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ABSTRACT Quantitative metrics are generally applied by scientists to measure and assess the properties
of data and knowledge resources. In ontology engineering, a number of metrics have been developed to
analyse different features of ontologies in the last few years. However, this community has not generated
any standard framework for studying the properties of ontologies or generated sufficient knowledge about
the usefulness and validity as the measurement instrument of these metrics for evaluating and comparing
ontologies. Recently, 19 ontology structural metrics were studied using the OBO Foundry and AgroPortal
ontology repositories. This study was based on how each metric partitioned the two datasets into five groups
by applying the k-means algorithm. The results suggested that the use of five clusters for every metric might
be suboptimal. In this paper, we propose an automated process for the study of ontology structural metrics by
including the selection of an optimal number of clusters for each metric. This optimal number is automatically
obtained by using statistical properties of the generated clusters. Moreover, the cosine similarity is used for
estimating the similarity of two repositories from the perspective of the behaviour of the same set of metrics.
The results on the two datasets allow for a more realistic perspective on the behaviour of the metrics. In this
paper, we show and discuss the difference observed in the comparative behaviour of the metrics on the two
repositories when using the optimal number with respect to a predetermined number of clusters for every
metric. The proposed method is not specific for ontology metrics and therefore, can be applied to other types
of metrics.

INDEX TERMS Knowledge-based systems, knowledge engineering, clustering methods, biomedical infor-

matics, biomedical ontologies, quality metrics.

I. INTRODUCTION

Semantic web technologies and ontologies are widely used in
the development of knowledge-based systems [1]-[7]. Their
success lies in the combination of four main features present
in almost all ontologies: standard identifiers for classes and
relations that represent the phenomena within a domain; a
vocabulary for a domain; metadata that describe the intended
meaning of the classes and relations; and machine-readable
axioms and definitions that enable computational access to
some aspects of the meaning of classes and relations [8].
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The development of hundreds of biological and biomedical
ontologies has resulted in the need for repository-based ini-
tiatives to facilitate the finding and sharing of biomedical
knowledge. Examples of such repositories are AgroPortal [9],
OBO Foundry [10], BioPortal [11], OntoBee [12], Ontology
Lookup Service (OLS) [13] or AberOWL [14].
Consequently, in these repositories, researchers can find
different ontologies covering similar biological subdomains,
and they need support in making informed decisions about
which to use, the differences between the ontologies, and
so on. The ontology community has recognised the need for
reference methods to measure the quality of ontologies [15],
which could contribute to guiding users in their decisions,
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but there is no community agreement thus far. In the last
few decades, different types of approaches for evaluating the
quality of ontologies have been proposed:

o Qualitative approaches: These approaches are based on
the application of qualitative criteria. A diagnostic task
based on ontology descriptions, using three categories
of criteria (structural, functional and usability profiling)
was proposed in [16]. In [17], an approach that applies
four qualitative criteria (philosophical rigour, ontologi-
cal commitment, content correctness, and fitness for a
purpose) was proposed.

o Quantitative approaches: These approaches use quan-
titative metrics for measuring ontology properties
[18]-[25]. They vary in the number and type of metrics
used, which means that each approach may be interested
in the quantitative assessment of the concrete facets of
ontology quality. This has been the most active area in
the last few years.

o Principles and guidelines: These approaches propose
to follow a series of recommendations to ensure the
quality of the ontology. Examples are the OBO Foundry
principles [10] or the MIRO guideline [26].

In this work, we were interested in quantitative metrics,
as they enable objective and reproducible evaluation pro-
cesses. The relevance of quantitative metrics has been suffi-
ciently demonstrated in the literature in the last few decades
for different fields, including software engineering [27], [28]
and recruitment [29]. Unfortunately, the metrics displayed
by ontology repositories are limited, and each repository
includes different metrics.

In our case, we believe that increasing the knowledge about
the usage of metrics can help to increase the knowledge
about the engineering of ontologies and to define effective
methods for linking the values of the metrics to the structural
properties of ontologies. Our belief is reinforced by recent
works which have started to apply quantitative metrics to
ontology design patterns [30]. This is why in the last few
years, we have been studying and learning how quantita-
tive metrics can be applied for analysing and understanding
the structure and engineering of ontologies. Early works
studied how to combine quantitative metrics to analyse the
features of ontologies [19], [31] and how to use them to
study the evolution of ontologies from the metrics perspec-
tive [32]. The main target of these works was the analysis of
ontologies.

In particular, every ontology was assigned a rating between
1 and 5 for every metric. In [31], [32], such a rating was
based on the application of the best practices. In [32], as all
the versions of an ontology could be considered a repository,
the rating was based on the distribution of the data in the
repository. One feature of this approach is the use of five cate-
gories for every metric. After these works, an important ques-
tion remained unanswered: which metrics provide a better
classification of ontologies so that they can be more useful for
discriminating between ontologies? In [33], a method based
on public repository data for answering such questions was
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presented, by applying 19 ontology structural metrics to the
OBO Foundry repository and to AgroPortal. The behaviour
of some metrics was the same in both the repositories, but
it changed for the others. To the best of our knowledge, this
past study was the first one that focused on the reliability of
ontology metrics. In this previous study, the behaviour was
measured by the stability and the goodness of the cluster-
ing, two statistical properties of the five clusters in which
the ontology repository was partitioned for a given metric.
However, the study had the limitation of using five clusters
for every metric, which might not be optimal.

In the present study, we addressed the abovementioned
limitation by defining a method for selecting the optimal
number of clusters for each metric and analysed the behaviour
of each metric by using the OBO Foundry and AgroPortal
datasets used in [33]. The optimal number of clusters for a
metric might vary for different datasets or repositories. Many
validity indexes were considered for analysing the clustering
result with a prefixed k& number, and different rules were
formulated to choose a k value into a plausible range of
cluster numbers. However, each rule was based on a specific
index, and no standard consensus on the best validity index
and rule was found in the literature. Our main aim was to
search the optimal number of clusters by combining two
validity indexes: stability and goodness of the clustering.
Hence, the first contribution of this work was an automated
process for analysing ontology structural metrics for clas-
sifying the ontologies included in a repository. Note that a
certain metric was studied in [33] using five clusters in each
repository, but currently, the optimal number of clusters for
the same metric might differ between repositories. Metrics
with similar behaviour in different repositories could be the
most appropriate for standardisation. This led to the second
contribution, as the characterisation of the metrics described
the content of the repository. Finally, we proposed a metric
which measured the similarity between repositories on the
basis of the behaviour of the metrics. The proposed methods
were applied to ontology metrics and repositories in this
study, which provided new insights in the field of ontology
evaluation methods. However, these methods are generic,
so they can be applied to study the behaviour of other quan-
titative metrics.

Il. METHODS

A. ONTOLOGY METRICS AND THEIR PROCESSING

In this work, we studied a set of 19 ontology structural met-
rics, M = {My, ..., M9} described in Table 7. These metrics
accounted for different features of an ontology (e.g. cohesion,
multiple inheritance, ratio of properties per class, and ratio
of annotations per class). All the metrics included in this
work were quantitative. Therefore, for every metric, we could
define a function f (x) with an ontology as its domain and the
raw values of the metric as its range. Note that the metrics
might have different ranges of raw values. Our method was
designed for application to a repository, in this work, a set of
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ontologies § = {61, ..., 6,}. Hence, once the raw values for
a given metric were computed for all of the ontologies in the
repository, we applied a clustering algorithm to partition the
ontologies into k non-empty and non-overlapping categories.
The clustering could be seen as a function n(f (x)), which gen-
erated an ordered factor of k categories. Furthermore, n(f (x))
partitioned the range of f(x) in k non-prefixed continuous
intervals that contained all of the observed samples in the
experimental data. This process was repeated for each metric.
The results of the process for partitioning the range of f (x) in
k intervals were therefore metric and dataset dependent, as the
clusters were dynamically generated for a given dataset. Each
ontology would then be associated with a particular cluster for
each metric. The assessment of all of the ontologies included
in the same cluster for the feature measured by a certain
metric would be the same. This could also serve to perform
a qualitative evaluation of the ontologies, but this was out of
the scope of the present study. Our focus was on the metrics
and on the repositories.

