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ABSTRACT Model compression and acceleration are attracting increasing attention due to the demand for
embedded devices and mobile applications. Research on efficient convolutional neural networks (CNNs)
aims at removing feature redundancy by decomposing or optimizing the convolutional calculation. In this
work, feature redundancy is assumed to exist among channels in CNN architectures, which provides some
leeway to boost calculation efficiency. Aiming at channel compression, a novel convolutional construction
named compact convolution is proposed to embrace the progress in spatial convolution, channel grouping
and pooling operation. Specifically, the depth-wise separable convolution and the point-wise interchannel
operation are utilized to efficiently extract features. Different from the existing channel compression
method which usually introduces considerable learnable weights, the proposed compact convolution can
reduce feature redundancy with no extra parameters. With the point-wise interchannel operation, compact
convolutions implicitly squeeze the channel dimension of feature maps. To explore the rules on reducing
channel redundancy in neural networks, the comparison is made among different point-wise interchannel
operations. Moreover, compact convolutions are extended to tackle with multiple tasks, such as acoustic
scene classification, sound event detection and image classification. The extensive experiments demonstrate
that our compact convolution not only exhibits high effectiveness in several multimedia tasks, but also can
be efficiently implemented by benefitting from parallel computation.

INDEX TERMS Acoustic scene classification, convolutional neural networks, image classification, model
compression and acceleration, sound event detection.

I. INTRODUCTION
Convolutional neural networks (CNNs) are attracting
considerable attention in an increasing array of area, such as
computer vision [1]–[3], computational acoustics [4]–[6] and
natural language processing [7]–[9]. The general trend is to
design deeper and more complicated network architecture to
pursue better performance. However, massive resources are
required for desired performance, which hinders CNN-based
classifiers from the real-time inference in mobile applica-
tions. Over the past few decades, various methods have been
exploited for model compression and acceleration, including
pruning [10]–[13], weight sharing [14], [15], low-rank matrix
factorization [16]–[18] and knowledge distillation [19]–[21].
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Despite their desirable compression abilities, most of the
compression methods typically suffer from two major draw-
backs. First, the original complex model is replaced with
an approximation one, resulting in the error accumulation.
Therefore, fine-tuning is usually necessary for their satisfying
performance. Second, various manually chosen parameters
(and even a lot of empirical engineering that only experts are
competent to deal with) are required in these methods.

To overcome the above drawbacks, several efficient con-
volution methods are recently developed to design specific
convolutional kernels for less parameters and calculations.
In 2016, Szegedy et al. [22] proposed an asymmetrical con-
volution where a standard d× d convolution layer is spatially
factorized as a sequence of two layers with d × 1 and 1× d
convolutions. Howard et al. [23] proposed MobileNet v1
that replaces the standard convolution with the depth-wise
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separable convolution. The work by Zhang et al. [24] pro-
posed ShuffleNet, applying group convolution and channel
shuffle. Iandola et al. [25] proposed SqueezeNet in which
1× 1 convolutions are utilized to reduce channel numbers
and replace a part of 3× 3 convolutions for less param-
eters. Although some research [24]–[26] has investigated
on reducing the channel number in the current layer to
cut down the following convolutional operations, this prob-
lem is simply solved by appending 1× 1 convolutional
layer, which introduces extra parameters and considerable
interchannel calculations.

In this paper, we found that feature redundancy exists
among channels in CNN architecture, i.e., amounts of
interchannel information is unimportant or even unneces-
sary in some cases. Instead of 1× 1 convolutions, a novel
convolutional construction named compact convolution is
proposed to implicitly reduce feature redundancy in a non-
learning approach. Specifically, the point-wise operation
among channels (the point-wise interchannel operation) is
implemented to squeeze the channel dimension of input fea-
ture maps. The reason for applying the point-wise operation
is threefolds. First, the point-wise operation compresses the
interchannel information without extra parameters, directly
reducing the cost of computation. Second, the derivation
of these point-wise operations can be taken easily, which
contributes to the chain rule and training end-to-end networks
from scratch. Third, the point-wise operation is well-suited
for parallel computation on GPU or other advanced chips.
Depth-wise separable convolution is further introduced to
decouple spatial feature extraction from interchannel feature
extraction. Like other research on efficient convolutional
kernels [23]–[25], [27], useful features from feature maps
can be extracted with fewer parameters and operations by
simply replacing the standard convolution with our compact
convolution. In addition, how different types of point-wise
operations impact on interchannel feature compression is
further investigated. While there is tremendous difference
between sounds and images, our compact convolution yields
desired performance in multiple tasks, such as acoustic scene
classification, sound event detection and image classification.
To the best of our knowledge, there is few work to verify the
generalization of their models in across multiple media.

