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ABSTRACT Peripheral neural signals can be used to estimate movement-specific muscle activation patterns
for the purpose of human-machine interfacing (HMI). The available HMI solutions, however, provide limited
movement decoding accuracy that often results in inadequate device control, especially in the dynamic tasks
context, and require extensive algorithm training that is highly subject-specific. Here, we show that dexterous
movements can be identified with high accuracy using a physiology-derived and information-theoretically
optimised feature space that targets the spatio-temporal properties of the spiking activity of spinal motor
neurons (neural features), decomposed from the interference myoelectric signal. Moreover, we show that
the movement decoding accuracy based on these neural features is not influenced by the muscle activation
level, reaching overall>98% in the full range of forces investigated and from processing intervals as short as
30-ms. Finally, we show that the high accuracy in individual finger movement recognition can be achieved
without user-specificmodels. These results are the first to show a highly accurate discrimination of dexterous
movement tasks in a wide range of muscle activation levels from near-real time processing intervals, with
minimal subject-specific training, and thus are promising for the translation of HMI to daily use.

INDEX TERMS Dexterous movement classification, human-machine interfaces, information theory, neural
drive, universality of neural control.

I. INTRODUCTION
A fundamental role of the human nervous system is to gen-
erate goal-oriented behaviour. Behaviour, such as walking,
eye-gazing or grasping, is expressed in the form of a con-
trolled movement [1], [2]. In times of a rapid development
of human-machine interfaces (HMIs) and common access to
smart devices, considerable efforts are being made towards
identifying neural correlates of movement intention [3]–[6]
and movement execution [6]–[8]. The decoding of basic
kinetic [9] and semantic [10] movement components, such
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as the amount of force exerted by a muscle or the actuation of
a specific degree of freedom (DOF), is at the core of HMIs,
with applications for healthy users as well as patients with
motor impairments. Movement-decoding paradigms have the
potential to replace the currently available, indirect inter-
facing that makes use of a ‘medium’ device, such as a
switch or a keyboard, in order to perform an operation, and
introduce direct machine control, with which the user can
operate a device using different features and levels of mus-
cle excitation [11]–[13]. The direct interfacing not only can
change the way we use smart devices recreationally, but it
can also bring numerous clinical perks, such as novel reha-
bilitation strategies and improved neuroprosthetic control.
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However, fulfilling the demand for deconstructing the move-
ment into its basic spatio-temporal components remains chal-
lenging [14]–[17]. Some attempts for non-invasive HMIs rely
on electroencephalographic signals (EEG) recorded from the
central nervous system (CNS) for translating the movement
intention into commands to external devices [14], [18], [19].
These solutions provide insufficient spatio-temporal resolu-
tion of movement correlates, and thus yield limited accuracy
and robustness. The CNS coordinates voluntary movements
through the activity of spinal motor neurons that inner-
vate the muscle tissue which, when excited, contracts to
generate force [20]. An approach alternative to EEG for
neural decoding of movements is thus based on peripheral
decoding via the identification of the behaviour of spinal
motor neurons [21]. Decoding can be achieved with the
decomposition of non-invasive, high-density EMG signals
(HD-EMG) [22], [23]. HD-EMG, which record muscles’
activity from several closely spaced electrodes over the skin,
can be decomposed into motor unit action potentials that
correspond to the discharge timings of the innervating motor
neurons (i.e., the neural drive to the muscle) [24]. The decom-
position can be performed with online implementations and
therefore is suitable for HMIs [25], [26]. While motor neu-
ron discharge timings have been previously exploited for
movement recognition purposes in classic machine learn-
ing paradigms [21], [27]–[29], there have been no attempts
to extract physiology-inspired characteristics from decoded
motor neuron behaviour to estimate user motion. By inves-
tigating the physiological features leading to the movement
generation, we aim to obtain a truly robust direct interfacing
that could substantially increase the translational potential
of movement decoding methods. In this paper, we extract
features from decoded motor neuron behaviour that physio-
logically explain force generation as a combination of recruit-
ment and rate coding of motor units [30], [31]. We present
accurate tracking ofmovement phases in finger control, based
on information on the behaviour of motor neurons identified
from the decomposed HD-EMG signal. Moreover, we pro-
pose that this neural information conveys universal move-
ment execution code in humans, so that the identification
of movement from peripheral neural correlates is possible
without user-specific models. By demonstrating that a fully
non-invasive derivation of neural correlates of movement
is feasible and demonstrating the proof of concept of the
peripheral neural control universality in humans, we provide
a significant step forward towards a better integration of HMI
systems in our daily living.