Fig. 7 describes the process applied to a repository of
ontologies for a certain value of k and for each metric. First,
the raw values for all the ontologies and for all the metrics
were obtained. Second, the clustering algorithm performed,
for each metric, the scaling of the raw values of the ontologies
into the k categories.

B. CLUSTERING METHODS

There are different clustering algorithms for the partitioning
of objects into a predefined number k of non-empty and non-
overlapping clusters [34], [35]. Here, we applied the k-means
clustering method, which is one of the most well-known and
widely used clustering methods [36]. Such an algorithm aims
to find the partitioning by maximising both the compactness
of the objects within a cluster and the separability between
the clusters.

Nevertheless, our algorithm for selecting the optimal &
could be applied to any partitioning method, such as the
Partitioning Around Medoids (PAM) and Clustering LARge
Applications (CLARA) algorithms [37]. The PAM method
minimises the sum of the dissimilarities of the objects in the
dataset to their nearest medoid (the most centrally located
object of each cluster), which produces spherical clusters.
The CLARA method takes a sample of objects from the
dataset in which PAM is applied to find medoids and to
compute the best clustering as a result.

Furthermore, accelerated techniques for these clustering
methods have been recently developed to reduce the compu-
tational cost [38]. These improvements are mainly related to
the BUILD initialisation and SWAP refinement algorithms,
which in the PAM method consists of the following: (1) the
complexity of the BUILD phase for choosing an initial clus-
tering is reduced from O(kn?) to O(kn), and (2) the workload
of finding the closest new medoids of the SWAP refinement
is reduced from O(k(n — k)?) to O((n — k)?). As CLARA
uses PAM, CLARA is also improved by these accelerated
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techniques. Both of them will also be applied to show the
comparison of different clustering methods for selecting the
optimal k for each metric.

C. ANALYSIS OF THE OPTIMAL NUMBER OF CATEGORIES
The methods described in the previous section can be applied
for different values of k, which means that different groupings
of the ontologies can be obtained, as the optimal number of
clusters is usually unknown. The lack of a gold standard has
led to the need for a validation process of an unsupervised
classification method. We propose to validate the results of
each clustering by measuring two robust features of the k
categories generated: stability and goodness of the clustering.
In a nutshell, the optimal k is the one whose clustering is
the most stable and accurate. Nevertheless, the two criteria
involved in determining such an optimum may not return the
same k.

Next, the cluster validation criteria applied are described.
We also propose an algorithm which automates the process
for selecting the best k when the ones reported by both
indexes are different; this algorithm can be applied to any
unsupervised partitioning method.

1) CLUSTERING STABILITY

Stability refers to whether the structure of a meaningful valid
cluster is significantly altered by small variations in the data.
Therefore, it seems reasonable to assess the effect of potential
changes on each category of the clustering (Cy, ..., Ci) by
a bootstrap resampling procedure [39]. For each metric M;
in M, we measured the stability Sy, x(C;) of each category
C; by using the Jaccard coefficient of similarity between
sets [40]. In a repository, this index provides the proportion
of concordant ontologies between C; and the most similar
cluster in a bootstrapped clustering of a metric M;. Thereby,
the stability measure Sy, x(C;) is derived as the mean of the
values obtained from the b bootstrap samples. Such scores
can be interpreted as degrees of statistical stability [41],
thus classifying each category into the types displayed
in Table 1.

TABLE 1. Stability classification.

Range Category
[0,0.60) Unstable
[0.60,0.75] | Doubtful
(0.75,0.85] | Stable
(0.85,1] Highly stable

In addition, to deal with the comparison of the metrics
M; fori = 1,...,m on a repository in terms of the clus-
tering stability, the mean of the category stability scores for
each metric Sx(M;) can be used as a global stability crite-
rion of M;, assuming the same relative importance of the
categories.
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Algorithm 1 Selecting the Optimal &

1: procedure OPTIMAL_K(metrics, stability, goodness)
2: kop <1

3: kg < max(stability)
4: kg < max(goodness)
5: for each M; € Metrics do
6: if ky == k, then
7: kop < kg
8: else if {S (M) > 0.75 A Sk, (M;) > 0.75}
V A{Sk,(M;) < 0.75 A Sk, (M;) < 0.75} then
9: kop <« kg
10: else
11: if {Sk,(M;) > 0.75 A sily (M;) > 0.5 A Sg,(M;) < 0.75}
then
12: kop < ks
13: else
14: if { Sk, (M;) > 0.75 A sily (M;) <0.5
A Sk, (M) < 0.75 A sil,(M;) > 0.5} then
15: kop < kg
16: else
17: kop < ks

2) CLUSTERING GOODNESS

The goodness of the clustering is assessed by two internal
cluster validation measurements, namely, cohesion and sepa-
ration of the clusters. The first feature reflects how closely
related the ontologies in a category are, whereas the other
quantifies how well-separated a category is from the rest of
the categories. Advantageously, both of them can be gathered
into several validity indexes, such as the Silhouette width
(sil) [42], Calinski-Harabasz (ch) [43], Dunn (dunn) [44],
and Davies-Boudin (db) [45] measurements. Among them,
we propose to use the Silhouette width (sil) because it can
provide the classification quality for both ontologies and
metrics, which gives it a competitive edge over the others. For
each metric, the si/ coefficient of a particular ontology repre-
sents the degree of confidence in the clustering and is given
by sily; x(6)) = (b — ar)/max(ay, by), for I = 1,...,n,
where a; is the average distance between the ontology 6;
and all the others belonging to the same category, and b; is
the average distance between the ontology 6; and the ones
of the closest neighbouring category. In particular, sily, x(6;)
measures how well each ontology 6; has been clustered,
varying its value between —1 and 1, which can be interpreted
as in [42]. A value close to 1 (—1, respectively) means that
the ontology tends to be ‘well-classified’ (‘misclassified’,
respectively). A value close to zero signifies that the ontol-
ogy can be assigned to the nearest neighbouring category
as well. For comparison purposes, the overall goodness of
the clustering for a metric M; is evaluated by the global
Silhouette coefficient, which is defined by the average of the
sil scores, sily(M;) = >_j_; sily, k(0))/n, fori = 1,...,m.
As suggested by Kaufman and Rousseeuw [37], the global
Silhouette width score can be interpreted as the effectiveness
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TABLE 2. Structure classification.

Range Clustering Structure
[-1,0.25) | Not substantial
[0.25,0.50] | Weak, probably artificial
(0.50,0.70] | Reasonable

(0.70, 1] Strong

of the clustering structure found, in terms of the metrics
(see Table 2).

3) ALGORITHM FOR SELECTING THE OPTIMAL k

The methods presented in the previous sections permit the
application of the partitioning of a set of ontologies based on
the values for a certain metric M; and for a range of k-values.
For each k within this range of k-values, the clustering is
carried out, allowing one to quantify its validity indexes, such
as the stability and the goodness of the clustering. We propose
to use the stability and the goodness scores to select the value
of k that provides the best clustering of the ontologies for a
metric M;. The clustering obtained for the optimal k should
be used to analyse the set of ontologies from the perspective
of the metric M;.