Extensive experiments show that compared with gen-
eral network constructions (such as VGG, Resnet and
MobileNets), the network with compact convolutions (here-
after CompactNet) not only greatly reduces computation
complexity, but also yields desirable performance. To further
illustrate the difference between linear manner and non-linear
one, three different point-wise operations are compared.
Some guidelines are provided for investigating model com-
pression and accerleration.

The contributions of this work are summarized as follows:
1) A novel convolution named compact convolution is

proposed to implicitly reduce feature redundancy in a non-
learning approach. Different from the existing channel com-
pression method which directly utilizes 1× 1 convolution,

the proposed compact convolution adopts the point-wise
interchannel operation to squeeze the channel dimension of
feature maps with no extra parameters. It turns out that
compact convolutions not only cost at least 18 times less
computation than standard convolutions in terms of 3× 3
size, but also yield competitive performance.

2) Some guidelines on replacing learnable parameters and
complex operations in convolutional layers are summarized.
This facilitates further investigation on feature dimension
reduction in CNNs.

3) The proposed convolution can be easily applied in gen-
eral CNN architectures, by replacing the current convolutions
with our compact convolutions. Moreover, the compact con-
volution can extract either audio or visual features to solve
multimedia problems.

The reminder of the paper is organized as follows.
Section II provides a brief survey of related work. Section III
first presents the proposed compact convolution, and
then applies it into several popular CNN architectures.
In Section IV, extensive experiments are conducted to eval-
uate CompactNets. Finally, several conclusions and possible
future works are given in Section V.

II. RELATED WORK
A. 1 × 1 CONVOLUTION
1× 1 convolution was first proposed by Lin et al. [28] as
a universal function approximator for feature extraction on
the local patches. They found that 1× 1 convolution not
only has great capability in modeling various distributions
of latent concepts, but also facilitates the learnable interac-
tions of cross-channel information. Sequent work in [29],
[30] utilized 1× 1 convolution for tuning the number of fea-
ture maps in CNN architecture. However, 1× 1 convolution
involves considerable parameters and operations. This work
applies the point-wise interchannel operation to reduce the
dimension of feature maps.

B. MAXOUT FUNCTION
In 2013, Goodfellow et al. [31] proposed a maxout con-
struction that performs a max pooling across multiple affine
feature maps. It turned out that the maxout construction
results in a piecewise linear function which is capable of
modeling any convex function. Wu et al. [32] proposed the
Max-Feature-Map (MFM) layer as a variation of maxout
activation to suppress low-activation neurons in each layer.
Rather than a better function approximator, this paper focuses
on the efficient approaches for reducing the interchannel
redundancy, and compressing the dimension of feature maps
in a larger range. Moreover, besides the max pooling, two
more operations are investigated and further integrated into
the proposed convolutional layer.

C. DEPTH-WISE SEPARABLE CONVOLUTION
Howard et al. [23] proposed MobileNets v1 which took the
idea of the depth-wise separable convolution and achieved
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FIGURE 1. Point-wise interchannel operation over feature maps. The
compact factor C is set to 2 in this figure. Thus, the input feature maps
are first grouped and then point-wise operations are implemented over
the 2 feature maps in each group.

preferable results on small models. Depth-wise separable
convolution consists of a depth-wise convolution for spatially
filtering and a point-wise convolution (1× 1 convolution)
for exchanging information among channels. By replacing
standard convolutions with depth-wise separable convolu-
tions, the optimized network costs about 9 times less com-
putation than the standard convolution at the cost of a small
reduction in accuracy. Inspired by the depth-wise separable
convolution, the compact convolution decouples spatial fea-
ture extraction from interchannel feature extraction. More-
over, the point-wise interchannel operation is introduced
between the depth-wise convolution and 1× 1 convolution.
Thus, the efficiency of convolution is further improved.