II. METHODS
A. DATA ACQUISITION
The experiments were conducted on nine able-bodied,
right-handed participants (age 26.5 ± 2.4 years, 4 males
and 5 females). All participants were naive to the exper-
imental setup. The experimental protocols as well as
the informed consent forms for the experiment were

approved by the Imperial College London Research Ethics
Committee. Myoelectric signals were recorded from the
flexor digitorum superficialis muscle (FDS) with an
HD-EMG electrode system of 64 sensors during individual
flexions of the index, middle, ring and little finger. The
EMG signals were amplified with a gain of 500-1000 (OT
Bioelettronica EMG-USB2), band-pass filtered at 10-500 Hz,
sampled at 2048 Hz, and transmitted to the host PC. The par-
ticipants were seated in front of a computer screen with their
wrist stable and digits rested on top of individual force sensors
(Phidgets Inc, Calgary, Canada). Visual cues were presented
on a computer screen to indicate which digit to activate.
Finger flexions were performed in a ramp mode, comprising
four movement phases: resting (REST), force increase (ASC)
(2 s), stable force at 25% Maximum Voluntary Contraction
(MVC) (PLAT) (5 s), and force decrease (DESC) (2 s). The
setup and data collection lasted for 45 minutes and consisted
of three repetitions of individual finger presses performed in
randomized order.

B. HD-EMG DECOMPOSITION
The HD-EMG signals were resolved into series of discharge
timings of active motor neurons following the Convolution
Kernel Compensation (CKC) method [32]. The CKC algo-
rithm is based on a convolutive data model of surface myo-
electric signals in which the multi-channel EMG signal is
convolved in the spatio-temporal domain by estimates of
separation vectors for individual motor units. Activity of
motor neurons is modelled by series of discrete delta func-
tions that correspond to their respective discharge times.
The CKC approach was chosen since it is proved to assure
a good approximation of complete Motor Unit (MU) dis-
charge patterns during low-level force-varying contractions.
The decomposition results were held to the standards of
signal-based metrics of accuracy – the pulse-to-noise ratio
(PNR), assuring that only the MUs decomposed with PNR
> 30dB were analysed.

C. FEATURE SPACE
To describe the global myoelectric activity, we calculated the
Root Mean Square (RMS) of each channel of the HD-EMG
recording. RMS is an estimator of EMG amplitude and pro-
vides information on the muscle activation level. To charac-
terise the neural activity, we estimated pooled motor neuron
spike trains based on the number of spikes (spike count – SC),
the standard deviation of the times of motor neuron dis-
charges (STD), and the average inter-spike-interval (ISI)
measures. This set of variables targeted both peripheral and
central properties of the active motor units, with SC being
directly proportional to the force exerted by the muscle dur-
ing a contraction, and STD and ISI representing spike train
metrics that quantify the temporal and topological similarities
and dissimilarities of all-or-none neural cortical events [33].
The feature space was participant-specific and contained
information from n EMG sensors that measured the muscle
activity over the time interval T . T was processed in uni-
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form k-size windows. In this paper, the size of k was set to
30-ms (or 30- and 150-ms, respectively, for two-conditional
interference EMG signal processing), representing a trade-off
between the real-time processing of myoelectric signals and
an accurate phase-and-DOF discrimination. The final struc-
ture of the feature matrix was three-dimensional (n × m × l),
comprising n rows corresponding to EMG electrodes
(n = 64), m columns corresponding to the processing win-
dows (where m = T

k ), and the l th dimension represent-
ing different feature types (i.e. SC, STD and ISI for the
neural input (l = 3), and RMS for the interference EMG
(l = 1)). To enhance the spatial selectivity of the feature
space, we ranked all individual electrodes based on their
average RMS score. Following ranking, an activation thresh-
old was imposed on the electrode space which allowed for
retaining the features characterising the signals that scored
≥70% of the maximum average RMS value. The electrodes
that did not meet the activation thresholding condition were
set to zero in the feature space.

D. MUTUAL INFORMATION FOR THE FEATURE SPACE
OPTIMISATION
To decrease the redundancy within the neural feature space,
we applied the Information Theory’s Mutual Informa-
tion (MI) measure to compute the entropies of individual
features as well as the joint MI between features [34]. The
MI between each of the random variables was estimated by
binning (bin size being equal to processing window) that
allowed for the approximation of their probability density
functions. Next, the MI was calculated according to the fol-
lowing equation:

I (s; r) =
∑

s

∑
r
p(s, r)log2

p(s, r)
p (s) p(r)

(1)

where s and r are discrete random variables, I (s; r) is the
MI between them, and the summations are calculated over
the appropriately discretized values of the s and r . For each
bin, the joint probability distribution p(s, r) was estimated by
counting the number of cases that fell into a particular bin and
dividing that number with the total number of cases. The same
technique was applied for the approximation of the marginal
distributions p(s) and p(r).

