features and these
key process parameters may be weak. Therefore, not only the
latent features whose contribution rate meets the stable mod-
eling requirement must be reselected, but also the relativity of
these latent features to the predicted key process parameters
should be concerned.

In theory, the support vector machine (SVM) algorithm
based on the structural risk minimization criterion can effec-
tively model small sample data [14], [15]. However, SVM
needs to solve the quadratic programming (QP) problem,
whose hyperparameters are difficult to be selected adap-
tively. Least squares–support vector machine (LS–SVM)
overcomes the QP problem by solving linear equations [16].
However, the selection of hyperparameters is still an open
issue at present. Although these parameters can be obtained
by optimization algorithms such as genetic algorithm and
difference evolution [17]–[19], they are time consuming and
obtain only suboptimal solutions [20]. Therefore, the above

researches lack an adaptive selection mechanism for
hyperparameters.

Aiming at high-dimensional datasets, the latent features
extracted from different subgroups can be represented asmul-
tisource local information. Similarly, latent features extracted
from all input features can be used as global information.
Thus, they can be used to construct different submodels with
various prediction accuracies. In the soft measurement model
based on selective ensemble (SEN), certain valuable submod-
els have better stability and robustness than the traditional
single one. In theory, the performance of the SEN model
relates to the diversities of the ensemble submodels. Ref. [21]
reviews the diversity construction strategies, in which the
predictive model based on feature space ensemble construc-
tion strategy has the best generalization performance. More-
over, the combination method must be selected carefully to
obtain the most accurate and stable predictions [22]. How-
ever, themajority of present research focuses on classification
problems, such as hierarchical ensemble methodology that
promotes diversity among the elements of an ensemble [23],
ensemble learning method based on dropout technique [24]
that maximizes diversity by transformed ensemble learn-
ing [25], [26], and ensemble different fine-tuned convolu-
tional neural networks with SVM [27]. For the regression
modeling problem based on a small sample of multisource
high-dimensional spectral data, Tang et al. proposed the
SEN model based on selective fusion of multisource fea-
tures and multicondition samples with adaptive weighting
algorithm [28], [29]. Furthermore, a subspace-based general
framework for ensemble learning is proposed [30]. Recently,
ensemble learning model based on evolutionary algorithm
and LS–SVM has been proposed [31], whose long offline
training consumption is unavoidable. Different input features
also relate to various hyperparameters of the SEN model
and its ensemble submodels. Multiobjective evolutionary can
be employed to address this problem [32]–[34]. However,
an effective joint optimization strategy can also solve the
above problems.

On the basis of the multiple region/stage characteristics
of small-sample high-dimensional process data, a new mul-
tisource latent feature SEN modeling approach is proposed.
By extracting the latent features of different subgroups from
original input features and selecting them with three-layer
feature selection method, dimensionality reduction is per-
formed, so that the soft-sensor model with a hyperparam-
eter adaptive selection and SEN modeling mechanism is
then constructed. Simulation results verify that the proposed
approach can achieves efficacy and effectiveness for near-
infrared benchmark data, high dimensional mechanical vibra-
tion frequency spectrum data and actual dioxin emission
concentration data.

This study has the following contributions. First, a new
modeling approach for small high-dimensional process data
is proposed, which can utilize all the input features with-
out losing useful information. Second, the latent features,
selected in three-layer feature selection methods which is
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FIGURE 1. Example of different feature subgroups corresponding to different physical meanings.

derived based on feature selection ratio, contribution ratio
and mutual information (MI) value. It can contribute to the
requirement on the ratio of the number training samples to
the reduced features as well as the modeling stability and
the key process parameter relativity. Third, adaptively deter-
mining the hyperparameters as a joint optimization strategy
is handled for the modeling data’s characteristic, so does
selecting the ensemble submodel’s combination approach
and ensemble size in terms of prediction performance. Thus,
optimal ensemble submodels based on latent feature with
complementary characteristics can be fused selectively.

The rest of this paper is organized as follows. Section II
analyzes the small-sample high-dimensional process data
modeling problem. Section III describes the proposedmethod
in detail. Section IV gives the experimental results and dis-
cussions. Section V concludes the study and discusses rec-
ommendations for future work.

II. SMALL-SAMPLE HIGH-DIMENSIONAL PROCESS DATA
MODELING PROBLEM ANALYSIS
A sufficient number of modeling samples with complete
coverage running conditions is important for building an
effective soft measurement model. However, the definition
of such modeling sample data have great relativity and sub-
jectivity [7]. Several indices are proposed to determine the
minimum number of training samples needed to obtain the
necessary predictive performance [35], [36]. For the classifi-
cation problem, the relationship among classification errors,
number of training samples, input feature dimension, and
classification algorithm complexity is studied [37]. In the
field of pattern recognition, the expected ratio of the number
of training samples to the input features αoriratio can be calcu-
lated and set as

αoriratio = Nsample
/
Pfeature, αoriratio = 2, 5, 10 (1)

where Nsample and Pfeature represent the number of training
samples and the input feature, respectively.

Given the high dimensional spectral data and the complex
industrial process, the input features may number hundreds
and thousands. Moreover, input features in different regions
may have various physical meanings [5]. In process industries
such as MSWI, these input features correspond to different
process stages [38], [39]. They are shown in Fig. 1.

Fig. 1 shows that different subgroups have various mean-
ings. Interesting information may be dropped only to reduce
the dimension for the global input features. By contrast,
the physical meanings of different subgroups are lost by using
feature extraction method to the whole input features. The
contributions of different parts are also unclear. Therefore,
alternately, the latent features that represent different local
and global information should be extracted. The ith subgroup
can be denoted as X i, which results in the following feature
extraction process:

X i FeatureExtraction
−−−−−−−−−→ Zi (2)

where Zi indicates the extracted latent feature, and it’s dimen-
sion is Pifeature-redu. Thus, the new expected ratio of the num-
ber of training samples to the reduce features is,

αreduratio = Nsample/Pifeature-redu αreduratio = 2, 5, 10 (3)

Note that (3) is more suitable for realization than (1).
Assume that (I − 1) subgroups are obtained. The global

information is represented by taking the whole input features
as the I th special subgroup. Thus, the total extracted feature
subset can be denoted as {Zi}Ii=1. The new latent feature set
{Zisub}

I
i=1 is obtained by further selecting the latent feature in

terms of improvement of predictive relevance. Then, we can
build submodel f i(·) based on the ith feature subset, whose
predictive output is denoted as

ŷi = f i(Zisub,M
i
para) (4)
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where M i
para represents the hyperparameter. To effectively

combine these submodels, the I should comply with in (5),

Nsample

I
≥ αoriratio αoriratio = 2, 5, 10 (5)

Thus, the output of the ensemble model can be denoted as

ŷEN = fEN({ŷ
i
}
I
i=1) = fEN({f i(Zisub,M

i
para)}

I
i=1) (6)

However, the above method cannot selectively fuse the
subgroups with complementary characteristics. Thus, SEN
method would be a good choice, whose output is denoted as

ŷSEN = fSEN({ŷ
isel}

Isel
isel=1

) = fSEN({f isel (Z
isel
sub,M

isel
para)}

Isel
isel=1

)

(7)

Therefore, to model a small sample high-dimensional data,
the following problems should be addressed: (1) how to
effectively partition subgroups; (2) how to instruct the latent
feature; (3) how to select the candidate submodels’ hyper-
parameters; and (4) how to select and combine ensemble
submodels.