III. PROPOSED METHOD
A. THE POINT-WISE INTERCHANNEL OPERATION
As shown in Fig. 1, the point-wise operation is implemented
on the feature maps across channels. The input feature maps
are firstly divided into groups. And a new feature map is
extracted point by point over C feature maps in each group.
Therefore, the parameter C can be deemed as a hyper-
parameter for adjusting the ratio of channel compression.
As C gets larger, the resulting construction becomes more
compact.

The input feature maps and the output feature maps
of the point-wise interchannel operation are denoted as
I ∈ FN×W×H and O ∈ FN

′
×W×H , where N and N ′ are the

channel numbers of input feature maps and output feature
maps, W and H are the width and height of the feature
maps respectively. Each pixel on the output feature maps
is independently calculated with the values in the identical
position across channels. Thus, the point-wise interchannel
operation of the position (w, h) (0 ≤ w < W , 0 ≤ h < H) is
defined as

Ow,h(n) = TC−1k=0

(
Iw,h(n+

N
C
k)
)
, n ∈ [0,N ′) (1)

Here T (∗) represents the point-wise operations across
channels in the same group. The adopted point-wise operation
can be divided into non-linear and linear manners. The non-
linear manner which combines C feature maps and outputs
element-wise maximum one is defined as:

Ow,h(n) = maxC−1k=0

(
Iw,h(n+

N
C
k)
)
, n ∈ [0,N ′) (2)

FIGURE 2. Illustration of compact convolutions. Input feature maps go
through depth-wise convolutions, point-wise interchannel operations and
1 × 1 convolutions. The compact factor C is set to 2 in this figure.
Different colors denote different channels of feature maps.

The gradient of Eq. (2) takes the following form:

∂Ow,h(n)
∂Iw,h(j)

=

1, argmax
0≤j<C

(
n+

N
C
j
)

0, otherwise
(3)

Likewise, the linear manner is defined as:

Ow,h(n) =
1
m

C−1∑
k=0

Iw,h(n+
N
C
k), n ∈

[
0,N ′

)
(4)

Here m is set to 1 when the sum method is applied, oth-
erwise set to C . The gradient of Eq. (4) can be written as
follows:

∂Ow,h(n)
∂Iw,h(j)

=
1
m

(5)

Because the point-wise operation can be simultaneously
processed in different groups, it is well-suited for paral-
lel computation on the modern processors. Compared with
1× 1 convolution performing weighted linear recombination
across all the input feature maps, each output feature map
produced by the point-wise operation is calculated from the
local information of the grouped input feature maps with no
extra learnable weights. Thus, the point-wise interchannel
operation is capable of reducing considerable parameters and
computation resources.

B. COMPACT CONVOLUTION
Taking advantages of the depth-wise separable convolution
and the point-wise interchannel operation, a novel com-
pact convolution layer is proposed for the efficient network.
The proposed compact convolution is illustrated in Fig.2.
Depth-wise convolution is operated over each input feature
map to extract spatial features. The following point-wise
interchannel operation squeezes the channel dimension of
feature maps extracted by depth-wise convolutions, and pre-
serves their major information. Finally, 1× 1 convolution is
applied for the exchange of information among channels.
As one can see, there is a bottleneck construction inside
the compact convolution. The bottleneck construction leaves
the 1× 1 layer with smaller input/output dimensions, which
is beneficial to reduce the cost of computation. Compared
with other bottleneck constructions [30] designed with 1× 1
convolution, the proposed compact convolution reduces the
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channel dimension with less calculation and no extra learn-
able weights.

