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ABSTRACT Human hands engage in interactive activities in many practical working scenarios, among
which the interactions between human hands and objects are the most common. Tracking the movement
of the human hand during hand-object interactions is an important research task that is also challenging
due to the high-dimensionality and occlusions. In this paper, we track hand-object interactions from depth
observations with a model-based method. To overcome the difficulties of optimum searching in the hand-
object high-dimensional space, we propose a new algorithm — collaborative differential evolution filtering
(CoDEF)— for tracking hand-object interactions. The proposed CoDEF algorithm integrates the differential
evolution (DE) algorithm into a particle filtering (PF) framework to accelerate the convergence of particles.
Particles are driven to the regions with a high probability by optimizing the matching error under the
current observation with DE. To decompose the state space and decrease the complexity of optimum
searching, CoDEF tracks the movement of the hand and object by using two collaborative trackers. Based
on the proposed CoDEF algorithm, we develop a model-based tracking system with 3D graphic techniques.
According to the experimental results, the proposed CoDEF algorithm can achieve robust tracking of
hand-object interactions using fewer particles.

INDEX TERMS Differential evolution, depth image, hand tracking, object tracking, particle filtering.

I. INTRODUCTION
Tracking the movement of the human hand is an impor-
tant task in many applications, such as the perception
of human grasping, movement capture for animation, and
human-machine interfacing. In many practical working
scenes, the human hand engages in interactive activities.
Interactions between the human hand and objects are themost
common. Therefore, it is important to track the movement of
the human hand during hand-object interactions. Neverthe-
less, tracking hand-object interactions is limited by several
complicated factors. First, it is a high-dimensional prob-
lem. Next, occlusions occur frequently during hand-object
interactions, including hand-object mutual occlusions and
self-occlusions of the hand. However, useful contextual infor-
mation with the manipulated object can promote the recogni-
tion and estimation of human hand movement.

Currently, hand-object tracking methods based on vision
can generally be divided into two types: appearance-based
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methods andmodel-basedmethods. Appearance-basedmeth-
ods [1]–[11] estimate hand-object poses directly from image
features via a learned mapping. They require no initial-
ization and have a quick tracking speed. However, accu-
rate estimations of poses need a well-trained mapping.
Kjellström et al. [1] proposed a method for recognizing the
movement of the hand and the manipulated object by express-
ing their relationship with a conditional random field model.
However, this method does not provide detailed information
about the movement of the human hand. Romero et al. [2], [3]
reconstructed the 3D gestures of the human hand that
interacted with objects using a real-time nonparametric
appearance-based method. The method searches for the hand
pose that best matches the input image from a large template
database with nearest-neighbor searching. Gupta et al. [4]
proposed a Bayesian approach to integrate multiple percep-
tion tasks in human-object interactions. The method searches
for consistent semantic expressions by applying space limi-
tations to perception elements. This method not only allows
for the recognition of the object and corresponding actions
when their appearance cannot be completely distinguished,
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but it also allows for the recognition of the actions of
the human body from static images. However, this method
does not produce detailed information about body gestures.
Yao and Fei-Fei [5], [6] applied a new random field
model for the modeling of objects and body gestures. They
estimated the degree of connection among objects, body
gestures, and different parts of the human body through a
structure learning method. The method calculates the param-
eters of the model using a new max-margin algorithm. Under
this mode, object detection provides strong prior knowledge
for the estimation of body gestures, and the estimation of
body gestures helps the system conduct more accurate detec-
tions of objects interacting with the human body. However,
this method only produces 2D estimates for body poses.
Recently, some researchers [12]–[28] have introduced deep
learning methods to estimate hand poses. Tompson et al. [12]
trained a convolutional network to extract hand heat-map
features from depth images. Then, they recovered hand poses
from the heat-map representation with inverse kinematics.
Ge et al. [13] acquired volumetric representations of hands
from depth images. By using the volumetric representations
as the input, they regressed the 3D hand joint locations by
using a trained 3D convolutional neural network (3D CNN).
However, these methods assume an isolated free-moving
hand that is not interacting with objects.