III. PROPOSED METHODOLOGY
A. FEATURE GROUPING MODULE
The high-dimensional input data X include N samples (rows)
and M input features (columns). On the basis of domain
knowledge and the flowchart of the industrial process, or clus-
tering algorithms, the original input features are divided into
(I-1) subgroups, which represent different local information.
Let X i be the modeled data from the ith subgroup, then all
features of (I-1) subgroups can be defined by

{X i
}
I−1
i=1 = [X1, · · · ,X i, · · · ,X I−1] = fgroup(X,Know) (8)

where the argument Know indicates a prior knowledge.
To represent global information, all input features are con-

sidered the I th subgroup in the broad sense. Thus, the follow-
ing relationship exists:

M = M1
+ · · · +M i

+ · · · +M I−1
=

∑I−1

i=1
M i (9)

whereM i indicates the number of input features contained in
the ith subgroup. The output data y = {yn}Nn=1 consists of N
samples (rows), which are usually obtained from offline assay
data. Therefore, N � M .

B. LATENT FEATURE EXTRACTION AND MULTI-LAYERED
FEATURE SELECTION MODULE
For the ith subgroup, the feature extraction algorithm is used
to extract latent features. After being normalized, the input
data X i is decomposed as follows

Xi
=

M i
FeAll∑

miFeAll

ti
miFeAll

(pi
miFeAll

)T (10)

where ti
miFeAll

and pi
miFeAll

denote the score and loading vec-

tors, respectively, and M i
FeAll = rank(Xi) is the number of

extracted latent features.

Therefore, all latent features extracted can be dentoed as

Ti = [ti1FeAll , · · · , t
i
miFeAll

, · · · , ti
M i

FeAll
] (11)

where Ti ∈ RN×M
i
FeAll represents the score matrix, which is

the orthogonal projection of X i in the direction of the load
matrix Pi ∈ RM×M

i
FeAll . The latter can be represented as

Pi = [pi1FeAll , · · · ,p
i
miFeAll

, · · · ,pi
M i

FeAll
] (12)

Thus, the latent features extracted can be expressed as

ZiFeAll
= Ti = XiPi

= [zi1FeAll , · · · , z
i
miFeAll

, · · · , zi
M i

FeAll

= [{(zi1FeAll )n}
N
n=1, · · · , {(z

i
miFeAll

)n}Nn=1, · · · , {(z
i
M i

FeAll
)n}Nn=1

= {(ziFeAll)n}
N
n=1 (13)

In order to satisfy (3), the first layer feature selection based
on feature reduction ratio is made. The expected latent feature
number is calcuated by,

M i
FeAllSel_1st = N/αreduratio (14)

Further, selected latent features in the first layer can be
denoted by

ZiFeSelst = ZiFeAll(:, 1 : M
i
FeAllSel_1st) = {(z

i
FeSelst)n}

N
n=1

= [{(zi1FeSelst )n}
N
n=1, · · · , {(z

i
miFeSelst

)n}Nn=1,

· · · , {(zi
M i

FeSelst
)n}Nn=1 (15)

However, the latent feature with low contribution ratio
can inevitably cause the instatibility problem in terms of the
final predicition performance. In the seond layer, the feature
selection strategy based on contribution ratio is determined as
follows. Here, the eigenvalue corresponding to the miFeAllth
loading vector is labeled as λi

miFeAll
, and then the contribution

rate θ i
miFeAll

of the miFeAllth latent feature can be calculated by

θ i
miFeAll

=

λi
miFeAll∑M i

FeAll

miFeAll=1
λi
miFeAll

× 100 (16)

All the contribution rates can be denoted as {θ i
miFeAll
}
M i

FeAll

miFeAll=1
.

Thus, the selected latent features in the fisrt layer is
the former M i

FeAllSel_1st elememt, which is depicted as

{θ i
miFeAll
}
M i

FeAll_1st

miFeAll_1st=1
. Through defining the threshold θContri

selected by expert experience, the criterion to select latent
features from ZiFeSelst in the second layer is given by

ξ i
miFeAll_1st

=

 1, if θ i
miFeAll_1st

≥ θContri

0, else θ i
miFeAll_1st

< θContri
(17)

As a matter of fact, ξ i
miFeAll_1st

is an indicator function, which

means whether the miFeAll_1stth latent feature is selected or

148478 VOLUME 8, 2020



J. Tang et al.: Multisource Latent Feature SEN Modeling Approach

not. Here, value 1 indicates that this latent feature is selected,
otherwise, it is not selected.

Therefore, selected latent features in the second layer for
the ith subgroup can be demonstrated as

ZiFeSe2nd = [zi1FeSe2nd , · · · , z
i
miFeSe2nd

, · · · , zi
M i

FeSe2nd
]

= [{(zi1FeSe2nd )n}
N
n=1, · · · , {(z

i
miFeSe2nd

)n}Nn=1,

· · · , {(zi
M i

FeSe2nd
)n}Nn=1]

= {(ziFeSe2nd)n}
N
n=1 (18)

These selected latent features in the second layer are inde-
pendent in terms of the high contribution rate without consid-
ering the correlation between these features and the process
parameter. Thus, their MI values are calculated by,

ξ
miFeSe2nd
MI = H (y)− H (y|zi

miFeSe2nd
) (19)

where H (y|zi
miFeSe2nd

) is the conditional entropy, and H (y)
indicates the information entropy.