A standard convolution layer takes aWin×Hin×Cin feature
map F as input. Here Win and Hin are the spatial width and
height of the input feature map, Cin is the number of input
channels. And aWout×Hout×Cout feature mapG is produced
by a standard convolution, whereWout andHout are the width
and height of the output feature map andCout is the number of
output channels. The standard convolutional layer is param-
eterized by convolution kernel sized K × K × Cin × Cout
where K is the spatial dimension of the kernel assumed to be
square,Cin andCout are numbers of input and output channels
as defined previously.

Based on [33], the complexity of networks is evaluated
with FLOPs, i.e. the number of floating-point multiply-add
operations. Assume that F denotes FLOPs of the standard
convolution. It can be computed as:

F = 2CinK 2HoutWoutCout (6)

Likewise, F ′ represents FLOPs of the compact convo-
lution. Through the depth-wise convolution, the point-wise
interchannel operation and 1×1 convolution, F ′ is calculated
as:

F ′ =
(
2K 2
+
m
C
+

2Cout
C

)
CinHoutWout (7)

where m is set to C − 1 when the maximum and the sum
methods are imposed, otherwise set to C . Then the compres-
sion rate α of F ′ over F is obtained as:

α(F ′,F) =
1

Cout
+

m
2CK 2Cout

+
1

CK 2 (8)

Since the standard convolution sized 3× 3 is the most
frequently-used construction in CNN architecture, the kernel
size of the compact convolution is set to 3 in the experiments.
It turns out that when the number of filters is large, FLOPs
of the compact convolution sized 3× 3 are approximately
18 times less than FLOPs of the standard counterpart. With
the increase of the compact factor C , the ratio gets even
higher. A further discussion is demonstrated in Sect. V.

C. APPLICATION IN NETWORK ARCHITECTURES
Since the compact convolution is a ‘‘sparse’’ version of the
standard convolution, it can be embedded into general net-
work architectures by simply replacing standard convolutions
with compact convolutions. In this work, three different net-
works with compact convolutions are proposed as follows.

VGG-like. Following the design principle of VGG
net [34], a block consisting of two-layer 3× 3 convolutions
is imposed as a basic building block. Considering the lim-
itation of dataset size, an eight-layer stacked convolutional
model is adopted in the proposed VGG-like networks. The
standard convolution is utilized as the first two convolutional
layers, and compact convolutions are imposed as the other
six convolutional layers. All the convolutional layers are

followed by batch normalization [35] and ReLU non-linear
activation [36].

ResNet-like. The ‘‘bottleneck’’ design is adopted in our
proposed networks, which has been demonstrated desired
performance in [30]. Different from [30], it is unnecessary
to append 1× 1 convolution following 3× 3 convolution in
the bottleneck block, because our compact convolution itself
includes a 1× 1 convolution.
MobileNet-like.To buildMobileNet-like networks, depth-

wise convolutions and point-wise convolutions are replaced
with compact convolutions. In [23], the input channel num-
ber of a given depth-wise separable convolution with width
multiplier α is reduced from Cin to αCin. Likewise, its output
channel number is reduced to αCout . Therefore, the model
complexity with width multiplier α decreases by roughly α2.
Since our compact convolution adjusts the number of chan-
nels through the point-wise interchannel operation, the width
multiplier of the depth-wise convolution is fixed to 1 so as not
to interfere with the experiments.

D. ANALYSIS IN THE TRAINING STAGE
Different types of point-wise operations make various
impacts among channels on both inference and backprop-
agation stage. In Eq. (4) and Eq. (5), except for weights,
the sum and the average methods process the feature maps
among channels in the same way. Therefore, the point-wise
operation can be divided into linear and non-linear manner
according to the interchannel processing. Empirically, the lin-
ear manner is prone to preserve the major information among
local channels, while the non-linear one tends to extract
prominent features among local channels. The accuracy and
cross-entropy loss of three different point-wise interchannel
operations on the DCASE 2019 dataset are shown in Fig. 3.
The convergence of the max method is slower than the con-
vergence of the other twomethods on both the training dataset
and the validation dataset. In addition, it can be seen that
the curves resulted by the sum and the average methods
are similar, because both of them compress the information
among channels in the linear manner.