E. CLASSIFICATION
We used two types of classification inputs and three types of
classification tasks. In the first classification task we tested
the capacity of using peripheral signals for effective move-
ment tracking (i.e. muscle contraction stages discrimination)
of a single-DOF activation. In the second task, which consti-
tuted an extension of the results obtained with the first task,
we tested whether the information contained in peripheral
signals allowed for effective movement tracking concurrently
with the accurate differentiation between different DOFs.
In the third task, we assessed the classification of DOFs
activation only by pooling all force levels. To compare the
accuracy achieved with the conventional, global HD-EMG

approach and that of the proposed neural approach for move-
ment decoding, we performed a comparative analysis on the
respective types of input in the first and the third discrimi-
native tasks. We excluded the interference EMG analysis in
the second classification task based on the very poor perfor-
mance of this approach in the first task, which was a less
complex version of the second task.

F. PERFORMANCE ASSESSMENT
To test and compare performances of global and neural
discriminative approaches, a classification into discrete
classes (i.e. fingers’ movements and/or phases of fin-
gers’ movements) was performed using a linear discrimi-
nant analysis (LDA) [35] with Monte-Carlo cross-validation
(MCCV) [36], [37]. In a dataset of n instances, an MCCV
procedure randomly generated without replacement k sub-
sets, each of which contained m instances, where n = k ×m.
In each iteration, a different k subset is held out to estimate the
classification error while the remaining k − 1 subsets are used
for training. A fixed 5:1 train-test ratio was kept throughout
the conducted discriminative performance analysis.

To examine the universality of the peripheral information,
we performed a classification into the discrete classes using
LDA with one out of two variants of a leave-one-subject-
out cross-validation (LOOCV) [38], [39]. In classic LOOCV,
a single observation corresponds to an individual participant’s
dataset which is used as classification validation set. In the
complete LOOCV variant, called LOOCV (1), we used a
single observation as the validation set and the remaining
observations (8) as the training set. In the incomplete LOOCV
variant, called LOOCV (2), we randomly selected without
replacement 5% of a single-observation validation set and
included it in the training set along the remaining obser-
vations. This introduced a small amount of ‘same-source’
observation to the classifier’s training that could increase the
classification accuracy due to sharing of the feature space’s
pattern with the validation set.

G. STATISTICAL ANALYSIS
Normality of the data was assessed by the Shapiro-Wilk test.
When the null hypothesis of skewed distribution was rejected,
the independent samples t-test was used for determining
whether samples in different groups (e.g., different DOFs)
originated from the same distribution. When this null hypoth-
esis was rejected, post-hoc pair-wise comparisons were per-
formed with the Wilcoxon signed. Post-hoc analysis was
performed with the Tukey test. The threshold for significance
throughout the analysis was set to p < 0.05.

III. RESULTS
A. DECODING MOVEMENT PHASES
Decoding the peripheral correlates of volitional movements
requires identifying the fundamental spatio-temporal com-
ponents of the neural activation to muscles. For this pur-
pose, muscles’ electrical activity can be decomposed into
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FIGURE 1. Intended movement generation and signal decomposition. The movement intention triggers the motor neuron activity (i.e.
the neural drive to the muscle), exciting the muscle fascicles. The change in muscle fascicles’ length influences the recruitment and
discharge rate of motor units (MUs), allowing for a proportional actuation of the intended DOF. The myoelectric signal elicited within the
muscle during DOF actuation is acquired using a high-density electrode grid placed on the skin overlaying the active muscle, resulting in
the EMG recording. The HD-EMG signal can be then decomposed into neural drive that corresponds to a particular movement.