Specially, the threshold value for latent feature selection
in the third layer is ranged from θ iMIUP and θ iMIDN for each
subgroup, which is adaptively calculated by

θ iMI =
nMI · (θ iMIUP − θ

i
MIDN)

NStep
MI

+ θ iMIDN (20)

θ iMIUP = max(ξ
miFeSe2nd
MI ) (21)

θ iMIDN = min(ξ
miFeSe2nd
MI ) (22)

where NStep
MI represents the number of candidate MI threshold

steps, and nMI is the one of selected MI threshold times based
on priro knowledge for all subgroups.

The following criterion reveals the latent feature selection
strategy in the third layer

β i
miFeSe2nd

=

 1, if ξ
miFeSe2nd
MI ≥ θ iMI

0, else ξ
miFeSe2nd
MI < θ iMI

(23)

Note that β i
miFeSe2nd

is also an indicator function, which means

whether the miFeSe2ndth latent feature in the second layer is
selected or not. Explicitly, value 1 indicates that this latent
feature is selected again. Thus, the latent feature of the ith
subgroup in the third layer can be rewritten as

ZiFeSe3rd = [zi1FeSe3rd , · · · , z
i
miFeSe3rd

, · · · , zi
M i

FeSe3rd
]

= [{(zi1FeSe3rd )n}
N
n=1, · · · , {(z

i
miFeSe3rd

)n}Nn=1,

· · · , {(zi
M i

FeSe3rd
)n}Nn=1]

= {(ziFeSe3rd)n}
N
n=1 (24)

Therefore, all the selected features can be accordingly
determined by

ZFeSe3rd = [Z1FeSe3rd, · · · ,Z
i
FeSe3rd, · · · ,Z

I
FeSe3rd]

= {ZiFeSe3rd}
I
i=1 (25)

C. SEN MODELING MODULE BASED ON
HYPERPARAMETER ADAPTIV SELECTION
On the basis of the minimized root-mean-square error
(RMSE) criterion, the SEN modeling process referring to the
adaptive selection of sub-model hyperparameter, ensemble
sub-models, and their combination strategy can be formulated
as the following minimality problem:

Min ESEN
RMSE =

√√√√ 1
N

N∑
n=1

(
yn − ŷn

)2
=

√√√√ 1
N

N∑
n=1

(
yn − fSEN

(
{ŷiseln }

Isel
isel=1

))2

=

√√√√ 1
N

N∑
n=1

(
yn−fSEN

({
f isel (ZiselFeSe3rd, {K

isel
er ,R

isel
eg }

}Isel
isel=1

))2

s.t.


2 ≤ Isel ≤ I − 1
{K isel

er ,R
isel
eg } ∈ Mpara

{f isel (·)}Iselisel=1
∈ {f i(·)}Ii=1

fSEN (·) ∈ {AWF, PLS, Entropy, · · · }

(26)

where f i(·) is the candidate submodel constructed by the
ith group latent feature ZiFeSe3rd; f

isel (·) denotes the ensem-
ble submodel; Isel indicates the ensemble size; {K isel

er ,R
isel
eg }

is the hyperparameter for the iselth ensemble sub-model;
Mpara signifies the candidate hyperparameter matrix; fSEN(·)
is the combination method or model, which involves adaptive
weighting fusion (AWF), prediction error entropy weight-
ing (Entropy), partial least squares (PLS), or other lin-
ear/nonlinear mapping algorithms.

Taking the ith subgroup as an example, we illustrate
the process of constructing candidate submodel accord-
ing to adaptive selection strategies for hyperparameter pair
{K i

er,R
i
eg}. First, with the use of ϕ(·), the {(ziFeSe3rd)n}

N
n=1 is

transformed into a high-dimensional feature space to solve
the following optimization problem:

min
Wi,bi

OLS-SVM =
1
2
(wi)Twi

+
1
2
Rieg

N∑
n=1

(ζ in)
2

s.t : ŷin = (wi)Tϕ((ziFeSe3rd)n)+ b
i
+ ζ in

(27)

where wi is the weight coefficient, bi is the bias, and ζ in is the
prediction error of the nth sample. The following equation
can be obtained via the Lagrangian method:

Li(wi, bi, ζ i,β i)

=
1
2
(wi)Twi

+
1
2

N∑
n=1

(ζ in)
2

−

N∑
n=1

β in[(w
i)Tϕ((ziFeSe3rd)n)+ b

i
+ ζ in − ŷ

i
n] (28)

where β i = [β i1, · · · , β
i
n, · · · , β

i
N ] represents the Lagrangian

operator vector, and ζ i = [ζ i1, · · · , ζ
i
n, · · · , ζ

i
N ] represents
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the prediction error vector. The above equation is solved with

∂L i

∂wi = 0,
∂L i

∂bi
= 0,

∂L i

∂ξ i
= 0,

∂L i

∂β i
= 0 (29)

The kernel function used is expressed as follows:

�i
ker(z

i
FeSe3rd, (z

i
FeSe3rd)n) =< ϕ(ziFeSe3rd) · ϕ((z

i
FeSe3rd)n) >

(30)

The LS–SVM problem is converted to solve the following
linear equation system:

0 1 · · · 1

1 �i
ker (·)11 +

1
Rieg

· · · �i
ker (·)1N

...
...

...
...

1 �i
ker (·)N1 · · · �i

ker (·)NN +
1
Rieg



·


bi

β i1
...

β iN

 =


1
yi1
...

yiN

 (31)

By solving the above formula, we obtain β i and bi.
A candidate submodel constructed based on LS–SVM for

the ith subgroup can be expressed as

ŷi =
N∑
n=1

β in ·�
i
ker

(
ziFeSe3rd, (z

i
FeSe3rd)n

)
+ bi (32)

The adaptive hyperparameter selection mechanism of the
above candidate submodel is implemented by the following
Ngrid-times grid search method. In the first step, the grid
search strategy adaptively selects the initial hyperparameter
pair {(K initial

er )i, (Rinitialeg )i} in the candidate hyperparameter
matrix, which can be represented as

Mpara =



[K 1
er,R

1
eg] · · · [K 1

er,R
r
eg] · · · [K 1

er,R
R
eg]

...
...

...
...

...

[K k
er,R

1
eg] · · · [K k

er,R
r
eg] · · · [K k

er,R
R
eg]

...
...

...
...

...

[KK
er ,R

1
eg] · · · [K

K
er ,R

r
eg] · · · [K

K
er ,R

R
eg]


K×R
(33)

where K represents the number of candidate kernel param-
eter; R represents the number of candidate regularization
parameters; [K k

er,R
r
eg] represents a hyperparameter pair con-

sisting of the kth kernel parameter and the r th regularization
parameter, which is the jth element, i.e., M j

para = [K k
er,R

r
eg];

and, J = K ×R represents the number of candidate hyperpa-
rameter pairs. Therefore, the hyperparameter pair selected for
the ith candidate submodel is one of the elements of Mpara.