Model-based methods [29]–[39] use prebuilt models to
generate hypotheses. These methods compare the features
extracted from the models with those extracted from visual
observation and evaluate the similarity between them. They
search for a set of hand-object state parameters that best
matches the visual observation in the model state space
using an optimization method. However, the tracking process
involves a search task in a high-dimensional space, which is
challenging. Moreover, the tracking needs to be initialized.
Hamer et al. [30] searched for the optimal configuration of the
hand states through belief propagation (BP). They connected
different parts of the multijointed human hand through pair-
wise Markov random fields. However, they did not construct
a model for the manipulated object. Oikonomidis et al. [31]
regarded the hand-object tracking problem as a sequential
optimization problem. They used particle swarm optimiza-
tion (PSO) to search for the solution. Their system uses
multiview RGB image sequences as the input. Kyriazis and
Argyros [32] acquired the observation input using a depth
camera and only searched for hand pose parameters. They
deduced the object pose according to the hand pose and
the hand-object interaction model. Zhang and Seah [33]
performed a hybrid particle-based search that derives from
PSO and differential evolution (DE) to track human body
poses. They used a voxel model for the human body.
Some researchers [40]–[42] have combined learning-based
methods with model fitting for estimating hand poses.
Sharp et al. [40] used a multilayered random forest to pre-
dict a hand pose distribution. Using the hand pose hypothe-
ses sampled from the distribution for the initialization, they
performed a model fitting process by minimizing the error

between the hand model and the observation with PSO. Their
method focused on tracking a single hand. When tracking
a hand manipulating an object, failures occurred for their
method. Sridhar et al. [41] modeled the hand and object
with Gaussianmixtures. They performed object segmentation
using color information and then carried out hand part clas-
sification from the depth input with a multilayered random
forest. By using the hand part classification for guidance,
they tracked the hand manipulating an object with a 3D
Gaussian mixture alignment method. However, the hand part
classification did not perform well under situations of severe
hand-object occlusions.

Many researchers have performedmodel-based tracking of
the movement of the hand [43]–[46] or body [47], [48] by
using a particle filtering (PF) framework. PF has the ability
to express a multipeak distribution through the propagation
of multiple samples along time. Nevertheless, the standard PF
requires a large sample size, especially for high-dimensional
problems such as hand movement tracking. A small sam-
ple set will lead to particle divergence and tracking fail-
ures. For this problem, many researchers [43]–[46] have
tracked hand movement by combining optimization methods
with PF. Based on a PF framework, the particles predicted
by a dynamic model are used as the initial values, and an
optimization method is then applied to optimize the parti-
cles and accelerate the convergence of the particle set. In a
related work [45], Gaussian PSO is combined with PF to
track hand-object interactions. However, since the segmented
images include a small amount of forearm pixels adjacent
to hand pixels, the estimated hand pose slides up and down
the arm from frame to frame. Another related work [46]
integrates DE into PF for tracking. However, the method
considered an isolated hand that was not interacting with
objects.

As in [45], we track hand-object interactions from depth
observations with a model-based method under a PF frame-
work. However, in this paper, the constructed 3D hand model
includes a part of the forearm that can be scaled, enabling
the observation model to explain the forearm pixels adjacent
to hand pixels in segmented depth images. To accelerate
the convergence of particles and improve the distribution of
particle samples, we integrate DE into the PF framework to
track hand-object interactions. By optimizing the matching
error under the current observation with DE, particles are
moved towards the regions with high-likelihood probabil-
ity. However, due to the high-dimensionality of the prob-
lem and the occlusions during hand-object interactions, there
are many local optima around the global optimum in the
hand-object space, making the optimum searching process
still challenging. To decrease the complexity of optimum
searching, we track the movement of the human hand and
the object using two collaborative trackers. The resulting
new algorithm — collaborative differential evolution fil-
tering (CoDEF) — assigns one tracker to the hand and
another tracker to the object. The two trackers exchange
information frequently during the tracking process. Such a
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collaborative tracking scheme decomposes the state space
with multiple trackers, decreasing the complexity of opti-
mum searching. We develop a model-based tracking system
based on the proposed CoDEF algorithm with 3D graphic
techniques. The experiments demonstrate that CoDEF can
achieve the robust tracking of hand-object movement by
using fewer particles. Themain contributions of this paper are
as follows:

• We propose a new algorithm — CoDEF — for tracking
hand-object interactions. To overcome the difficulties
of searching in the hand-object high-dimensional space,
CoDEF integrates DE into the PF framework and applies
two collaborative trackers for the hand and object.

• We construct a 3D hand model including a part of the
forearm that can be scaled. In this way, we make the
observation model able to explain the forearm pixels
adjacent to hand pixels in segmented depth images.