The algorithm for determining the optimal & is presented
in Algorithm 1 from k; = arg, maxS;(M;) and k; =
arg;, max sily (M;) for each metric M;. Its purpose is to search
the optimal k£ number of clusters by combining stability and
goodness, which provides the most robust clustering with
respect to such validity measures. This goal is pursued by the
following reasoning:
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1) If the highest stability and the highest goodness are
obtained for the same value of k, k; = kg, then return
this value as the optimal one.

2) If the highest stability and the highest goodness are
obtained for different values, k; # kg, then the optimal
k value should be calculated as follows:

a) If both ks and k, provide at least stable classifi-
cations or both provide non-stable classifications,
the optimal & should be the value with the largest
Silhouette width, i.e. k.

b) If ks provides at least stable and reasonable clas-
sifications and k, does not provide stable classifi-
cations, we should select k.

c) If kg provides at least stable, but less than rea-
sonable, classifications and kg does not provide
stable classifications, then if k, provides at least
areasonable silhouette, then we should select kg.
Otherwise, k; should be selected.

D. REPOSITORY PROFILE
The calculation of the optimal k value for each metric in a
repository enables one to define the profile of a repository as
a vector with m elements, one per metric. Each element in the
profile is the optimal £ value for the metric M;. The repository
profile may be considered as characteristic information on the
repository from the perspective of a set of metrics, which can
be used to compare repositories.

Given an ordered set M of m metrics that can be applied
over a repository, this can have different g-dimensional pro-
files, where ¢ is the number of metrics used for constructing
the profile. In the case of a g-dimensional profile with a
size smaller than m, there will be different possibilities for
selecting the g metrics. The elements in the profile preserve
the order defined in M. In this work, we used a g-dimensional
profile corresponding to ¢ metrics given in Table 7 with g <
19.

Moreover, the similarity between two repositories based on
their g-dimensional profiles, ¢ < m, can be interpreted as the
homogeneity degree of the repositories with respect to these
g metrics, which could be obtained by applying the cosine
similarity given as follows:
77

q
Do LT

== p— =
7 7 g 2 N4 2
il 2 | \/Zi:l i 2ei=172,i

where 7| and 7, are the corresponding g-dimensional
profiles of the repositories.

Note that this similarity would relate the behaviour of
the metrics on the repositories, not the content. Moreover,
the similarity between profiles would require both the vectors
to be homogeneous; that is, they represent the same ordered
set of metrics.

cos(_r) 1 _r>2)

Ill. RESULTS

A. EXPERIMENTAL SETUP

We applied our process to two repositories of ontologies,
AgroPortal and OBO Foundry. More concretely, we analyzed
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78 AgroPortal ontologies (8%¢" = {0/*",...,055"}) and
119 OBO Foundry ones (6°° = {69%, ..., 6%%}), which
were studied in [33]. Our results are based on the raw scores
of ontology structural metrics retrieved from the OQuaRE
REST service,! which can be reproduced through either the
evaluome web service [46] or the R package version evalu-
omeR [47]. The evaluome tool allows the evaluation of the
reliability of metrics with a user-friendly interface. It anal-
yses the stability and the goodness of the clusters reported
for each metric by using both the global validation criteria
described in Sections II-C1 and II-C2. The package evalu-
omeR [47] is available in Bioconductor. In addition, the opti-
mal number of clusters for each metric is assessed by the
decision-making algorithm proposed in Section II-C3, which
is implemented in evaluomeR release v1.3.4 hosted GitHub.?
evaluomeR depends on the following packages: cluster [48],
corrplot [49], Rdpack [50], plotrix [51], fpc [52] Summarized-
Experiment [53], and MultiAssayExperiment [54]. It requires
R version 3.6 or higher to run [55]. Other dependencies
such as the Bioconductor or CRAN R packages are auto-
matically downloaded via the Bioconductor install manager.
Note that the accelerated techniques described in Section I1-B
for the clustering methods are implemented in the R cluster
package 2.0.9 version onwards, and consequently, the exper-
imental results by evaluomeR are obtained through these
accelerated optimisations of the PAM and CLARA algo-
rithms. The resulting tables (CSVs), figures, and evaluomeR
scripts are available in the directory usecases/kcomparison’
in our GitHub repository.

B. CLUSTERING METHODS COMPARISON

A comparison of the three clustering methods described in
Section II-B is shown in Fig. 1 for AgroPortal and Fig. 2
for OBO Foundry. In general, the optimal k value selected
for each metric on both the repositories from k-means
is lower or equal to the values reported for PAM and
CLARA, except for NACOnto, Ponto, and WMCOnto2 in
the AgroPortal repository (see Fig. 8). In most of the cases,
k-means provides similar or better classifications according
to Tables 1 and 2 from their global stability and global good-
ness scores. In the rest of the paper, we will apply the k-means
algorithm to analyse and discuss the automated process pro-
posed for the study of ontology structural metrics, because it
is one of the most well-known methods. The users of our pro-
cess can choose the most suitable clustering method for their
study.

C. DESCRIPTIVE STATISTICS OF THE METRICS

We used violin plots [56] to describe the behaviour of the
distributional shape of the raw scores on each repository
(see Fig. 3 and Fig. 4). In these graphical representations,

1 http://sele.inf.um.es/ontology-metrics/
2https ://github.com/neobernad/evaluomeR

3 https://github.com/neobernad/evaluomeR/tree/master/usecases/
kcomparison
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FIGURE 1. Visual comparison of different clustering methods in the 699" repository for the stability and goodness scores from the optimal k value

selected for each metric.
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FIGURE 2. Visual comparison of different clustering methods in the §°2° repository for the stability and goodness scores from the optimal k value

selected for each metric.

glance, these figures convey different behaviours of most of
the ontology structural metrics in each repository, as well as
between both the repositories.

the kernel density trace that overlaid the boxplot might assist
in revealing the existence of groups of ontologies, which were
scaled into interval [0, 1] for a visual comparison. At a quick
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FIGURE 3. Violin plots of the scaled raw data of metrics for the AgroPortal repository.

D. SELECTION OF THE OPTIMAL k VALUES

In order to determine the optimal number of categories,
we performed our evaluation on the generated clusterings
with k varying between 3 and 15. This range was selected
to retain all the ontology variability in both the repositories,
69" and 0°”°, thereby avoiding elementary binary classi-
fications. The number of bootstrap replications was set at
500 in order to reach relative reliable and accurate outcomes
(as reported in [33]).

Table 3 and Table 8 display the global stability scores for
each metric on the AgroPortal and OBO Foundry reposito-
ries, respectively. The highest stability Sy (M;) was reached
when k = 3 for 12 out of the 19 metrics on AgroPor-
tal and for 11 on OBO Foundry. Furthermore, the high-
est stability score for each metric fell within the range
of 0.71 to 0.96 on AgroPortal (of 0.79 to 0.97 on OBO
Foundry), so there were no ‘Unstable’ clusterings of the
metrics, and there was one only ‘Doubtful’ clustering,
CROnto, on the AgroPortal repository. Moreover, there
are 8 (9) ‘Stable’ clusterings for the metrics CBOOnto,
CBOOnto2, LOCOMOnto, NOMOnto, POnto, RFCOnto,
TMOnto, and WMCOnto2 (AROnto, CBOOnto, CBOOnto2,
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DITOnto, INROnto, NOMOnto, RFCOnto, WMCOnto, and
WMCOnto2), and 10 (10) ‘Highly stable’ clusterings of the
rest of the metrics. In detail, 5.26% (0%) metrics were clas-
sified as ‘Doubtful’, 42.11% (47.37%) were ‘Stable’, and
52.63% (52.63%) were ‘Highly stable’.