For the last result {(KGn−1
er )i, (RGn−1eg )i} in the remaining

(Ngrid − 1)-time grid search, the following equation obtains

a new candidate kernel parameter vector (KVn
er )

i and a new
regularization parameter vector (RVn

eg )
i:

(KVn
er )

i
=

(KGn−1
er )i

kdownsupara
:

(
kupsupara · (K

Gn−1
er )i −

(KGn−1
er )i

kdownsupara

/
Nker

)
:

(
(KGn−1

er )i · kupsupara
)

(34)

(RVn
er )

i
=

(RGn−1eg )i

kdownsupara
:

(
kupsupara × (RGn−1eg )i −

(RGn−1eg )i

kdownsupara

)/
Nker

:

(
kupsupara × (RGn−1eg )i

)
(35)

where Nker and Nreg represent the number of new candidate
kernel parameters and the number of regularization parame-
ters, respectively, and kdownsupara and k

up
supara are the hyperparame-

ters’ shrink and expansion factors, respectively. Then, the grid
search strategy is employed again to calculate the hyperpa-
rameter pairs {K i

er,R
i
eg} of the ith candidate submodel.

Due to the above process performed on the selected latent
features of different subgroups, the prediction output set of
the candidate submodel can be defined by

Ŷ = [ŷ1, · · · , ŷi, · · · , ŷI ]

= {ŷi}Ii=1 = {f
i(K i

er,R
i
eg,Z

i
FeSe3rd)}

I
i=1 (36)

Upon giving the candidate submodel and the combination
algorithm, the selection of the ensemble submodel is similar
to the optimal feature subset selection problem. In this study,
the number of the candidate submodels is limited. Thus,
the commonly adopted strategy is to use the multiple cou-
pling operation branch-and-bound optimization algorithm
and submodel combination algorithm to construct multiple
SEN models with an ensemble size of 2 to (I − 1). The
preferred SEN model is obtained based on prediction perfor-
mance ranking. The pseudocode of this branch-and-bound-
based algorithm is shown in [40].

Assume that the ensemble size of the final soft measure-
ment model is Isel. The final predicted output ŷ is calculated
by using

ŷ = fSEN
(
{ŷisel}Iselisel=1

)
= fSEN

({
f isel (ZiselFeSe3rd, {K

isel
er ,R

isel
eg }

}Isel
isel=1

)
(37)

where fSEN(·) is a combination method or a mapping model.

D. FLOW CHART OF THE PROPOSED METHOD
The flow chart is shown in Fig. 2.

Fig. 2 shows that the proposed algorithm should meet
the (3) and (1) in the canddiate submodel construction phase
and ensemble submodel combination phase, respectively. The
elaborate analysis and proof are shown in Marks I and II,
respectively.

1) MARK I
The proposed method can come to the requirement of (3)
in terms of feature reduction based on feature extraction
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FIGURE 2. Flow chart of the proposed method.

and multi-layered feature selection. The detailed analysis is
shown as follows.

The input feature is partitioned into (I −1) subgroups. The
total input feature is denoted as the I th subgoup. Normally,
the symbol I satifies (5), which is much samller than the
number of input features, i.e., I � M .
For example, the number of the extracted feature

PIfeature-extra can be denoted as,

PIFeature-Extr = fextr(X I ), PIFeature-Extr ≤ M (38)

With the pre-set expected feature reduction ratio αreduratio,
the number of feature selection strategies in the first layer is

described as,

PIFeature-1stSel = PIFeature-Extr/α
redu
ratio, αreduratio ≥ 2 (39)

Similarly, with the pre-set contribution ratio θContri,
the number of ones in the second layer is illustrated as,

PIFeature-2ndSel = f2ndSel(PIFeature-1stSel, θContri) (40)

where PIFeature-2ndSel ≤ P
I
Feature-1stSel.

Accordingly, with the pre-set MI threshold-step time nMI,
the number of ones in the third layer is denoted as,

PIFeature-3rdSel = f3rdSel(PIFeature-2ndSel, nMI),

1 ≤ nMI ≤ N
Step
MI (41)

where PIFeature-3rdSel ≤ P
I
Feature-2ndSel.

Therefore, the actual feature reduction ratio contributes to
the following result,

αI
∗

ratio =
Nsample

PIFeature-3rdSel
=

Nsample

f3rdSel(PIFeature-2ndSel, nMI)

≥
Nsample

PIFeature-2nd
=

Nsample

f2ndSel(PIFeature-1stSel, θContri)

≥
Nsample

PIFeature-1stSel
=

Nsample

PIFeature-Extr/α
redu
ratio

=
Nsample

PIFeature-Extr
αreduratio ≥

Nsample

M
αreduratio (42)

For small sample modeling data, there exitsM � Nsample.
So αI

∗

ratio > αreduratio is reasonable.
As other subgroups have less input feature number than the

I th subgoup’s, the above relationship is also satified.
Thereby, the requirement of the ratio of the number of

training samples to the input features in (3) can be satisfied.

2) MARK II
The proposed method can ensure the requirement of (1)
through combining ensembel submodels with the combina-
tion method or mapping model and obtain the final SEN
model. The analysis is shown in detail as follows.

The ratio of the number of training samples to the input
features (i.e., ensembel submodel’s predciton output) can be
denoted as

αCombin
ratio =

N
Isel

2 ≤ Isel ≤ I (43)

According to (5), Nsample
I ≥ αoriratio can be changed into I ≤

Nsample

αoriratio
, which further leads to the following result:

αCombine
ratio =

Nsample

Isel

≥
Nsample

I
≥
Nsample
Nsample

αoriratio

= αoriratio (44)

Therefore, the above Marks show that the proposed algo-
rithnm satisfis the (3) and (1) in different phases of the
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FIGURE 3. The NIR training data set and input feature subgroups.

proposed modeling method. And the proposed SEN mod-
eling strategy can well solve modeling problems of the
small-sample and high-dimensional process data in the view
of subgroups’ input feature reduction and ensemble submod-
els’ combination.

IV. EXPERIMENT RESEARCH
In this section, the LS–SVM algorithm with radius basis
kernel function is used to build candidate submodel. The
set of candidate regularization parameters and kernel param-
eters are preset as {0.0001, 0.001, 0.01, 0.1, 1, 10, 100,
1000, 2000, 4000, 6000, 8000, 10000, 20000, 40000, 60000,
80000, 160000} and {0.0001, 0.001, 0.01, 0.1, 1, 10, 100,
1000, 1600, 3200, 6400, 12800, 25600, 51200, 102400},
respectively. Three candidate ensemble submodel combi-
nation approaches, i.e., adaptive weighting fusion (AWF),
entropy weighting based on prediction error (entropy), and
partial least squares (PLS), are carried out.