• Wedevelop amodel-based prototype system for tracking
hand-object interactions based on the proposed CoDEF
algorithm with 3D graphic techniques.

The reminder of this paper is organized as follows:
Since we track hand-object interactions with a model-based
method, we first introduce the constructed hand-object mod-
els in Section II. Then, we describe the matching error func-
tion and observation model in Section III. In Section IV,
we describe the proposed tracking algorithm — CoDEF.
In Section V, we describe the model-based tracking system
that we have developed based on CoDEF with 3D graphic
techniques. Section VI provides the experimental results on
real and synthetic data. Section VII presents the conclusion
of this paper.

II. HAND-OBJECT MODEL
We track the hand-object interactions by using a model-
based method. The human hand is an articulated object,
and each joint of the hand has one or more degrees of
freedom (DOFs) in rotation. From the application perspec-
tive, it is not necessary to capture the movement of all
bones in the hand. Therefore, the kinematics modeling of
some joints is usually simplified by some approximations.
Lee and Kunii [49] introduced a 27-DOF model, which has
been widely used. In this paper, we build a hand kinemics
model that is similar to [49], which is shown in Fig. 1.
However, different from [49], we model the MCP joint of
the thumb with only 1 revolute DOF. In addition, since our
model includes a part of the forearm, we add a wrist joint to
the hand kinemics model. The resulting hand state vector xh
covers 29 DOFs, including 6 DOFs for global hand motion,
20 DOFs for local finger motion, and 3 DOFs for the wrist
joint. The CMC joints of all fingers are fixed. The movement
of the palm corresponds to 6 global DOFs of the human
hand. Each finger is connected to the palm by a 2-DOF
(1 flexion-extension DOF and 1 abduction-adduction DOF)
joint. In addition, each finger consists of three parts that
are connected by two 1-DOF joints. These 1-DOF joints are

only capable of flexion-extension motion. The wrist joint has
1 flexion-extension DOF, 1 abduction-adduction DOF, and
1 scaling DOF. We use human anatomy to establish the
movement constraints of the finger joints and the wrist joint.
The object state vector xo covers 6 DOFs of the manipulated
object.

FIGURE 1. Kinematics model of the human hand.

By using the PTC Pro/Engineer1 and Multigen-Paradigm
Creator2, we build a unified 3D model for the human hand
and the manipulated object with parametric geometric prim-
itives. The model has local coordinates and DOF nodes for
hand-object pose updating. Moreover, the 3D hand model
built in this paper involves a part of the forearm of the human
body, which makes the model able to describe the forearm
pixels adjacent to hand pixels in segmented depth images.
The wrist joint has 1 scaling DOF, which makes the forearm
model able to extend or retract. This paper mainly focuses
on the interactions of the human hand with a sphere and the
interactions with a cylinder. Fig. 2 shows the corresponding
models. However, this method can also be used to track
the interactions between the human hand and more complex
shapes of objects.

III. OBSERVATION MODEL
In this paper, we construct a matching error function and
observation likelihood function to evaluate the hand-object
hypotheses. The hand-object foreground regions are seg-
mented by a simple threshold from the current depth obser-
vation z, generating a depth image zd (z). Given a hand-object
pose vector xh−o = (xh, xo), a depth image rd (xh−o) is gen-
erated correspondingly with graphic rendering techniques by
a virtual depth camera under the given calibration. Then, two

1https://www.ptc.com/en/products/creo/pro-engineer
2https://www.presagis.com/en/product/creator/
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FIGURE 2. Hand-object models. (a) Sphere, (b) Cylinder.

binary silhouette images zs(z) and rs(xh−o) are derived from
zd (z) and rd (xh−o) respectively, with a value of 1 in hand-
object foreground regions and a value of 0 in the background
regions.