the neural drive down-streamed from the spinal cord via
motor neurons. We explored the feasibility of distinguish-
ing movements (DOFs) during their contraction stages
(increase/decrease/stable force) based on motor neuron activ-
ity decoded from myoelectric signals (Fig.1). The number
of spikes and sparseness of the spike trains vary as a func-
tion of MU recruitment and rate coding, which are the two
physiological mechanisms that determine force modulation.
Moreover, each identified MU can be characterised by its
spatial location, as estimated by the amplitude distribution of
its MU action potential recorded with the HD-EMG grid (see
Supplementary Fig. 3).We calculated an averagedRMSvalue
on spike trains in order to score the activation level of each
HD-EMG electrode, and then set an activation threshold on
the electrode space so that only the signals from the electrodes
overlying the most active compartments of the FDS mus-
cle were included in the feature space for each contraction.
We then compared the discriminative capacity of global EMG
features (conventional myocontrol) vs MU-based features in
different phase-and-DOF classification tasks. To keep the
dimensionality of the two classification inputs consistent,
we applied the activation thresholding on the electrodes when
constructing both neural and global HD-EMG feature spaces
for all the classification tasks. Since the neural drive was
described by several features (see Methods section), we cal-
culated the mutual information (MI) and Poisson probability
density function (PDF) to minimise redundancy of the neural
feature space (see Methods section). In Fig. 2a-b (as well
as in Appendix, Supplementary Fig. 2.) we show that the
features extracted from the neural drive to the muscle were

complementary in bothmovement phase-and-DOF character-
isation contexts.

The feature extraction for the neural input was conducted
in 30-ms processing windows, introducing a small delay with
respect to processing the signals in real-time. As a compari-
son, current HMIs used for control of rehabilitation devices,
such as prostheses, usually work on intervals of 200-ms.
Since the behaviour of MUs changes as a function of the
contraction force and of the direction in force modulation,
the extracted neural input allowed for tracking the movement
phases with high accuracy (Fig. 3a; x 97%, +/− 2.81, speci-
ficity= 97.9%, sensitivity= 98.9%). This result demonstrates
that the proposed neural features characterised the motor
tasks in their specific qualities as to capture differences that
are indistinguishable when assessing the global EMG.

To characterise the HD-EMG signal, we applied the elec-
trode thresholding and extracted the RMS from the signals
obtained from the most active FDS compartments. The RMS
extraction for the global input was conducted in 30-ms (for
comparison with neural features) and 150-ms (considering
the optimal window duration for EMG-based classification
of movement phases [42]) intervals. The global EMG input
processed in 30-ms windows yielded very poor discrimi-
native performance of movement phases (Fig. 3a; x 22%,
+/− 6.21, specificity = 37.9%, sensitivity = 51.9%).
As expected, with extending the window duration to 150-ms,
the phase classification improved (x 51%, +/− 7.95, speci-
ficity = 49%, sensitivity = 52.8). However, contrary to the
neural input, the global EMG did not allow for distinguishing
between the same forces exerted during a decreasing and
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FIGURE 2. Feature space optimisation and motor unit quantitative analysis. a. Lower panel: the comparison of Poisson probability
distribution of the extracted neural drive features (SC (spike count), STD (standard deviation), ISI (inter-spike interval)) for different
finger flexions (color-coded) in movement phase context. The distribution plots for indicated intervals of 2s-5s-2s follow the force
profile (upper panel) and correspond to the ascending (ASC), steady (PLAT) and descending (DESC) stages of a muscle contraction.
Upper panel: exemplar finger flexion force profile sliced in intervals of 2s-5s-2s for the presentation purposes. Results in a. are based
on a representative subject dataset. b. Mutual Information analysis for testing the feature set relevance averaged over all of the
participants (Venn diagram presentation). Individual circles show the entropy corresponding to individual features, while the union of
any two or three circles corresponds to the respective joint entropies. c. Number of motor units detected in all of the trials presented for
all individual participants (1-9). d. Average number of motor units detected in different finger presses (index, middle, ring and little
finger flexions) for all participants.

increasing muscle contraction regardless of the processing
window size. The cause for a considerable difference in the
classification accuracies between the neural and EMG inputs
was the insufficient temporal resolution provided by the
HD-EMG signal during transient phases of the contraction,
explained in Fig. 3b. Therefore, the use of the decoded neural
drive substantially expanded the identification of discrimina-
tive aspects of motor tasks with respect to the global EMG.

We next validated the possibility of tracking the muscle
contraction stages while concurrently discriminating between
different finger tasks. For this purpose, we classified individ-
ual DOFs (4) and their movement phases (3) (with muscle
rest as an additional class, for a total of 13 classes). Fig. 4a
shows the phase-and-DOF classification results for neural
input averaged across all participants. The accuracy of the
proposed neural approach in discriminating both individual
finger movements and movement phases concurrently was
very high (96.1%, +/− 0.061), with a specificity of 98.3%
and a sensitivity of 98.8%. For comparison, the global EMG
failed to concurrently classify movement phases and DOF,
as expected based on the poor accuracy when classifying
only movement phases (results not shown). Our findings
prove, for the first time, that a non-invasive interface with

muscles can provide a highly accurate recognition of voli-
tional multi-DOF finger movements together with tracking
all of the movements’ phases with a delay smaller than any
previously proposed HMI control system.