IV. GENERALIZATION IN MULTIMEDIA
To assess its capacity of generalization in cross media,
the proposed networks are applied to tackle with three dif-
ferent tasks, including acoustic scene classification (ASC),
sound event detection (SED) and image classification (IC).
ASC and SED take 2-D time-frequency spectrograms as
inputs to CNN classifier while IC directly utilizes images
as inputs. ‘‘Acoustic scene’’ here is referred as a mixture of
background noise and sound events associated with a specific
audio scenario. So compared with SED, ASC tends to make
the discrimination with more abstract and global features.

ASC aims at enabling devices to recognize the specific
audio environment from a recording or an on-line stream.
To solve this problem, the proposed networks are trained and
evaluated on the development dataset of TAUUrban Acoustic
Scenes 2019 [37] inDCASE 2019 task 1. The dataset contains
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FIGURE 3. Accuracy and cross-entropy loss of three different point-wise interchannel operations on the DCASE
2019 dataset. (a) Training accuracy (b) Validation accuracy (c) Training loss (d) Validation loss. Some details of curves are
highlighted with dashed rectangular boxes.

several acoustic scenes and various locations for each scene.
The original recordings sampled with 44.1kHz are segmented
into 10-second clips. The dataset consists of 10 scene classes,
including airport, shopping mall, metro station, street pedes-
trian, public square, street traffic, tram, bus, metro and park.

To facilitate the proposed models training, the raw waves
with binaural channels are firstly downmixed to mono. Then
the log-scaled mel-spectrograms are extracted from each
audio wave with hamming widow size of 1724 samples (cor-
responding to 0.04s), overlap of 50%, and 128 mel bands.
Therefore, a featuremapwith a size of 128× 512 is generated
for each audio waves. The features are finally normalized
with z-scores, and fed into the proposed models.

SED aims to detect and classify events that occur in differ-
ent environments. To solve this problem, the proposed net-
works are trained and evaluated on UrbanSound8K [38]. The
dataset contains 8732 labeled sound clips of urban sounds
from 10 classes, including air conditioner, car horn children
playing, dog bark, drilling, engine idling, gun shot, jackham-
mer, siren and street music. Different from DCASE 2019,
the length of clips is varying from 0s to 4s. The pre-processing
on SED for training is similar with the one on ASC, except
zero padding is adopted to unify the length of raw wave.

IC is a classical problem in computer vision. Aiming at
evaluating the performance of our models on IC, CIFAR 10 is
utilized for further experiments in Sect. V. CIFAR 10 con-
tains 60000 32×32 color images from 10 non-overlapping
classes in the dataset, including airplane, automobile, bird,
cat, deer, dog, frog, horse, ship and truck. Without much pre-
processing, only normalization is applied for better conver-
gence. The proposed networks are trained on 50000 samples,
and validated on 10000 samples.

V. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP
The proposed CompactNets with the sum, the max
and the average methods are referred as CompactNet-S,
CompactNet-M andCompactNet-A, respectively. Since com-
pact convolution is applicable tomost of the common network
architectures, the proposed CompactNets are built in the same
constructions as three different comparison networks, includ-
ing VGG-8, ResNet andMobileNets. In addition, XVGG-8 is
designed by replacing compact convolutions with depth-wise
separable convolutions in order to evaluate the performance
of the VGG-like CompactNet. To evaluate the efficiency
of our CompactNets, some efficient convolutional neural

VOLUME 8, 2020 147269



J. Liang et al.: Channel Compression: Rethinking Information Redundancy

TABLE 1. Comparison of several models over parameters, complexity computations and speed on two platforms. The results are grouped by different
network architectures. The complexity of our CompactNets with the maximum, sum (left) and the average (right) methods are given independently. The
speed on CPU and GPU is evaluated with single thread. The best results are highlighted in bold.

TABLE 2. Comparison of several efficient convolutional neural networks over parameters, complexity computations and speed on two platforms. The
best results are highlighted in bold.

networks (MobileNet v2, ShuffleNet v1 and Shufflenet v2)
are built for comparison. Since nothing but convolutional
layers changed in the following comparison experiments,
only FLOPs of convolutions and our point-wise interchannel
operations are taken into account. The above networks are
trained byminimizing the cross-entropy loss with Adam opti-
mizer. The learning rate, and batch size are set to 0.001 and
32 respectively.