By comparing the features extracted from the hypotheses
with those extracted from visual observation, amatching error
function is defined as follows:

E(z, xh−o) = λdEd (z, xh−o)+ λsEs(z, xh−o)+ λhEh(xh)

(1)

where λd , λs and λh are the normalization factors.
Ed measures the depth differences between the pose

hypothesis xh−o and the observation z. Ed is defined as
follows:

Ed (z, xh−o) =
∑

min (|zd (z)− rd (xh−o)| ,Td )∑
(zs(z) ∨ rs(xh−o))

(2)

The pixelwise depth differences are calculated and accumu-
lated over the whole image. The accumulated sum is nor-
malized by dividing by the total pixel area of the hand and
the manipulated object. Any significant difference in depth
will cause significant changes in the functional values, thus
influencing the performance of the search method. For this
reason, the maximum constant Td for depth differences is
introduced, and the depth differences of all pixels are limited
within the range of [0, Td ].
Es describes the incompatibility of silhouette images based

on the area of the nonoverlapping regions between zs(z) and
rs(xh−o). It is defined as follows:

Es(z, xh−o)

=

∑
zs(z) (1− rs(xh−o))∑

zs(z)
+

∑
rs(xh−o) (1− zs(z))∑

rs(xh−o)
(3)

The first part in Es calculates the pixel area that belongs to
zs(z) but does not belong to rs(xh−o), whereas the second part
calculates the pixel area that belongs to rs(xh−o) but does not
belong to zs(z). Both parts are normalized independently.
To punish the mutual penetration of adjacent fingers,

the matching error function E(z, xh) involves an additional
prior part, which is the penalty term Eh(xh). It is defined as
follows:

Eh(xh) =
∑
p∈J

−min (ϕ (xh, p) , 0) (4)

where J refers to three pairs of adjacent fingers, except the
thumb. ϕ refers to the difference between the abduction-
adduction angles of theMCP joints between a pair of adjacent
fingers in the hand pose hypothesis xh.
The observation likelihood function is defined as follows:

p(z|xh−o) ∝ exp (−λe · E(z, xh−o)) (5)

where λe is a normalization factor.

IV. THE TRACKING ALGORITHM
We propose a new tracking algorithm — collaborative
differential evolution filtering (CoDEF) — for tracking
hand-object interactions. CoDEF integrates the differential
evolution (DE) algorithm into a particle filtering (PF) frame-
work. The distribution of the PF samples is improved by
optimizing the matching error under the current observation
with DE. In addition, CoDEF uses two collaborative trackers
to track the movement of the hand and object. In this way, the
hand-object space is decomposed and the complexity of the
optimum searching is decreased.

A. PARTICLE FILTERING
Particle filtering (PF) can express a multipeak distribu-
tion through the propagation of multiple samples along
time [50]. The basic idea of PF can be summarized as follows.
According to the particle samples {(xit−1,w

i
t−1)}

N
i=1 of time

t−1, PF searches for a group of samples {(xit ,w
i
t )}

N
i=1 to rep-

resent the posterior probability distribution of time t , by using
the transition prior p(xt |xt−1) and the observation likelihood
p(zt |xt ). xit denotes the i-th sampled state particle at time t ,
and wit denotes its weight. However, the transition prior
which ignores the latest observation value zt is used as the
importance distribution. Therefore, the importance sampling
process of particles is suboptimal. For PF, a small sample
set will lead to particle divergence and tracking failures.
To address this problem, some kind of optimization method
is often introduced into the PF framework to accelerate the
convergence of the particles.

B. OPTIMIZATION WITH DIFFERENTIAL EVOLUTION
In this paper, we use the differential evolution (DE) algorithm
to optimize the matching error. DE is an efficient swarm
intelligence optimization algorithm for nonlinear and non-
differentiable objective functions [51]. After initialization,
DE searches for the optimal global solution in a continu-
ous space through iterative evolutions of N D-dimensional
vectors {xig}

N
i=1. Population evolution is completed through

mutation, crossover, and selection. Mutation and crossover
are used to generate new candidates, whereas selection is used
to determine whether the new candidate can survive the next
generation.

During mutation, DE selects three different individuals
randomly from the previous generation for each individual
index i of the population, which are combined to generate a
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mutant individual:

vig+1 = xr1g + F(x
r2
g − x

r3
g ) (6)

where individual indexes r1, r2 and r3 are selected randomly
within the range of [1, 2, · · · ,N ]. These three individual
indexes are different from each other and different from i.
F is the scaling factor of the differential vector (xr2g −x

r3
g ), and

it controls the convergence speed during the search process.
The scaling factor F of the standard DE algorithm is constant.
To improve the convergence of the algorithm, in this paper,
F is adjusted on each dimension by using a ‘‘jitter’’ [52]
factor. Therefore, F = FC · N (0, 1), where FC is a constant
and N (0, 1) is a Gaussian random number that has a mean
of 0 and a variance of 1. In this paper, FC is set to 0.5.
Then, a candidate uig+1 = {u