In addition, Table 4 and Table 9 show the global goodness
scores for each metric on the AgroPortal and OBO Foundry
repositories, respectively. The highest goodness sil (M;) was
achieved when £ = 3 for 12 out of 19 metrics on both the
repositories. Moreover, the highest goodness score per metric
ranged from 0.66 to 0.91 on AgroPortal (from 0.60 to 0.93 on
OBO Foundry), so no metrics generated either unstructured
clusterings or weak ones. Indeed, 73.68% (57.89%) of the
metrics provided categories with ‘Strong structure’, and
26.32% (42.11%) reproduced categories with ‘Reasonable
structure’ in AgroPortal (OBO Foundry).

Table 5 reports the optimal k values, and Fig. 5 shows the
scores returned from the performed evaluation analysis on
each of the 19 ontology structural metrics in the AgroPortal
and OBO Foundry repositories, respectively. Note that there
were 11 (57.89%) metrics in AgroPortal and 13 (68.42%)
in OBO Foundry whose corresponding ks for the global

VOLUME 8, 2020



J. A. Bernabé-Diaz et al.: Automated Process for the Repository-Based Analysis of Ontology Structural Metrics

IEEE Access

WHCOnto2 -
WHMCOnta -
TMOnto2 - 0 @:—:—-«F
TMONta- —@E
RROnto - { I —
RFCOnto - @}
PROnto - —
POnto - 11
NOMOnta - ®>
€T
e
& NOCOnto- @>
[
=
MACOnto - T =
LCOMOnto - = 1T}
INRONta - @P
DITOnto - =———{ 1 1
CROnto - %
CBOONto2 - @L:
CBOONto - @:
AROnto - {l;}
ANOnto - @
0.0 0.5 1.0
value

FIGURE 4. Violin plots of the scaled raw data of metrics for the OBO Foundry repository.

stability and goodness criteria were different. The optimal
k displayed in the column ‘Optimal k* was the result of the
application of the algorithm proposed in Section II-C3, thus
providing an automatic decision-making process to carry out
the statistical optimisation of the repository-based analysis
of the 19 ontology structural metrics. This automatic process
revealed that k = 3 was optimal for most of the metrics in
both the repositories, that is for 15 metrics from 6“¢" and
16 metrics from 8°?° out of the 19 in total (78.94% and
84.21%, respectively).

E. ANALYSIS OF THE OPTIMAL k VALUES

ACROSS REPOSITORIES

The optimal & values for stability and goodness across the
metrics is shown in Table 5 for the 896" and 8°%° repositories.
The graphical representation of the stability and the goodness
scores for the optimal k are shown in Fig. 5. Furthermore,
the qualitative interpretation of their stability and goodness
is shown in Table 6. Moreover, 18 metrics from ¢” and
19 from 0°% provided at least stable clusterings (>0.75).
All the metrics exhibited at least a reasonable clustering
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structure in both the %" and °”° repositories by using their
optimal k.

In addition, we could compare the behaviour of the met-
rics in both the #%" and the 8°*° repositories when we
used their optimal k& value. The main findings were as
follows:

o The following metrics had the same optimal k (k = 3) in
both the repositories: ANOnto, CBOOnto, CBOOnto2,
CROnto, DITOnto, INROnto, NOCOnto, NOMOnto,
PROnto, RFCOnto, RROnto, and WMCOnto.

o The clustering structures presented an alike distribu-
tion for the metrics with the same optimal &, except
for CBOOnto, CBOOnto2, CROnto, INROnto, and
RFCOnto. This difference in the Silhouette scores for
CBOOnto and RFCOnto in both the repositories is
clearly observed in Fig. 9 and 10 for CBOOnto, and
Fig. 11 and 12 for the RFCOnto metric.

o The following metrics had similar global stability
scores in both the repositories: ANOnto, CBOOnto,
CBOOnto2, CROnto, DITOnto, INROnto, NOCOnto,
PROnto, RFCOnto, RROnto, and WMCOnto.
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TABLE 3. Stability scores for the 699" repository in the k range [3, 15]. The highest score for each metric is highlighted in bold lettering, and NA is
reported when there are insufficient different values to build k clusters.

k=3 | k=4 | k=5 | k=6 | k=7 | k=8 | k=9 | k=10 | k=11 | k=12 | k=13 | k=14 | k=15
ANOnto 088 | 0.79 | 0.72 | 0.76 | 0.75 | 0.76 | 0.69 | 0.62 | 0.72 | 0.67 | 0.75 | 0.74 | 0.74
AROnto 096 | 0.79 | 0.81 | 0.73 | 0.76 | 0.75 | NA | NA NA NA NA NA NA
CBOOnto 083 | 076 | 078 | 0.81 | 0.76 | 0.77 | 0.75 | 0.81 | 0.77 | 0.78 | 0.79 | 0.79 | 0.75
CBOOnto2 083 | 076 | 078 | 0.81 | 0.76 | 0.77 | 0.75 | 0.81 | 0.77 | 0.78 | 0.79 | 0.79 | 0.75
CROnto 0.68 | 0.62 | 0.6 0.7 0.7 0.71 | 0.62 | 0.71 | 0.67 | 0.7 0.68 | 0.67 | 0.68
DITOnto 0.96 | 0.64 | 0.7 0.67 | 0.68 | 0.62 | 0.6 0.64 | 0.61 | 0.63 | 0.66 | 0.73 | NA
INROnto 0.88 | 0.76 | 0.79 | 0.83 | 0.71 | 0.74 | 0.8 077 1076 | 078 | 0.78 | 0.76 | 0.77
LCOMOnto | 0.76 | 0.67 | 0.82 | 0.74 | 0.78 | 0.71 | 0.75 | 0.72 | 0.66 | 0.65 | 0.62 | 0.6 0.72
NACOnto 0.86 | 0.71 | 0.79 | 0.83 | 0.8 0.78 | 0.79 | 0.81 0.77 | 0.74 | 0.71 0.72 | 0.7
NOCOnto 0.9 091 | 0.83 | 0.85 | 0.86 | 0.75 | 0.69 | 0.73 | 0.72 | 0.7 0.72 | 0.71 | 0.71
NOMOnto 0.83 | 0.78 | 0.72 | 0.7 0.79 | 0.78 | 0.8 0.81 0.8 0.78 | 0.77 | 0.73 | 0.72

POnto 0.8 |081 081|079 |072|072|076 077 | 076 | 075 | 075 | 075 | 0.74
PROnto 095|093 | 074 | 075 | 0.75 | 0.69 | 0.65 | 0.69 | 0.73 | 0.73 | 0.7 0.67 | 0.67
RFCOnto 0.84 | 078 | 0.72 | 0.78 | 0.72 | 0.73 | 0.73 | 0.77 | 0.71 | 0.74 | 0.74 | 0.74 | 0.69
RROnto 095|093 | 074|075 | 0.75 | 069 | 0.65 | 0.69 | 0.73 | 0.73 | 0.7 0.67 | 0.67

TMOnto 0.75 1074 | 078 | 0.79 | 0.74 | 0.79 | 0.74 | 0.75 | 0.71 | 0.71 | 0.68 | 0.68 | 0.68
TMOnto2 0941096 | 0.8 | 0.78 | 0.83 | 0.81 | NA | NA NA NA NA NA NA
WMCOnto | 093 | 091 | 0.88 | 0.82 | 0.79 | 0.81 | 0.79 | 0.69 | 0.69 | 0.69 | 0.72 | 0.69 | 0.7

WMCOnto2 | 0.63 | 0.77 | 0.83 | 0.84 | 0.76 | 0.78 | 0.74 | 0.77 | 0.74 | 0.7 0.69 | 0.69 | 0.67

TABLE 4. Goodness scores for the 099" repository in the k range [3, 15]. The highest score for each metric is highlighted in bold lettering.