All the experiments are implemented in python.
Besides, experiments are conducted on the computer with
Intel R©Xeon(R) CPU E5-2650 v4 2.20 GHz and Nvidia
RTX 2080Ti GPU. The proposed models are evaluated with
Tensorflow.

B. ALGORITHMIC COMPLEXITY
The parameters, complexity and speed of different models
are listed in Table 1. The FLOPs of compact convolutions
with the max, the sum and the average methods are given
independently. For better observation, the results are grouped
by different network architectures. Except the MobileNet-
like networks on CPU, CompactNets (C = 8) are fastest
on both CPU and GPU among the networks in the identical
structures. Specifically, the speed of VGG-like CompactNet
(C = 8) is 1.95× and 1.23× more than its VGG-8 counter-
part on CPU and GPU respectively. In addition, the speed
of ResNet-like CompactNet (C = 8) is 1.57× and 1.14×
more than its ResNet counterpart on CPU and GPU respec-
tively. It turns out that 0.25 MobileNet v1 is faster than
Mobile-like CompactNets. This is because the complexity
of 0.25 MobileNet v1 is merely a half of MobileNet-like
CompactNet (C = 8) complexity. The non-linearity reduction
of parameters and FLOPs are caused by the other unchanged

TABLE 3. Accuracy of various models on DCASE 2019. The best results are
highlighted in bold.

convolutions in the networks, such as the first two standard
convolutions in the VGG-like networks. Similarly, there are
merely a few significant changes in complexity among the
three proposed ResNet-like CompactNets, because only one
1× 1 convolution at the end gets compacted while the other
1× 1 convolutions have no change.

Table 2 lists parameters, computation complexity and
speed of several efficient convolutional neural networks.
The speed of mobileNet-like CompactNet (C = 2) is the
fastest on both CPU and GPU. Calculation complexity vs.
speed on two different platforms is shown in Fig. 4. Our
proposed CompactNets are on the top right region under
both cases. It is worthy to note that the indirect met-
ric (complexity) is inconsistent with the direct one (speed),
e.g. the difference between CompactNet (C = 2) and
1.0 MobileNet v2. This result conforms to the finding in [26]:
Besides FLOPs, Memory access cost (MAC) and optimized
operation on specific platforms should be also taken into
consideration.
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FIGURE 4. Calculation complexity vs. the speed on two different platforms. (a) On CPU (b) On GPU.

FIGURE 5. Accuracy on DCASE 2019 vs. the speed on two different platforms. (a) On CPU (b) On GPU.

FIGURE 6. Internal feature maps in CNN architecture. (a), (b) are the two input feature maps in the same group. (c), (d),
(e) are the compact results with the average, the max and the sum methods respectively. The horizontal axis corresponds
to the temporal frames limited to 10s, and the vertical axis corresponds to logarithmic mel-frequency bands. The color in
the spectrograms reflects the energy intensity.

C. EVALUATION ON ASC
Table 3 shows the accuracy of different models to handle
ASC task on DCASE 2019. The proposed CompactNet-S
and CompactNet-M yield the best results among ResNet-
like models and MobileNet-like models respectively. It can
be seen that VGG-8 outperforms the CompactNets by 1.3%.

However, taking the model complexity into consideration,
the proposed models are still competitive. Compared with
XVGG-8 and MobileNet v1 consisting of separable con-
volution, CompactNet-M still outperforms them by 0.32%
and 0.22% respectively. This indicates that the point-wise
interchannel operation can not only squeeze the channel
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TABLE 4. Comparison of several models over complexity computations and accuracy in two different tasks.

FIGURE 7. Accuracy variations of CompactNets with three different
point-wise interchannel operations.

dimension of input feature maps but also filter the useful
information which helps further feature extraction. Note that
the CompactNets surpass the ResNet by a large margin,
because the ResNet is overfitting due to the limitation of
dataset. Thus, the proposed compact convolution is capable
of avoiding overfitting by reducing the number of learnable
weights.