A. MODELING DATA DESCRIPTION
1) HIGH-DIMENSIONAL NEAR INFRARED (NIR) SPECTRA
DATA
They are used to estimate the saccharose level of orange juice.
The NIR data come from http://www.ucl.ac.be, in which the
data sizes for training set and testing set are 150 and 68,
respectively. Thus, the number of input features, i.e., 700,
is four times as many as that of the training samples. Addi-
tionally, different regions of the input features have different
curve shapes.

2) HIGH-DIMENSIONAL MECHANICAL VIBRATION
FREQUENCY SPECTRA (MVF) DATA
They can estimate the mill load parameters (i.e., material
to ball volume ration (MBVR), pulp density (PD), charge
volume ratio (CVR)) inside of ball mill. Supposed that only

CVR is modeled and the experiments are performed on a
laboratory-scale ball mill. The mechanical vibration signal is
measured by an accelerometer located in the surface of the
mill shell. Based on four mill rotating periods data, MVF
data are obtained according to empirical mode decomposi-
tion and FFT technologies [40], [29]. In this process, only
IMF2-IMF8 are selected to construct CVR soft measurement
model for simplification, and the number of training samples
is 26. The number of input features ranges from 250 to 12000.

3) HIGH-DIMENSIONAL DIOXIDE (DXN) EMISSION
CONCENTRATION DATA
The DXN data come from an MSWI plant in China, which
covers 39 samples of DXN emission concentration from
2012 to 2018 [41]. Deleting several variables with incomplete
data, the total number of input features is 286. It shows that
the dimension of the input features far exceeds the number of
training samples. Thus, dimension reduction is necessary.

B. MODELING RESULTS
1) FEATURE GROUPING RESULTS
The NIR data are divided into six subgroups according to
the profile of the training data, whose ranges are 1–120,
121–240, 241–380, 381–470, 471–560, and 561–700. The
MVF data consist of seven IMFs which are different
sub-signals of the original mechanical shell vibration signal
with different frequency distributions. The DXN data are
divided into six subgroups according to the flow chart of
MSWI process, i.e., the incinerator, boiler, flue gas, steam,
stack, and common. These subgroups contain differentiated
local information, which can be considered different multi-
source information. The simplified curves of MVF data and
the flow chart of MSWI process are shown in Fig. 1, while
the curve of the NIR data is shown in Fig. 3.
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TABLE 1. Number of the input feature for different subgroups.

TABLE 2. Cumulative contribution rate of the former six PCs.

Therefore, according to all the original input features that
characterize the global information, seven generalized sub-
groups are numbered from I to VII for three datasets. And the
input feature number of different subgroups for three datasets
are shown in Table 1.

2) FEATURE EXTRACTION AND SELECTION RESULTS
The latent features of the seven subgroups for differ-
ent datasets are extracted by PCA. Then the cumulative
contribution rate of the first sixth PCs are demonstrated
in Table 2.

Table 2 shows the results as follows. First, the cumu-
lative contribution rates of the former six PCs in all sub-
groups of NIR and MVF datasets come to nearly 100%,
which implies strong collinearity between input features.
Second, the VII subgroup of DXN dataset represents that
the global information is only extracted by 82.9931% in
terms of contribution ratio, while other subgroups illus-
trate better performance than the VII one. Thus, latent
features should be extracted from different input feature
subgroups.

Let the feature reduction ratio, contribution ratio and
mutual information threshold-step times for NIR, MVF and
DXN datasets be (2, 0.001, 4), (2, 0.5, 7) and (6, 1, 10),
respectively. With the proposed method, the selected feature
numbers of three different layers are calculated and listed
in Table 3.

Table 3 shows that the feature number is further reduced
after the 1st-layer feature selection. Thus, the contribution
ratio or mutual information values are different with each
other for different latent features. However, the 2nd-layer
feature selection cannot further reduce the number of input
feature for DXNdata. Thus, the industrial process data’s char-
acteristic is different from that of high dimensional spectra
data.

TABLE 3. Selected feature number results of three layers.

3) SEN MODELING RESULTS
The grid search times are set 5, 3 and 2 for NIR, MVF
and DXN datasets, respectively. Then, the results of different
hyperparameters are shown in Table 4.

Table 4 shows the following results. First, different data
need different grid search times, which is necessary to set
for different datasets. Second, the hyperparameters’ values
of different subgroups don’t have the same character, which
makes them different from each other. Third, due to the huge
scale of most hyperparameters’ values, these small datasets
correspondingly have the large distribution range.

Based on the above candidate sub-models, different ensem-
ble sub-models and combination methods are optimally
selected. For NIR dataset, all the sub-models are fused by
PLS algorithm in terms of 7 latent features, whose RMSE is
4.4806. For MVF dataset, three sub-modes based on IMF2,
IMF4 and IMF7 are fused by Entropy algorithm with RMSE
0.1091. And for DXN dataset, PLS algorithm same as NIR
dataset is used to fuse all candidate sub-models with RMSE
0.01172. The extracted contribute ratio for input and output
data blocks with 2 latent features are 71.06% and 87.88%,
respectively.

C. COMPARISON RESULTS
The proposed method is compared with the baseline meth-
ods (PLS and RWNN) and differential modeling approaches
for NIR, MVF and DNB data. RWNN is a single hidden
layer feed-forward network. Its output weights are computed
analytically via Moore-Penrose generalized inverse method.
Thus, it has unstable prediction performance. The decorre-
lated ensemble algorithm based RWNN is used to overcome
this disadvantage, wherein learning parameters are selected
by GA [42]. The results are shown in Table 5.
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TABLE 4. Grid search results of hyperparameter pairs.

TABLE 5. Statistical results of different modeling methods for NIR, MVF
and DXN datasets.

Table 5 shows the following:
(1) For the single model, the linear PLS and nonlinear

RWNN models have the worst prediction performance. The
RWNN approach does not have optimized input features and
hidden layer node selection, thereby having poor prediction
stability. Bu using PCA, the extracted latent features are

independent of each other. Thus, the PCA–MI–LSSVM
method constructed with all input features has the best pre-
diction performance among all single modeling methods.