k=3 | k=4 | k=5 | k=6 | k=7 | k=8 | k=9 | k=10 | k=11 | k=12 | k=13 | k=14 | k=15
ANOnto 0.72 | 0.64 | 0.68 | 0.68 | 0.62 | 0.64 | 0.62 | 0.61 | 0.66 | 0.66 | 0.66 | 0.6 0.66
AROnto 09 | 088 087|087 |0.88]|08 |087|087 | 084 |08 |08 |08 |08
CBOOnto 0.8 | 0.62 | 065|069 | 067|068 | 051 | 066 | 0.67 | 067 |064 |05 | 0.6
CBOOnto2 | 0.8 | 0.62 | 0.65 | 0.69 | 0.67 | 0.68 | 0.51 | 0.66 | 0.67 | 0.67 | 0.64 | 0.59 | 0.6
CROnto 097 | 095|095 | 083 |08 | 085079 0.8 073 | 0.8 0.77 | 0.72 | 0.72
DITOnto 0.7 ]0.69 | 069 | 063 | 0.64 | 0.63 | 0.66 | 0.63 | 0.61 | 0.68 | 0.75 | 0.83 | 0.77
INROnto 0.81 | 0.79 | 0.66 | 0.68 | 0.44 | 0.66 | 0.67 | 0.64 | 0.65 | 0.67 | 0.63 | 0.57 | 0.55
LCOMOnto | 0.66 | 0.62 | 0.59 | 0.53 | 0.61 | 0.54 | 0.57 | 0.58 | 0.58 | 0.59 | 0.58 | 0.57 | 0.6
NACOnto 079 1 0.78 | 0.78 | 0.8 | 0.81 | 0.82 | 0.81 | 0.83 | 0.82 | 0.8 0.79 | 0.79 | 0.78
NOCOnto 0.68 | 0.66 | 0.61 | 0.54 | 0.59 | 0.53 | 0.51 | 0.56 | 0.55 | 0.55 | 0.56 | 0.55 | 0.55
NOMOnto 0.89 | 0.84 | 0.77 | 0.56 | 0.67 | 0.61 | 0.67 | 0.65 | 0.65 | 0.66 | 0.66 | 0.66 | 0.62

POnto 0.72 1075 | 0.72 | 0.64 | 0.57 | 0.59 | 0.63 | 0.66 | 0.62 | 0.62 | 0.61 | 0.57 | 0.56
PROnto 0.66 | 0.68 | 0.68 | 0.64 | 0.64 | 0.63 | 0.62 | 0.65 | 0.69 | 0.69 | 0.67 | 0.65 | 0.63
RFCOnto 0.89 | 0.84 | 0.76 | 0.61 | 0.55 | 0.6 | 0.59 | 0.61 | 0.58 | 0.59 | 0.6 0.59 | 0.59
RROnto 0.66 | 0.68 | 0.68 | 0.64 | 0.64 | 0.63 | 0.62 | 0.65 | 0.69 | 0.69 | 0.67 | 0.65 | 0.63

TMOnto 0.78 1 0.75 | 0.79 | 0.81 | 0.77 | 0.84 | 0.81 | 0.82 | 0.79 | 0.81 | 0.81 | 0.81 | 0.8

TMOnto2 091 | 089 | 09 |0.87|0.89 | 089 |08 | 0.86 | 0.9 0.86 | 0.87 | 0.88 | 0.85
WMCOnto | 0.83 | 0.67 | 0.57 | 0.59 | 0.63 | 0.59 | 0.61 | 0.6 062 | 0.6 0.55 | 0.54 | 0.53
WMCOnto2 | 0.75 | 0.86 | 0.78 | 0.76 | 0.76 | 0.71 | 0.72 | 0.71 | 0.78 | 0.76 | 0.77 | 0.75 | 0.74

F. REPOSITORY PROFILES AND SIMILARITY The comparison between the AgroPortal and the
OBO Foundry repositories was carried out through their
19-dimensional profiles, which were defined from the opti-
mal k values in Table 5 by using the 19 metrics included in
the study and ordered as shown in Table 7:

The repository profiles could be affected by the clus-
tering algorithm used; Fig. 8 displays a visual compari-
son of the 19-dimensional profiles according to the three
methods for each repository, although we focused on the
k-means algorithm to compare repositories, as mentioned _r)cfgr =(3,3,3,3,3,3,3,3,10,3,3,4,3,3,3,8,3,3,4)
before. 7% =(3,4,3,3,3,3,3,8,3,3,3,3,3,3,3,3,10,3,3)
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TABLE 5. Optimal k values for the metrics in the 099" and 9°b° repositories. The column Stability presents the most stable k value for each metric,
whereas Goodness exhibits the k value with the greatest silhouette for such a metric. The Optimal k column displays the optimal k obtained by the

proposed selection algorithm.

Agroportal OBO Foundry
Stability | Goodness | Optimal £ | Stability | Goodness | Optimal &
ANOnto 3 3 3 3 3 3
AROnto 3 3 3 4 9 4
CBOOnto 3 3 3 7 3 3
CBOOnto2 | 3 3 3 7 3 3
CROnto 8 3 3 3 3 3
DITOnto 3 14 3 3 15 3
INROnto 3 3 3 9 3 3
LCOMOnto | 5 3 3 4 8 8
NACOnto 3 10 10 4 3 3
NOCOnto 4 3 3 3 3 3
NOMOnto 3 3 3 6 3 3
POnto 5 4 4 3 4 3
PROnto 3 11 3 3 12 3
RFCOnto 3 3 3 4 3 3
RROnto 3 11 3 3 12 3
TMOnto 6 8 8 3 3 3
TMOnto2 4 3 3 3 10 10
WMCOnto | 3 3 3 3 3 3
WMCOnto2 | 6 4 4 3 3 3
1.0
0.9
>
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FIGURE 5. Visual comparison between 099" and 099 for the stability and goodness scores from the optimal k value selected for each metric.

The cosine similarity of these two 19-dimensional pro-
files was 0.77. Hence, the same optimal k was achieved in
both the repositories for 12 metrics, i.e. the same value in
715" and 7 ¢5°. Thus, the similarity of the corresponding
12-dimensional profiles was 1, which could be interpreted as

VOLUME 8, 2020

the two repositories being fully homogeneous with respect to
the subset of 12 metrics.

Furthermore, note that in [33], perfect correlations were
found for certain metrics. For instance, the CBOnto and
CBOnto2 metrics presented a positive perfect correlation, and
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TABLE 6. Classification of the stability and goodness scores across metrics for their optimal k value in the 099" and 9°b° repositories.

Agropotal OBO Foundry

Stability Goodness Stability Goodness
ANOnto Highly stable | Strong Highly stable | Strong
AROnto Highly stable | Strong Stable Strong
CBOOnto Stable Strong Stable Strong
CBOOnto2 | Stable Strong Stable Strong
CROnto Doubtful Strong Highly stable | Strong
DITOnto Highly stable | Reasonable | Stable Reasonable
INROnto Highly stable | Strong Stable Strong
LCOMOnto | Stable Reasonable | Stable Reasonable
NACOnto Stable Strong Highly stable | Strong
NOCOnto Highly stable | Reasonable | Highly stable | Strong
NOMOnto Stable Strong Stable Reasonable
POnto Stable Strong Highly stable | Reasonable
PROnto Highly stable | Reasonable | Highly stable | Reasonable
RFCOnto Stable Strong Stable Reasonable
RROnto Highly stable | Reasonable | Highly stable | Reasonable
TMOnto Stable Strong Highly stable | Reasonable
TMOnto2 Highly stable | Strong Stable Strong
WMCOnto | Highly stable | Strong Stable Strong
WMCOnto2 | Stable Strong Stable Strong

CBOnto and INROnto had an almost positive perfect correla-
tion, which were detected in both repositories. Nevertheless,
dependent metrics do not affect the characteristic information
on a repository, as such characteristic information is pro-
vided by the independent metrics. For each metric, depen-
dent or independent, from a subset of ¢ metrics, the optimal k
value is independently calculated by evaluomeR to determine
the g-dimensional profile, and the component corresponding
to a dependent metric is a function of the remaining metrics.
It may provide redundant information without affecting the
comparison, although it could lightly modify the similarity
because of the increase in the dimension.