j,i
g+1}

D
j=1 is generated by

combining the mutant individual vig+1 and the old individual
xig through the crossover operation:

uj,ig+1 =

v
j,i
g+1 if rand j ≤ CR or j = r ig+1

x j,ig otherwise
(7)

where rand j ∼ U (0, 1) is a random number, which follows
a uniform distribution over the interval [0,1]. The crossover
parameterCR determines the probability for each element in a
candidate to inherit from the mutant individual. In this paper,
CR is set to 0.9. r ig+1 is a random number in the range of
[1, 2, · · · ,D], which ensures that candidates choose at least
one element from the mutant individual.

After the mutation and crossover operations are completed,
a one-to-one greedy selection operation is conducted:

xig+1 =

{
uig+1 if f (uig+1) ≤ f (x

i
g)

xig otherwise
(8)

The generated candidate uig+1 and the old individual xig
are compared to determine which one should be retained
in the next generation. If uig+1 has a better objective func-
tion value than xig, it will replace x

i
g in the next generation.

Otherwise, xig is retained.
The basic steps of the DE algorithm can be summarized as

follows:

(1) Initialization: The population {xi0}
N
i=1 is initialized ran-

domly. The individuals in the population are evaluated
according to the objective function, and the corre-
sponding objective values are recorded. The individual
with the best objective value in {xi0}

N
i=1 is duplicated

into the global optimum b0 of the population, with its
corresponding objective value recorded.

(2) Mutation: Mutation is carried out on individuals in the
population according to Equation (6) to generate the
mutant individual vig+1.

(3) Crossover: The old individual xig and its corresponding
mutant individual vig+1 are crossed over according to
Equation (7) to generate the candidate uig+1.

(4) Evaluate all candidates: The generated candidates
{uig+1}

N
i=1 are evaluated according to the objective

function, and their corresponding objective values are
recorded.

(5) Selection: The old individual xig or the candidate u
i
g+1

is selected to be retained in the new population accord-
ing to Equation (8).

(6) Update the global optimal: The objective values of all
new individuals {xig+1} are compared with the global
optimum bg to generate a new global optimum bg+1.

(7) Determine whether the algorithm is over: If it is, output
bg+1 and its corresponding objective value and quit the
algorithm. Otherwise, return to Step (2).

In this paper, two DE populations are assigned to the hand
and object, respectively, for their pose optimization. Specifi-
cally, the hand pose xh and object pose xo under the current
frame are respectively optimized by these two populations.
Here, we denote these two populations as population h and
population o, respectively. Population h conducts the iterative
optimization of the hand pose xh while regarding object pose
xo as static for the current frame. In population h, xo is
determined by the optimization result of population o for
the previous frame. In contrast, population o conducts the
iterative optimization of the object pose xo while regarding
hand pose xh as static for the current frame. In population o,
xh is determined by the optimization result of population h
for the previous frame.

C. COLLABORATIVE DIFFERENTIAL EVOLUTION FILTERING
We integrate the DE algorithm into the PF framework for
tracking hand-object interactions. After the new positions of
the particles are predicted, the DE algorithm is carried out
to conduct the iterative evolution of the particles, by using
the matching error function under the latest observation zt as
the objective function. Particles are moved to regions with
higher observation likelihoods in the state space via DE. The
particle optimization process can be regarded as an impor-
tance sampling process, whereas the new particle swarm
after optimization can be regarded as an approximation of
the optimal importance distribution p(xt |xt−1, zt ) [50]. The
optimization process based on DE improves the distribution
of PF samples and accelerates the convergence of the particle
set, thus enabling robust hand-object tracking using fewer
particles.

As Equation (9) shows, the transition prior p(xt |xt−1) is
defined as a first-order dynamics model to propagate particles
along time:

xit,0 = xit−1,G + r
i
t−1 (9)

where rit−1 is a Gaussian random number. {xit−1,G}
N
i=1 are

the final positions gained from particle convergence after
G generations of iterative optimization via DE at time t–1.
The newly obtained particle set {xit,0}

N
i=1 is used to initialize

the DE population at time t . The improved algorithm —
differential evolution filtering (DEF) — is summarized as
follows:
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For time t > 0:
(1) Resampling: Particles are resampled from the

particle set {(xit−1,w
i
t−1)}

N
i=1 according to the

weights {wit−1}
N
i=1, generating a new equal-weighted

particle set {(xit−1, 1
/
N ))}Ni=1.