(2) For the ensemble (EN) model, the input features and
learning parameters of RWNN submodels are jointly selected
by GA-based optimization method. Compared to PCA–MI–
LSSVM method, the smaller RMSE (4.801) is obtained.
However, this method also has disadvantages (i.e., long
optimization time and poor prediction stability) which are
fatal for small sample dataset. Therefore, it is not useful to
model MVF and DXN datasets with GA-based optimization
method.

(3) The proposed SEN method has the best performance in
terms of RMSE for NIR, MVF and DXN datasets. For MVF
dataset in Ref [29], more IMFs’ frequency spectrum data
are utilized to construed SEN model through combination
method based on adaptive weighting fusion (AWF) algo-
rithm. However, AWF algorithm can’t extract the indepen-
dent latent features with high contribution ratio and relativity
of mill load parameter. Moreover, the proposed method inclu-
sively makes an optimally selection of weighting methods.
For DXN dataset, the method in Ref [41] has three short-
comings, which are: the first-layer latent feature selection
algorithm does not consider the feature reduction ratio; the
mutual information based on feature selection in the second
layer doesn’t consider the differences among subgroups; and
only a fixed threshold value is set for all subgroups. More-
over, the first-layer latent feature is just selected according
to the prediction performance so that overfitting problem
cannot be avoided. Another problem is that only entropy-
based weighting method is used to combine the ensemble
sub-models. To overcome above deficiencies, the proposed
method is suitable for modeling a small sample of high-
dimensional process data.

In summary, the proposed method has the best predictive
performance, which can effectively and selectively fuse the
latent features of the feature subgroups that represent local
information and global information.

D. DISCUSSIONs ON LEARING PARAMETERS
The above-mentioned simulation results show the effective-
ness of the proposed method. However, several learning
parameters, such as feature reduction ratio, contribution ratio,
mutual information threshold-step time and grid search time,
have to be properly set. Thus, it is of necessity for them to
analyze and discuss separately.

Here, the candidate sets for feature reduction ratio, con-
tribution ratio, mutual information threshold-step time and
grid search time are configured as 2-7, {0.00001, 0.00005,
0.00010, 0.00050, 0.00100, 0.00500, 0.01000}, 1-10 and
2-7, respectively. In the simulation process, just one learning
parameter is changed at each simulation test. And the default
values of the four learning parameters are set as 2, 0.001,
5 and 3, respectively.

The relationships between these learning parameters and
RMSEs are shown in Figs. 4-6 for NIR, MVF and DXN
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FIGURE 4. Relationships between four learning parameters and RMSEs for NIR data.

FIGURE 5. Relationships between four learning parameters and RMSEs for MVF data.

datasets, respectively. In order to show the feature contribu-
tion ratio clearly, base-10 logarithm is used to preprocess it.

Fig. 4 shows that there are minimum values for three
learning parameters except for the feature reduction ratio.
The reason is that not only the training sample number is not
enough small but also the high collinearly exits among wave-
length of NIR dataset. For example, if feature reduction ratio
is 6, the expected latent feature number will be 150/6 = 25.
However, Table 1 shows that the first six latent feature have
been captured nearly up to 100%. Thus, the RMSEs with
different feature reduction ratios are the same, which also
shows the effectiveness of the proposed method.

For MVF and DXN datasets, the number of training sam-
ples is rather small. Figs. 5 and 6 show that all four learn-
ing parameters have the minimum extreme values, while
Figs. 4-6 show that there are a little insensitive fluctuation
for these learning parameters. In a word, they have the prop-
erty of data dependence. As the former learning parameters
directly impact on the latter ones, a jointly optimization
strategy should be chosen to solve the problem of interaction
effectiveness.

Mark3: Compared with the single-model method, the
proposed SEN model is a time-consuming process because
it uses the grid search approach to optimize the learning
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FIGURE 6. Relationships between four learning parameters and RMSEs for NIR data.

parameters. In the actual industry, the characteristics of the
modeling process have to drift. Thus, the old SENmodelmust
be updated or retrained. In this online updating condition, cer-
tain history knowledge from the old model can be transferred.
For example, the number of the ensemble submodels and the
range of the learning parameters have a limited range. Thus,
the number of grid cells and the consumed time are reduced.

V. CONCLUSION
To address the difficulty of modeling small-sample
high- dimensional process data, this study proposes a soft
measurement method based on multisource latent feature
SEN modeling. The original input features are divided into
multiple subgroups that represent local information. All input
features that represent global information are taken as one
special subgroup. After the latent features being extracted
from different subgroups, a three-layer feature selection strat-
egy is proposed. Concretely, the first-layer feature selection
strategy based on feature reduction ratio is employed to
guarantee the expected ratio of the number of the train-
ing samples to the input features. The second-layer feature
selection strategy based on contribution ratio ensures the
prediction stability. The third-layer feature selection strategy
based on mutual information contributes to the relativity
of the predicted process parameter. Moreover, a multiage
grid search method for hyperparameter adaptive optimization
is proposed. Based on the branch-and-bound-based SEN
modeling mechanism, the adaptive selection strategy in terms
of ensemble size, ensemble submodels, and their combination
method is realized. The proposed method can not only avoid
the loss of valuable information during the feature selection
process but adaptively and selectively fuse the information
from subgroups with complementary characteristics. The

TABLE 6. Abbreviations and their meanings.

effectiveness of the proposedmethod is verified by the bench-
mark NIR data, high-dimensional MVF data and the indus-
trial DXN emission concentration data, which can also be
further extended to a general modeling framework.

APPENDIX
See Table 6.

REFERENCES
[1] T. Y. Chai, ‘‘Operational optimization and feedback control for com-

plex industrial processes,’’ Acta Automatica Sinica, vol. 39, no. 11,
pp. 1744–1757, Jan. 2013.

[2] T. Ko and H. Kim, ‘‘Fault classification in high-dimensional complex
processes using semi-supervised deep convolutional generative models,’’
IEEE Trans. Ind. Informat., vol. 16, no. 4, pp. 2868–2877, Apr. 2020.

148486 VOLUME 8, 2020



J. Tang et al.: Multisource Latent Feature SEN Modeling Approach

[3] W. Shao, Z. Ge, Z. Song, and J. Wang, ‘‘Semisupervised robust modeling
of multimode industrial processes for quality variable prediction based on
Student’s t mixture model,’’ IEEE Trans. Ind. Informat., vol. 16, no. 5,
pp. 2965–2976, May 2020.

[4] J.-F. Qiao, Z.-G. Guo, and J. Tang, ‘‘Dioxin emission concentration mea-
surement approaches for municipal solid wastes incineration process:
A survey,’’ Acta Automatica Sinica, vol. 46, no. 6, pp. 1063–1089, 2020,
doi: 10.16383/.j.aas.c190005.