For example, let us take the following set of 6 independent
metrics: ANOnto, AROnto, CBOOnto, CROnto, NOCOnto,
and POnto. From Table 5, the 6-dimensional profiles for
0°¢" and 0°"° based on these independent metrics were as
follows:

e =(3,3,3,3,3,4)
T =(3,43,3,3,3)

Hence, the cosine similarity between both the repositories
was 0.983. Next, we added two metrics highly correlated
with CBOnto to consider an 8-dimensional profile. As stated
before, these metrics were CBOnto2 and INROnto. There-
fore, the 8-dimensional profiles with respect to the ordered
set of metrics (ANOnto, AROnto, CBOOnto, CBOOnto2,
CROnto, INROnto, NOCOnto, POnto) were as follows:

7 =(3,3,3,3,3,3,3,4)
T =(3,4,3,33,333)
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which did not affect the components of the 6-dimensional
profiles, although its similarity slightly increased to 0.987.
In any case, these results reported a high homogeneity degree
between both the repositories based on these 6 or 8 metrics.

IV. DISCUSSION

A. PROPOSED METHOD

The method presented in this work is a natural evolution
of [33]. There, the goal was to develop a mechanism for
analysing the behaviour of a set of metrics for a prefixed
value of k. This method was extended to deal with certain
ranges of values of k and to automatically suggest the optimal
number of clusters for each metric. Note that this algorithm
is just one possibility and that the users of the method are
entitled to design their own algorithm in case they prefer to
prioritise and interpret the stability and the goodness scores in
a different manner. Therefore, the proposed method optimises
the analysis, thereby constituting an excellent benchmark
for the developers of ontology metrics, the developers of
ontology evaluation methods, and the managers of ontology
repositories. The method aims at helping to make informed
decisions on the use and interpretation of metrics in a repos-
itory. Note that the method used in this study can also be
applied to other types of quantitative metrics, such as the
ones presented in [57]-[59]. The only requirement for the
application of the method is to have a dataset for which at least
one metric has been measured and that the range of values for
the metric permits one to build a certain number of k clusters.
Consequently, we believe that the method is of interest to data
scientists in general.
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FIGURE 6. Visual comparison of the stability and goodness scores between k = 5 and the optimal k for each metric in each repository.

B. METRICS (1) The optimal k value was different from five for all the
In [33], 19 ontology structural metrics were evaluated assum- metrics included in the study. (2) The optimal k& value was
the same in both the repositories for 12 out of 19 metrics.

ing a partitioning in five clusters of the values of each ontol-
This is an indicator of the existence of differences between the

ogy for each metric in each repository. The results obtained
in this work showed two main differences (see Table 5): two repositories of ontologies studied from the perspective of
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TABLE 7. Definition of the 19 metrics evaluated: Column 1 shows the acronym of the metric and its reference; Column 2 describes the ontology facet

measured by the metric; and Column 3 describes how the metric is calculated.

Metric Facet measured Description

ANOnto [23] Annotations Mean number of annotations properties per classes

AROnto [23] Attribute richness Number of restrictions of the ontology per classes

CBOnto [61], [62] Coupling Number of direct ancestors of classes divided by the number of classes minus
subclasses of thing

CBOnto2 [62] Coupling Mean number of direct ancestors per classes

CROnto [23] Individuals Mean number of individuals per classes

DITOnto [61], [62] Depth of the hierarchy Length of the longest path from thing to a leaf classes

INROnto [23] Descendants Mean number of subclasses per classes

NACOnto [63] Ancestors of leaf classes | Mean number of superclasses per leaf classes

NOCOnto [61], [62] Descendants Number of the direct subclasses divided by the number of classes minus the
number of leaf classes

NOMOnto [63] Properties Mean number of object and data property usages per class

POnto [62] Ancestors Mean number of direct ancestors per class

LCOMOnto [64] Cohesion Mean length of all paths from leaf classes to thing

PROnto [23]

Property richness

Number of subclass of relationships divided by the number of subclass of
relationships and properties

RFCOnto [61], [62]

Properties usage

Number of usages of object and data properties and superclasses divided by
the number of classes

RROnto [23]

Properties usage

Number of usages of object and data properties and super classes divided by
the number of classes

TMOnto [62] Multiple inheritance

Mean number of classes with more than one ancestor

TMOnto?2 [62] Multiple inheritance

Mean number of direct ancestors of classes with more than 1 direct ancestor

WMCOnto [61], [62] | Complexity

Mean length of the paths from thing to a leaf classes

WMCOnto?2 [62] Complexity

Mean number of paths from thing to a leaf classes

TABLE 8. Stability scores for 9°P° repository in k range [3, 15]. The highest score for each metric is highlighted in bold lettering.

k=3 | k=4 | k=5 | k=6 | k=7 | k=8 | k=9 | k=10 | k=11 | k=12 | k=13 | k=14 | k=15

ANOnto 09 073|082 072|064 ]07 072|072 |073 |073 |071 |071 |0.75
AROnto 0.73 | 0.81 | 0.7 074 1 0.72 | 0.67 | 0.74 | 0.76 | 0.73 | 0.7 0.74 | 0.68 | 0.66
CBOOnto 0.77 | 0.78 | 0.73 | 0.78 | 0.82 | 0.81 | 0.78 | 0.75 | 0.74 | 0.7 0.7 0.65 | 0.67
CBOOnto2 | 0.77 | 0.78 | 0.73 | 0.78 | 0.82 | 0.81 | 0.78 | 0.75 | 0.74 | 0.7 0.7 0.65 | 0.67
CROnto 09 |085]083|0.78|0.86 | 081 |0.83]0.8 0.77 1075 | 076 | 0.75 | 0.75
DITOnto 0.79 | 0.66 | 0.69 | 0.6 | 0.62 | 0.66 | 0.56 | 0.59 | 0.63 | 0.63 | 0.6 0.61 | 0.65
INROnto 0.79 | 0.72 | 0.76 | 0.77 | 0.74 | 0.76 | 0.79 | 0.75 | 0.7 0.71 | 0.71 | 0.67 | 0.65
LCOMOnto | 0.81 | 0.86 | 0.78 | 0.83 | 0.81 | 0.81 | 0.75 | 0.72 | 0.71 | 0.68 | 0.7 0.69 | 0.68
NACOnto 0.86 | 0.93 | 0.83 | 0.79 | 0.76 | 0.8 0.77 | 0.77 | 076 | 0.74 | 0.72 | 0.68 | 0.65
NOCOnto 0.87 | 0.79 | 079 | 0.76 | 0.79 | 0.77 | 0.77 | 0.8 0.73 | 0.7 0.74 | 0.74 | 0.73
NOMOnto 078 1 0751079 | 0.8 | 0.76 | 0.76 | 0.76 | 0.72 | 0.7 0.69 | 0.69 | 0.69 | 0.7