(2) Prediction: According to Equation (9), the position
of each particle at time t is predicted from its
position at time t-1, thus obtaining a new particle
set {(xit,0, 1

/
N ))}Ni=1.

(3) Optimization: Using the matching error function under
the latest observation zt as the objective function, run
the DE algorithm to optimize {(xit,0, 1

/
N ))}Ni=1.

(4) Weight updating: The particle weight wit ∝ p(zt |xit )
is updated according to the observation likelihood
p(zt |xit ), and a weighted particle set {(xit ,w

i
t )}

N
i=1 is

obtained. Then, the weights {wit }
N
i=1 are normalized to

make
∑N

i=1 w
i
t = 1.

(5) State estimation: Output the estimates of the system
state by using the maximum posterior criteria.

In this paper, two collaborative DEF trackers are applied
for hand-object movement tracking and we propose a new
algorithm — collaborative differential evolution filtering
(CoDEF). The proposed CoDEF algorithm assigns two track-
ers to the hand and object to track the hand pose xh and
object pose xo. The two trackers are not independent of each
other and they exchange information frequently during the
tracking process. The hand tracker regards object pose xo
as static during the iterative optimization of hand pose xh
at the current frame, while xo is determined by the tracking
result of the object tracker for the previous frame. The object
tracker regards hand pose xh as static during the iterative
optimization of object pose xo at the current frame, while xh
is determined by the tracking result of the hand tracker for
the previous frame. As soon as one tracker gains the solution
for the current frame, the solution is transmitted to the other
tracker, and the corresponding pose values are kept static
during the iterative optimization for the next frame by the
other tracker. Such a collaborative tracking scheme not only
models occlusions between the hand and object, but it also
decomposes the unified state space with multiple trackers,
decreasing the complexity of optimum searching.

V. DEVELOPMENT OF THE TRACKING SYSTEM
Wedevelop a prototype system for tracking hand-object inter-
actions using the proposed CoDEF algorithmwith the graphic
rendering engine OpenSceneGraph (OSG)3. A prebuilt 3D
hand-object model with DOF nodes is loaded into OSG.
During the tracking process, the movement of the hand and
the object is controlled by using osgSim::DOFTransform
nodes. The depth images of the hand-object model are gener-
ated by OSG off-screen rendering, which are then compared
with the observed images to calculate the matching errors and
observation likelihood values for different particles. The state
parameters for the minimum matching error are searched for

3http://www.openscenegraph.org/

within the hand space and the object space using the CoDEF
algorithm.

OSG organizes spatial data in a scene graph tree for effi-
cient graphic rendering. Headed by a root node on the top,
the scene graph tree is composed of many group nodes and
leaf nodes. The group nodes organize the geometries and their
rendering states in a scene, whereas leaf nodes contain the
actual geometric data for rendering. As an object-oriented
rendering engine, OSG provides various group node types by
using inheritance, such as transform nodes and camera nodes,
allowing for many different functionalities. In our system,
we create a camera node to render the hand-object pose
hypotheses into depth images for matching error calculations.
The camera node has a child, the hand-object model node,
which is created by reading the corresponding model file.
In addition, to allow for off-screen rendering, we connect a
buffer object with the camera. Then, the hand-object model
will be rendered onto the buffer object by the virtual camera
per OSG frame. For each rendered frame, OSG performs
three traversals: the update, cull and draw traversals. In the
update traversal step, updates are made to the scene graph to
enable dynamic scenes. Our system updates the model poses
with a callback object (NodeCallback) assigned to the model
node in this traversal. In the cull traversal step, OSG tests
the bounding volumes of all nodes and culls the nodes that
are not in the view. For our system, no special operations
are added to this traversal. In the draw traversal step, OSG
traverses the list of geometries created by the cull traversal
and invokes drawing commands to render the geometries.
In our system, for each OSG frame, after the pose-updated
model is rendered into a depth image by the virtual camera,
the matching error for the new pose hypothesis is calculated
in this traversal through a callback object (DrawCallback)
assigned to the camera.