The accuracy on DCASE 2019 vs. the speed on two differ-
ent platforms is demonstrated in Fig. 5. Our proposed Com-
pactNets are on the top right region under both cases. It turns
out that the performance of comparison networks, such as
ShuffleNet v1 and ShuffleNet v2, deteriorates rapidly along
with the decrease of the scale factor. In contrast, when the
compact factor C increases, the variation of our CompactNet
accuracy is small. This indicates that the point-wise inter-
channel operation can not only squeeze the channel dimen-
sion of feature maps, but also retain the useful information in
features.

D. COMPARISON BETWEEN LINEAR AND NON-LINEAR
MANNERS
Fig. 6 illustrates the internal feature maps resulting in the
three different point-wise interchannel operations. The max
method is clearer than the average method in the detailed
information. This indicates that the max method can extract
the iconic features from inputs while the average method
tends to keep the major information of feature maps. In addi-
tion, the distribution of feature with the average method is
identical to the one with the sum method. This phenomenon
accords to the analysis in Sect. III A and B.

In Fig. 7, the accuracy variations of CompactNets
with three different point-wise interchannel operations are
illustrated. With the increase of compact factor C , the per-
formance of CompactNet-S is always consistent with the
performance of CompactNet-A. Combining the analysis in
Sect. III A and D, we can summarize several guidelines:

G1) The average method and the sum method among
channels work in the same way. By taking FLOPs of these
two methods into consideration, the average operation can
be replaced with the sum operation to squeeze the channel
dimension of input feature maps.

G2) The nonlinear operation is relatively hard to con-
verge, and it tends to yield desirable performance with
small compact factors. The maximum method extracts the
maximum value within a group and discards the remaining
ones. As the compact factor C gets large, this nonlinear
mapping loses a large amount of characteristic information,
which leads to a rapid deterioration in performance.

G3) The linear operation is relatively easy to converge,
and it tends to outperform other methods in the case of
large compact factors. In contrast to maximum method,
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average and sum methods preserve most of the information
which facilitates model compression with a large compact
factor.

These three guidelines can not only help researchers utilize
CompactNets, but also expose the roles of different opera-
tions in CNNs.

E. EXTEND TO OTHER TASKS
Based onG1, only the sum method and the max method, cor-
responding to linear manner and non-linear one respectively,
are discussed in this subsection.

Table 4 lists the computation complexity and the accuracy
in two different tasks. It turns out that our proposed Com-
pactNets produce satisfying results in SED and IC. In SED,
our CompactNet-S (C = 2) and CompactNet-M (C = 2) sur-
pass the competing models among ResNet-like models and
MobileNet-like models by 1.58% and 0.96% respectively.
Compared with XVGG-8 that consists of separable convolu-
tions, CompactNet-M (C = 2) still conducts higher accuracy
by 1.92%. In IC, CompactNet-S (C = 2) outperforms ResNet
by about 1.48%. It is worthy to note that XVGG-8 and
1.0 MobileNet v1 yield better results than CompactNets by
1.06% and 1.2%. This is because the number of samples in
CIFAR 10 is large, and each sample sized 32× 32 is easy to
learn. Therefore, the input feature maps have less leeway to
be squeezed.

VI. CONCLUSION
In this paper, a novel convolutional construction was pro-
posed for implicitly reducing feature redundancy, where the
point-wise interchannel operation was adopted to squeeze
the channel number of feature maps. The depth-wise sepa-
rable convolution and the point-wise interchannel operation
were integrated to speed up calculations and retain a satisfy-
ing performance. Unlike traditional methods for dimensional
reduction in CNN which introduce considerable learnable
weights, our compact convolution has the capacity to squeeze
the channel dimension of feature maps with no extra param-
eters. Moreover, we showed the generalization capacity of
models to handle three different tasks, including acoustic
scene classification, sound event detection and image clas-
sification. Extensive experimental results demonstrated that
the proposed method can not only cut down the run time on
CPU and GPU but also produce promising performance.

In future, we will investigate proper alternatives to the
current convolutional construction with less complexity, and
applications to other general multimedia tasks.
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