POnto 0.88 | 0.71 | 0.82 | 0.78 | 0.68 | 0.68 | 0.71 | 0.7 073 | 072 | 072 | 071 | 0.72
PROnto 097 | 0.72 | 0.68 | 0.62 | 0.61 | 0.72 | 0.69 | 0.7 0.71 | 0.7 0.67 | 0.64 | 0.65
RFCOnto 0.79 | 0.81 | 0.7 071 1 074 | 0.76 | 0.72 | 0.69 | 0.71 | 0.72 | 0.71 | 0.71 | 0.68
RROnto 0.97 | 0.72 | 0.68 | 0.62 | 0.61 | 0.72 | 0.69 | 0.7 0.71 | 0.7 0.67 | 0.64 | 0.65
TMOnto 093 | 0.76 | 0.78 | 0.77 | 0.64 | 0.6 | 0.53 | 0.59 | 055 | 0.64 | 0.71 | 0.71 | 0.66
TMOnto2 094 | 091 | 072 | 0.74 | 0.74 | 0.79 | 0.79 | 0.77 | 0.74 | 0.75 | 0.73 | 0.73 | 0.72
WMCOnto | 0.82 | 0.81 | 0.76 | 0.79 | 0.74 | 0.78 | 0.77 | 0.73 | 0.7 0.67 | 0.69 | 0.69 | 0.74
WMCOnto2 | 0.81 | 0.81 | 0.72 | 0.78 | 0.77 | 0.78 | 0.77 | 0.74 | 0.7 0.73 | 0.73 | 0.74 | 0.72

the ontology features measured by these metrics. Our inter-
pretation for one metric having the same optimal number of
clusters in both repositories is that it has the same behaviour
in both the repositories; hence, it classifies the data in the
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same number of groups. However, this does not necessarily
mean that the distribution of values for the metric in both the
repositories is the same. For example, the optimal number of
clusters for ANOnto or CBOnto was 3, but the shapes of their
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TABLE 9. Goodness scores for 9200 repository in k range [3, 15]. The highest score for each metric is highlighted in bold lettering.

k=3 | k=4 | k=5 | k=6 | k=7 | k=8 | k=9 | k=10 | k=11 | k=12 | k=13 | k=14 | k=15

ANOnto 0.73 | 0.71 | 0.66 | 0.67 | 0.67 | 0.68 | 0.59 | 0.6 062 | 056 | 053 | 054 | 0.58
AROnto 0.82 085|08 |082]085| 085|087 |087 |08 |08 |087 |[085 | 0.83
CBOOnto 0.75 | 0.67 | 0.67 | 0.65 | 0.62 | 0.6 | 055 | 053 | 054 | 048 | 053 | 049 | 0.51
CBOOnto2 | 0.75 | 0.67 | 0.67 | 0.65 | 0.62 | 0.6 | 0.55| 053 | 0.54 | 048 | 0.53 | 0.49 | 0.51
CROnto 093 | 09 | 086|084 | 0.85] 076 | 0.76 | 0.69 | 0.68 | 0.7 071 | 0.71 | 0.7

DITOnto 0.56 | 0.51 | 0.57 | 0.56 | 0.56 | 0.57 | 0.54 | 0.59 | 0.63 | 0.63 | 0.62 | 0.63 | 0.68
INROnto 0.71 | 0.71 | 0.64 | 0.59 | 0.61 | 0.6 | 0.57 | 0.56 | 049 | 0.5 0.56 | 0.52 | 0.54
LCOMOnto | 0.54 | 0.59 | 0.53 | 0.56 | 0.58 | 0.61 | 0.58 | 0.56 | 0.56 | 0.56 | 0.55 | 0.55 | 0.56
NACOnto 0.74 | 0.67 | 0.62 | 0.63 | 0.61 | 0.6 | 0.61 | 0.6 0.61 | 0.61 | 0.6 0.61 | 0.59
NOCOnto 0.82 | 0.82 | 0.61 | 0.63 | 0.59 | 0.53 | 0.55 | 055 | 0.54 | 0.54 | 0.55 | 055 | 0.54
NOMOnto 0.66 | 0.6 | 0.64 | 064 | 0.6 | 0.59 | 0.62 | 0.61 | 0.59 | 0.59 | 0.6 0.62 | 0.63
POnto 059 {06 | 057|059 | 054 055|057 052 | 054 |05 |054 | 054 | 0.56
PROnto 064 | 0.6 | 062|058 055 0.62]|062)|064 |063 |0.65 |0.6 0.57 | 0.56
RFCOnto 0.66 | 0.62 | 0.57 | 0.55 | 0.59 | 0.57 | 0.53 | 0.52 | 0.55 | 0.56 | 0.56 | 0.58 | 0.57
RROnto 064 | 0.6 | 062|058 055 0.62]|062)|064 |063 |0.65 |0.6 0.57 | 0.56
TMOnto 0.69 | 0.63 | 0.62 | 0.6 | 064 | 0.6 | 0.62 | 0.6 061 | 0.63 | 0.62 | 0.63 | 0.61
TMOnto2 0.74 1 0.72 | 0.69 | 0.72 | 0.72 | 0.72 | 0.78 | 0.79 | 0.75 | 0.77 | 0.75 | 0.76 | 0.75
WMCOnto | 0.88 | 0.83 | 0.82 | 0.66 | 0.62 | 0.53 | 0.52 | 0.48 | 048 | 049 | 0.51 | 0.52 | 0.55
WMCOnto2 | 0.88 | 0.85 | 0.78 | 0.73 | 0.72 | 0.64 | 0.6 | 0.61 | 0.62 | 0.61 | 0.57 | 0.55 | 0.55

violin plots in AgroPortal and OBO Foundry were different
(see Fig. 3 and Fig. 4)

In [33], six metrics (NACOnto, NOCOnto, POnto,
TMOnto, TMOnto2, and WMCOnto) provided stable or
highly stable clusters. Now, with the use of the optimal
value of k for each metric (see Fig. 5 and Table 6), only
CROnto (0.68) in AgroPortal was not stable or highly stable.
Consequently, 18 out of 19 metrics were stable or highly
stable in both the repositories when the optimal k values
suggested by our method were used. The use of the optimal k
value revealed that all the metrics had at least a reasonable
structure, and such clusters were equal or more strongly
structured that the ones built using a prefixed k = 5 in
both the repositories. Moreover, 14 metrics had a strong
structure in AgroPortal and 11 in OBO Foundry. In most
cases, the optimal k value was the one providing the largest
goodness value. When the optimal k value was provided by
the largest stability value, the metrics were highly stable and
had at least a reasonable structure in AgroPortal (DITOnto,
PROnto, and RROnto) and were at least stable and had a rea-
sonable structure in the OBO Foundry (AROnto, DITOnto,
POnto, PROnto, and RROnto). It can be seen that the optimal
k value was provided by the stability for DITOnto, PROnto,
and RROnto in both the repositories. These three metrics were
related to the existence of properties and relations, including
taxonomic ones in the ontology. The following 10 metrics
had a strong structure in both the repositories: ANOnto,
AROnto, CBOnto, CBOnto2, CROnto, INROnto, NACOnto,
TMOnto2, WMCOnto, and WMCOnto2. These metrics were
also stable or highly stable in both the repositories; therefore,
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we can conclude that they exhibit the same behaviour in both
the repositories. Most of these metrics are related to impor-
tant features of ontologies, such as the taxonomy (CBOnto,
CBOnto2, INROnto, NACOnto, TMOnto2, WMCOnto, and
WMCOnto?2), annotations (ANOnto), attributes (AROnto),
and individuals (CROnto). These results show the benefits of
using the optimal k value and reveal the difference between
the repositories.

Fig. 6 shows the changes in stability and goodness when
the optimal k value was used instead of k = 5. Both aspects
improved for most of the metrics when the optimal k value
was used, which was the expected result. There were cases
such as LCOMOnto in AgroPortal in which the stability score
was higher for k = 5, although the optimal k was 3 because of
the results obtained for the goodness, as the latter was given
priority when the same degree of stability was achieved for
different values of k.