[5] J. Tang, J. Qiao, Z. Liu, X. Zhou, G. Yu, and J. Zhao, ‘‘Mechanism
characteristic analysis and soft measuring method review for ball mill
load based on mechanical vibration and acoustic signals in the grinding
process,’’ Minerals Eng., vol. 128, pp. 294–311, Nov. 2018.

[6] P. Kadlec, B. Gabrys, and S. Strandt, ‘‘Data-driven soft sensors in the
process industry,’’ Comput. Chem. Eng., vol. 33, no. 4, pp. 795–814,
Apr. 2009.

[7] D.-C. Li and C.-W. Liu, ‘‘Extending attribute information for small data set
classification,’’ IEEE Trans. Knowl. Data Eng., vol. 24, no. 3, pp. 452–464,
Mar. 2012.

[8] U. M. Khaire and R. Dhanalakshmi, ‘‘Stability of feature selection algo-
rithm: A review,’’ J. King Saud Univ.-Comput. Inf. Sci., Jun. 2019, doi:
10.1016/j.jksuci.2019.06.012.

[9] Y.-S. Lin, ‘‘Small sample regression: Modeling with insufficient data,’’ in
Proc. 40th Int. Conf. Comput. Ind. Eng., Awaji, Japan, Jul. 2010, pp. 1–7.

[10] Y. Lin, ‘‘Modeling with insufficient data to increase prediction stability,’’
in Proc. 5th IIAI Int. Congr. Adv. Appl. Informat. (IIAI-AAI), Kumamoto,
Japan, 2016, pp. 719–724.

[11] V. Junttila andM. Laine, ‘‘Bayesian principal component regression model
with spatial effects for forest inventory variables under small field sample
size,’’ Remote Sens. Environ., vol. 192, pp. 45–57, Apr. 2017.

[12] D. Dernoncourt, B. Hanczar, and J.-D. Zucker, ‘‘Analysis of feature selec-
tion stability on high dimension and small sample data,’’ Comput. Statist.
Data Anal., vol. 71, pp. 681–693, Mar. 2014.

[13] J. Tang, Z. Liu, J. Zhang, Z. Wu, T. Chai, and W. Yu, ‘‘Kernel latent
features adaptive extraction and selection method for multi-component
non-stationary signal of industrial mechanical device,’’ Neurocomputing,
vol. 216, pp. 296–309, Dec. 2016.

[14] T. A. F. Gomes, R. B. C. Prudêncio, C. Soares, A. L. D. Rossi, and
A. Carvalho, ‘‘Combining meta-learning and search techniques to select
parameters for support vector machines,’’ Neurocomputing, vol. 75, no. 1,
pp. 3–13, Jan. 2012.

[15] X. D. Xiao, J. W. Lu, and J. Hai, ‘‘Prediction of dioxin emissions in flue
gas from waste incineration based on support vector regression,’’ Renew.
Energy Resour., vol. 35, no. 8, pp. 1107–1114, Aug. 2017.

[16] X. Lu,W. Liu, C. Zhou, andM. Huang, ‘‘Robust least-squares support vec-
tor machine with minimization of mean and variance of modeling error,’’
IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 7, pp. 2909–2920,
Jul. 2018.

[17] P. B. C.Miranda, R. B. C. Prudêncio, A. P. L. F. de Carvalho, and C. Soares,
‘‘A hybrid meta-learning architecture for multi-objective optimization of
SVM parameters,’’ Neurocomputing, vol. 143, pp. 27–43, Nov. 2014.

[18] G. Yu, T. Chai, and X. Luo, ‘‘Multiobjective production planning optimiza-
tion using hybrid evolutionary algorithms for mineral processing,’’ IEEE
Trans. Evol. Comput., vol. 15, no. 4, pp. 487–514, Aug. 2011.

[19] C. Liu, L. Tang, and J. Liu, ‘‘Least squares support vector machine with
self-organizing multiple kernel learning and sparsity,’’ Neurocomputing,
vol. 331, pp. 493–504, Feb. 2019.

[20] S. Yin and J. Yin, ‘‘Tuning kernel parameters for SVM based on expected
square distance ratio,’’ Inf. Sci., vols. 370–371, pp. 92–102, Nov. 2016.

[21] G. Brown, J. Wyatt, R. Harris, and X. Yao, ‘‘Diversity creation meth-
ods: A survey and categorisation,’’ Inf. Fusion, vol. 6, no. 1, pp. 5–20,
Mar. 2005.

[22] D. Sovilj, K.-M. Björk, and A. Lendasse, ‘‘Comparison of combining
methods using extreme learning machines under small sample scenario,’’
Neurocomputing, vol. 174, no. 22, pp. 4–17, Jan. 2016.

[23] C. Perales-González, M. Carbonero-Ruz, D. Becerra-Alonso,
J. Pérez-Rodríguez, and F. Fernández-Navarro, ‘‘Regularized ensemble
neural networks models in the extreme learning machine framework,’’
Neurocomputing, vol. 361, pp. 196–211, Oct. 2019.

[24] J. Zhai, L. Zang, and Z. Zhou, ‘‘Ensemble dropout extreme learning
machine via fuzzy integral for data classification,’’ Neurocomputing,
vol. 275, pp. 1043–1052, Jan. 2018.

[25] S. S. Mao, J. W. Chen, L. C. Jiao, S. P. Gou, and R. F. Wang, ‘‘Maximizing
diversity by transformed ensemble learning,’’ Appl. Soft Comput., vol. 82,
pp. 105–110, Sep. 2019.

[26] S. Mao, W. Lin, L. Jiao, S. Gou, and J.-W. Chen, ‘‘End-to-end
ensemble learning by exploiting the correlation between individuals
and weights,’’ IEEE Trans. Cybern., early access, Aug. 14, 2020,
doi: 10.1109/TCYB.2019.2931071.

[27] K. Singh, S. Rajora, G. Tripathi, D. K. Vishwakarma, and G. S. Walia,
‘‘Crowd anomaly detection using aggregation of ensembles of fine-tuned
convNets,’’ Neurocomputing, vol. 371, pp. 188–198, Jan. 2020.

[28] J. Tang, T. Chai, W. Yu, Z. Liu, and X. Zhou, ‘‘A comparative study that
measures ball mill load parameters through different single-scale and mul-
tiscale frequency spectra-based approaches,’’ IEEE Trans. Ind. Informat.,
vol. 12, no. 6, pp. 2008–2019, Dec. 2016.