This system calculates new hand-object pose parameters
iteratively using the CoDEF algorithm. As shown in Fig. 3,
the system sets up a DE population h for the optimization of
the hand poses and a DE population o for the optimization
of the object poses. After getting a new input frame from
the depth observation, the system propagates the hand poses
of all particles in population h over time for the population
initialization of the new frame. The object poses of the parti-
cles in population h are set to the best object pose attained by
population o for the last input frame. In addition, to initialize
population o, the system propagates the object poses of all
particles in population o over time. The hand poses of the
particles in population o are set to the best hand pose attained
by population h for the last input frame. After initialization,
the two DE populations iteratively optimize their particles
based on the new observation. When a new candidate is gen-
erated through mutation and crossover, the system updates
the model pose in the NodeCallback object of the model
node according to the position of the new candidate. A new
OSG frame is set up, and the updated model is rendered into
a depth image by the virtual camera. In the DrawCallback
object assigned to the camera, the system calculates the
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FIGURE 3. Flowchart of the prototype system.

matching error of the new candidate. The rendering of OSG
frames is conducted by a multithread mode as the default.
In the multithread mode, a thread is assigned to each camera
and each graphics context. The cull and draw traversals are
conducted in the threads of the cameras and graphics con-
texts, respectively. Before the current frame finishes draw-
ing in the graphics context threads, the update traversal and
cull traversal of the next frame will be started. To avoid
data conflicts among different threads, our system uses the
Win32 SetEvent() and WaitForSingleObject() functions for
synchronization and communication among threads. When
the matching error has been calculated, a signal is sent to
the main thread by an event object. When this event signal
is received, the system calculates the weight of the new can-
didate particle based on its matching error in the main thread.
Then, a selection operation is conducted to decidewhether the
old individual or the new candidate will be retained. After a
fixed number of iterations, the system combines the best hand
and object poses attained respectively by the two populations
as the solution.

VI. EXPERIMENTS
The effectiveness of the tracking method is verified by exper-
iments on real sequences and synthetic sequences. The track-
ing is initialized manually by putting the real hand and object
in their initial positions at the first input frame. In all exper-
iments, the proposed CoDEF algorithm applies 32 particles
for the hand tracker and 8 particles for the object tracker. For
each input frame of the two trackers, the DE algorithm con-
ducts 60 generations of iterative optimization. In this paper,
the experiments are carried out on a PCwith a quad-core Core
i5 2.9 GHz CPU, 8.0 GBs of memory, and an Nvidia GTX
950M GPU. Tracking one input frame costs 5 s on average.

A. EXPERIMENTS ON REAL IMAGES
We use depth images, which are captured from a Kinect
1.0 sensor with the Microsoft Kinect 1.0 Beta2 SDK, as the
observation input. The image resolution and frame rate are
640 × 480 and 30 fps, respectively. Two depth image
sequences have been acquired. The first one shows a hand
grasping and manipulating a sphere, whereas the second
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TABLE 1. The tracking errors of CoDEF on the synthetic sequences.

TABLE 2. The errors of the estimated parameters on the synthetic
hand-sphere sequence.

TABLE 3. The errors of the estimated parameters on the synthetic
hand-cylinder sequence.

one shows a hand grasping and manipulating a cylinder.
Both of the sequences consist of 270 frames. Experiments
are conducted on the two real sequences to evaluate the
proposed CoDEF algorithm. We compare CoDEF with two
algorithms: another improved PF algorithm with DE opera-
tors (DEPF) [46] and a hybrid particle-based search (HPS)
algorithm that derives from PSO and DE [33]. Both DEPF
and HPS track in the hand-object joint pose space. In all
experiments, both DEPF and HPS apply 40 particles and run
for 60 generations for each input frame. The configuration of
these parameters allows for a fair comparison among the three
algorithms, since for each input frame, the three algorithms
calculate the same numbers of matching errors.

The matching error values attained by the three track-
ing algorithms are plotted in Fig. 4. It can be seen from
Fig. 4 that both CoDEF and DEPF outperform HPS on the
two real sequences. CoDEF and DEPF have nearly equal
performance in terms of matching errors. Then, we compare
the validity of the estimates attained by CoDEF and DEPF
by reconstructing the hand-object poses with the estimates.
Fig. 5 and Fig. 6 show the 3D reconstruction of the results
of CoDEF and DEPF on the real sequences. For Fig. 5 and
Fig. 6, the first and second rows show the RGB images and
depth images, respectively, which are acquired by the Kinect
sensor. Here, the depth images have been segmented by a

FIGURE 4. Matching errors of HPS, DEPF, and CoDEF on the real
sequences. (a) Sphere, (b) Cylinder.

simple depth threshold. The third row shows the tracking
results of DEPF. The fourth row shows the tracking results
of the proposed CoDEF algorithm. Athough CoDEF and
DEPF have nearly equal performance in terms of matching
errors, the 3D reconstruction of the tracking results shows
that CoDEF actually performs better than DEPF. Especially
for the real hand-cylinder sequence, when severe occlusions
happen, DEPF can not achieve accurate tracking, whereas
CoDEF still tracks hand-object movement correctly.