We could also compare the results of the content of the
clusters obtained between both the optimal k£ and k = 5 for
the 19 metrics. Figs. 13 and 14 provide a visual comparison
of the content of the clusters generated in each repository.
We could infer different types of situations. Two examples
are described next for the AgroPortal case (see Fig. 13).
For WMCOnto, the red and black clusters were common
for both values of &, and the blue one (optimal k) included
the remaining three clusters from k = 5. For ANOnto,
we observed how the content of the clusters when k = 5
shown with red data points was distributed in two clusters of
the optimal &, and the same happened for the cluster of green
points. Consequently, there was no common pattern relating
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FIGURE 7. Applying our method to an ontology repository: (1) computation of the values of the
metrics for the ontologies; (2) application of a clustering algorithm.

the content of the clusters obtained with the optimal k and the
ones obtained with k = 5; hence, each clustering generated
its own structure.

C. REPOSITORIES
Our method uses the data existing in a given repository to
study the behaviour of a set of metrics. It is not surprising
that the optimal number of clusters for a metric might dif-
fer between repositories, as their content is expected to be
different. The general interpretation of the results obtained
in both the repositories is as follows: some metrics could
be appropriate for certain repositories and not for the others.
Note that the repositories are in continuous evolution, so our
results would hold for the particular versions of the ontologies
used in the study. Changes in the repositories might imply
changes in our results.

In our study, both the repositories were analysed with
k varying between 3 and 15 (see Tables 3-9). The results
showed that k > 8 could not be applied for three metrics
(AROnto, DITOnto, and TMOnto2) in AgroPortal, whereas
such an application was possible in the OBO Foundry repos-
itory. This was attributed to the number of different values
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for these metrics in AgroPortal. This could also be due to
the lower number of ontologies in the AgroPortal reposi-
tory. Generally speaking, not being able to obtain the sta-
bility or goodness for certain values of k should not be
interpreted negatively for the metric, the repository, or the
method. This made it explicit that such a number of categories
does not make sense for the particular metric in the particular
repository. We believe that this is another example of how
the method captures the signal differentiating the repositories.
The differences for these three metrics could be intuitively
affirmed by inspecting the violin plots for the metrics. A clear
example would be TMOnto2, as the violin plot in AgroPortal
suggests three large groups, whereas the data were more dis-
perse in OBO Foundry. If we compare the optimal k values for
these three metrics in both the repositories, we can see that the
optimal k£ for AROnto is 3/9 (AgroPortal/OBO Foundry), for
DITOnto 3/3, and for TMOnto2 3/10. The optimal for OBO
Foundry is larger, showing that the content of the repositories
is different from the perspective of the metric.

In Section IV-B, 12 metrics were identified as having the
same optimal k value in both the repositories; therefore,
the behaviour was different for 7 metrics:
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FIGURE 9. Silhouette plot of the clustering distribution in 999" for CBOnto metric in its optimal k.

o The optimal k value was higher in AgroPortal for the

~ kmeans
- clara
-~ pam

~ kmeans
- clara
-~ pam

This difference implied that the optimal partitioning of the

metrics NACOnto, POnto, TMOnto, and WMCOnto2. repositories using these metrics required a different number

o The optimal k value was higher in OBO Foundry for the
metrics AROnto, LCOMOnto, and TMOnto2.
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of groups. Moreover, 5 out of these 7 metrics measured
facets related to the taxonomy. In three of these cases, the
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FIGURE 11. Silhouette plot of the clustering distribution in §79" for RFCOnto metric in its optimal k.

difference was in one cluster, but the situation was differ-
ent for NACOnto (10-3), LCOMOnto (3-8), TMOnto (8-3),
and TMOnto2 (3-10). For example, both TMOnto and
TMOnto2 were related to ancestors, whereas TMOnto
referred to classes with multiple ancestors, TMOnto2 referred
to the direct ancestors of the classes targeted by TMOnto.
Thus, we can conclude that this result confirms the adaptive
nature of our method to the actual distribution of the data
points and that each metric captures a specific feature.
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The optimal number of clusters for a given metric may
differ between repositories, which makes it a data-dependent
feature. We could draw an analogy between this repository-
based feature and parameters such as K and Lambda in
BLAST [60], which are calculated on the basis of the content
of the sequence database and which are used for comput-
ing the scores and E-Value. In our case, the optimal num-
ber of clusters was used to build the repository profile, the
g-dimensional profiles. We think that the profiles may be an
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interesting and flexible tool to estimate whether two sets of
metrics have a similar behaviour across repositories, because
they can also be applied to subsets of the set of metrics. For
example, the similarity of the behaviour of a set of metrics
related to a particular feature (e.g. classes or annotations)
could be studied using our g-dimensional profile approach.

D. REPOSITORY PROFILES

The scope of our automated process was also enlarged by
collecting the optimal k number of clusters for each metric on
arepository into a vector referred as to the repository profile.
This profile might be considered to be feature information of
the repository with respect to an ordered set M of m metrics,
allowing users to compare the classification performance of
the set M on different ontology portals in terms of the similar-
ity between their m-dimensional profiles by using the cosine
function. As aresult, the profiles could be ranked according to
their cosine similarity measures. Furthermore, it is worthy to
remark the flexibility of the repository profile which may be
used for any g-dimensional ordered subset of metrics chosen
by the user, g < m.

E. LIMITATIONS AND FURTHER WORK

Our method for obtaining the optimal number of clusters for
the metric does not analyse the existence of exceptional cases,
such as clusters with only one member. For example, such
outlier cases can be identified by exploring the violin plots
shown in Section III-C, but they must be manually identi-
fied. For instance, the NOCOnto metric depicts outlier cases
in Fig. 3 and 4, and TMOnto2 can describe an exceptional
case.
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In the violin plot of 0°%° the scaled raw data of

TMOnto2 have two well-separated density functions on two
small clusters, whereas in #“¢”, the distribution is visually
different (these two density functions are overlapped).

The existence of such cases should be informed to the algo-
rithm for selecting the optimal number of clusters. As further
work, we will develop methods for identifying such cases
automatically.

In addition, we have studied the metrics on two reposi-
tories. It would be interesting to include more repositories
in further studies, which could contribute to finding metrics
with (in)consistent behaviour across repositories. Moreover,
the analysis of the similarity between the repositories by
using the g-dimensional profiles could generate new insights.

The present study shares some limitations with [33], as we
did not include metrics such as consistency or formal cor-
rectness, which are usually implemented as Boolean func-
tions. In this study, we considered the minimum k = 3,
as we believe that our method is less interesting for Boolean-
like metrics and thus keeps the variability of the metrics,
avoiding elementary binary classifications. We also did not
include non-structural metrics, as we wanted to perform the
study under the same conditions as those described in [33].
Finally, we proposed the repository profiles, which could be
used to determine the homogeneity degree of repositories
with respect to a set of metrics. Further experiments will be
carried out to associate homogeneity degrees with ranges of
similarity scores.

V. CONCLUSION
In this paper, we have presented a method for an automatic
decision-making process based on the optimal analysis of
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repositories from the perspective of the features measured by
using a set of metrics. The method is based on measuring and
analysing the statistical properties of the clusterings obtained
by applying the metrics to an ontology repository. The results
showed that the use of the optimal k& value for such an analysis
allowed for a finer distinction of the profile of the ontology
repositories. We believe that this type of study may well
help users to generate new insights into the properties of an
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ontology repository and its content. The method presented
was applied to ontologies but is generic and, therefore, can
be applied to other types of metrics and repositories.

APPENDIX

ADDITIONAL TABLES AND FIGURES
A. TABLES

See Tables 7-9.
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