[29] J. Tang, J. Qiao, Z. Wu, T. Chai, J. Zhang, and W. Yu, ‘‘Vibration and
acoustic frequency spectra for industrial process modeling using selective
fusion multi-condition samples and multi-source features,’’ Mech. Syst.
Signal Process., vol. 99, pp. 142–168, Jan. 2018.

[30] G. Ma, Y. Wang, and L. Wu, ‘‘Subspace ensemble learning via totally-
corrective boosting for gait recognition,’’ Neurocomputing, vol. 224,
pp. 119–127, Feb. 2017.

[31] X. P. Wang, Y. Zhang, Z. Wang, and L. X. Tang, ‘‘Naphtha pyrolysis
process modeling based on ensemble learning with LSSVM,’’ Comput.
Aided Chem. Eng., vol. 44, pp. 2035–2040, 2018.

[32] Q. Chen, J. Ding, S. Yang, and T. Chai, ‘‘A novel evolutionary algorithm for
dynamic constrained multiobjective optimization problems,’’ IEEE Trans.
Evol. Comput., vol. 24, no. 4, pp. 792–806, Aug. 2020.

[33] C. Yang, J. Ding, Y. Jin, C. Wang, and T. Chai, ‘‘Multitasking multi-
objective evolutionary operational indices optimization of beneficiation
processes,’’ IEEE Trans. Autom. Sci. Eng., vol. 16, no. 3, pp. 1046–1057,
Jul. 2019.

[34] Q. Chen, J. Ding, S. Yang, and T. Chai, ‘‘Constrained operational opti-
mization of a distillation unit in refineries with varying feedstock prop-
erties,’’ IEEE Trans. Control Syst. Technol., early access, Nov. 21, 2019,
doi: 10.1109/TCST.2019.2944342.

[35] J. Shawe-Taylor, M. Anthony, and N. L. Biggs, ‘‘Bounding sample size
with the Vapnik-Chervonenkis dimension,’’ Discrete Appl. Math., vol. 42,
no. 1, pp. 65–73, Feb. 1993.

[36] Y. Muto and Y. Hamamoto, ‘‘Improvement of the parzen classifier in
small training sample size situations,’’ Intell. Data Anal., vol. 5, no. 6,
pp. 477–490, Dec. 2001.

[37] S. J. Raudys and A. K. Jain, ‘‘Small sample size effects in statistical pattern
recognition: Recommendations for practitioners,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 13, no. 3, pp. 252–264, Mar. 1991.

[38] Z. H. Guo, J. Tang, and J. F. Qiao, ‘‘Mathematic simulation model of
dioxin emission concentration of municipal solid waste incineration based
on aspen-plus software,’’ in Proc. 37th Chin. Control Conf., Wuhan, China,
Jul. 2018, pp. 3502–3507.

[39] J. Tang and J. F. Qiao, ‘‘Dioxin emission concentration soft measuring
approach of municipal solid waste incineration based on selective ensem-
ble kernel learning algorithm,’’ J. Chem. Ind. Eng. (China), vol. 70, no. 2,
pp. 696–706, Jan. 2019.

[40] J. Tang, W. Yu, T. Chai, Z. Liu, and X. Zhou, ‘‘Selective ensemble mod-
eling load parameters of ball mill based on multi-scale frequency spectral
features and sphere criterion,’’ Mech. Syst. Signal Process., vols. 66–67,
pp. 485–504, Jan. 2016.

[41] J. Tang, J. F. Qiao, and Z. H. Guo, ‘‘Dioxin emission concentration
soft measurement based on multi-source latent feature selective ensemble
modeling formunicipal solid waste incineration process,’’Acta Automatica
Sinica, Jun. 2020, doi: 10.16383/j.aas.c190254.

[42] J. Tang, J. Qiao, J. Zhang, Z. Wu, T. Chai, and W. Yu, ‘‘Combinatorial
optimization of input features and learning parameters for decorrelated
neural network ensemble-based soft measuring model,’’ Neurocomputing,
vol. 275, pp. 1426–1440, Jan. 2018.

JIAN TANG (Member, IEEE) received the Ph.D.
degree in control theory and control engineering
from Northeastern University, Shenyang, China,
in 2012. He is currently a Professor with the Bei-
jing University of Technology. His research inter-
ests include small sample data intelligentmodeling
and intelligent modeling and control of municipal
solid waste incineration process.

VOLUME 8, 2020 148487

http://dx.doi.org/10.16383/.j.aas.c190005
http://dx.doi.org/10.1016/j.jksuci.2019.06.012
http://dx.doi.org/10.1109/TCYB.2019.2931071
http://dx.doi.org/10.1109/TCST.2019.2944342
http://dx.doi.org/10.16383/j.aas.c190254


J. Tang et al.: Multisource Latent Feature SEN Modeling Approach

JIAN ZHANG received the M.S. degree in applied
mathematics from Liaoning University, in 2008,
and the Ph.D. degree in pattern recognition and
intelligent systems from Northeastern University,
China, in 2012. He is currently working with the
Nanjing University of Information Science and
Technology, China. His research interests include
wireless sensor networks, edge computing, and
machine learning.

GANG YU received the M.S. and Ph.D. degrees in
control theory and engineering from Northeastern
University, Shenyang, China, in 2006 and 2013,
respectively. He is currently a Senior Engineer
with the State (Beijing) Key Laboratory of Pro-
cess Automation in Mining & Metallurgy. His
current research interests include modeling and
optimization for the complex industrial systems,
planning and scheduling, and intelligent optimiza-
tion methods.

WENPING ZHANG received the M.S. degree in
mineral processing engineering from the Shan-
dong University of Science and Technology,
in 2009. He is currently a first-level Research
and Development Engineer and a Project Team
with Shandong Gold Mining Technology Com-
pany Ltd. His current research interests include
the process mineralogy parameter detection and
analysis, and so on.

WEN YU (Senior Member, IEEE) received the
Ph.D. degree in electrical engineering from North-
eastern University, Shenyang, China, in 1995.
Since 1996, he has been with the Centrode
Investigación yde Estudios Avanzados, National
Polytechnic Institute (CINVESTAV-IPN), Mexico
City, Mexico, where he is currently a Professor
with the Departamento de Control Automatico.
Since 2006, he has been a Visiting Professor with
Northeastern University. He serves as an Associate

Editor for the IEEE TRANSACTIONS ON CYBERNETICS, Neurocomputing, and the
Journal of Intelligent and Fuzzy Systems.

148488 VOLUME 8, 2020