B. EXPERIMENTS ON SYNTHETIC DATA
We conduct a quantitative evaluation of the proposed CoDEF
algorithm based on synthetic depth images, since ground
truth pose data are hard to acquire from real images. The
synthetic images are rendered using the 3D hand-object
models. In addition, the movement of the hand-object models
is defined by the tracking results of CoDEF on the two
real sequences. Therefore, for these synthetic sequences,
the CoDEF tracking results on the real sequences are actu-
ally the ground truth values. The resulting two synthetic
sequences both consist of 270 frames. By using synthetic data
as the observation, experiments are carried out to evaluate
the CoDEF tracking algorithm. Table 1 shows the tracking
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FIGURE 5. Sample results of CoDEF on the real hand-sphere sequence compared with DEPF. The
results of frames 0, 30, 90, 120, 170, 230, 269 are shown. From top to bottom: RGB images, depth
images, the results of DEPF and results of CoDEF.

FIGURE 6. Sample results of CoDEF on the real hand-cylinder sequence compared with DEPF. The
results of frames 0, 30, 60, 120, 170, 230, 269 are shown. From top to bottom: RGB images, depth
images, the results of DEPF and results of CoDEF.

errors of CoDEF that are averaged over the entire sequence,
including the positional errors of the hand and object, and the
pose error of the hand. The positional error of the hand is the
Euclidean distance between the estimated and ground truth
positions of the palm center, whereas the positional error of
the object is the Euclidean distance between the estimated
and ground truth object positions. The pose error of the hand

is the average angle error of the 25 rotation DOFs of the hand,
including 3 DOFs for global hand rotation, 20 DOFs for local
finger motion, and 2 DOFs for wrist rotation.

Comparisons between the estimates of the proposed
CoDEF algorithm and the corresponding ground truth values
on some parameters are shown in Fig. 7 and Fig. 8. Table 2
and Table 3 show the mean errors of the estimated parameters
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FIGURE 7. CoDEF tracking results vs. ground truth on the synthetic hand-sphere sequence.

FIGURE 8. CoDEF tracking results vs. ground truth on the synthetic hand-cylinder sequence.

on the sequence and the corresponding standard deviations.
The results show that the parameters estimated by CoDEF
can follow the changes of the ground truth values along the
sequence.

VII. CONCLUSION
In this paper, we propose an improved PF algorithm —
CoDEF — to track hand-object interactions. We construct
hand-object models with geometric primitives and establish
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an observation model with depth observation. The proposed
CoDEF algorithm integrates the DE algorithm into the PF
framework. By optimizing the matching error with DE under
the current observation, the PF sampling process is improved
and the particles are moved towards the areas with a high
probability. In addition, CoDEF tracks the movement of the
hand and object by using two collaborative trackers. In this
way, the hand-object space is decomposed and the complexity
of optimum searching is decreased. We develop a prototype
system using the proposed CoDEF algorithmwith 3D graphic
techniques. Experiments demonstrate that the proposed algo-
rithm can achieve robust tracking of hand-object movement
using fewer particles.

Since the proposed method is model-based, the tracking
needs to be initialized, which is performed manually by
putting the real hand and object in their initial positions
at the first input frame. To make the method able to ini-
tialize automatically and enhance its capability to recover
from tracking failures, our future research will combine some
kind of learning-based method with model fitting for track-
ing hand-object interactions. We will use the learning-based
method to predict a distribution for the hand-object poses.
Then, using the hand and object hypotheses sampled from the
distribution for initializing, the model-based tracking will be
performed to estimate the hand and object poses. In this paper,
CoDEF cannot track hand-object movement in real time.
According to the parallel computing characteristics of the
proposed CoDEF algorithm and matching error calculation,
in the future, we will speed up the system by using CUDA
programming.
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