B. RECOVERING FINGER CLASSES FROM CONTRACTION
STAGES
Joint classification of DOF and movement phases allows for
a highly accurate temporal identification of the activation
and de-activation of an individual DOF, in a way that is
robust to changes in force. To show the feasibility of accurate
finger movement recognition when exerting variable forces,
we computed the accuracy of DOF classification based on all
movement phases. When using global EMG in variable force
conditions, the classification error rate is high specifically
when force varies around small values. Indeed, as it can
be seen on the top of the Fig. 4b, an across-phase com-
parison proved that the DOF discrimination based on the
global HD-EMG features processed in 150-ms windows was
variable, with the accuracy highly reliant on the contraction
stage used as an input to the classifier (total accuracy range
(TAR): 43.6% for the descending phase input to 92% for the
plateau phase input, x 71.25,+/− 20.19). When using global
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FIGURE 3. Contraction-phase classification results and classification progression for neural and global inputs. a. Classification accuracy
output mean ± s.d. for all of the subjects for neural and global inputs and varying processing window sizes. Data were compared using the
independent samples t-test. b. Confusion matrices depicting classification accuracies for a representative subject and neural and global
inputs for varying processing window sizes, after incremental addition of transient contraction information to the classification input.
HD-EMG: global input, MUs: neural input. Contraction stages’ classes: R – REST P – PLAT A – ASC D – DESC.

EMG on a much shorter processing interval of 30-ms the per-
formance further decreased, as expected (results not shown).
Conversely, the discrimination based on neural input fea-
tures processed in 30-ms windows resulted in high accuracy
regardless of the movement phase (TAR: 93% for the ascend-
ing phase input to 97.5% for the descending phase input,
x 95, +/− 2.73). On average, in the complete contraction
context (condition labelled asMIX; full force range), the neu-
ral approach resulted in 98 +/− 0.3% DOF discrimination
accuracy, and the global EMG resulted in 88+/− 2.1% DOF
discrimination accuracy while processed in 150-ms intervals
(p = 0.04) and 75% +/− 3.7 while processed in 30-ms
intervals. Therefore, the neural approach allowed a 10%more
accurate DOF classification than the global EMG approach,
when classificationwas performed on complete finger flexion
data. Beside the average classification accuracy over all force,
the difference in accuracy between the two classification
inputs was as high as >50% in the variable-force contraction
stages, which are the most common stages in natural use
of an HMI. These results are consistent with the findings
presented in the previous section, and in agreement with
previous research in showing that the global EMG properties
are insufficient for an accurate DOF discrimination prior to
reaching a steady contraction stage (see Discussion).

In summary, we showed for the first time that the recogni-
tion of individual fingers can be achieved with the accuracy
of ∼98% for the full range of contraction forces investi-
gated, and for an extremely short processingwindow (30-ms).
This indicates that intended dexterous movements can be
detected with a temporal resolution of 30-ms for any force
exerted in an isometric contraction, with consistently very

high accuracy. The difference in performance with respect to
global EMG (which showed <90% accuracy on average and
<50% accuracy in specific task phases, for a much longer
processing window of 150-ms) is substantial and shows a
realistic potential for the proposed approach to be carried
forward into large-scale user applications.

C. GENERALISATION ACROSS INDIVIDUALS
Having demonstrated that the neural approach provides a
successful multi-phase-and-DOF classification at all phases
of the isometric muscle contraction, we then addressed the
question whether the neural drive decoded with the EMG
decomposition can be used as a universal movement code
across humans without (or with minimal) user-specific train-
ing, and if so, how well does it generalise in comparison
with the global EMG features. For this purpose, we clas-
sified different finger movements (4) and their contraction
stages (3) based on a leave-one-out cross-validation model
(LOOCV – see Methods) across subjects using neural and
global EMG inputs.

First, we built the LOOCV (1) from a training set compris-
ing the data of eight out of nine participants, with the test
set comprising the ‘left-out’ participant’s data. The results
of our LOOCV (1) analysis, presented in the top row of
Fig. 4c, show a large decrease in the classification accu-
racy on average when using the general model instead of
the subject-specific model, for both types of the classifica-
tion input (x accuracy based on LOOCV(1): neural input =
40.33% +/− 18.5, global EMG input = 6.84%, +/− 3.1).
As can be inferred from the muscle activation heat maps
presented in the Appendix, Supplementary Fig. 3., the spatial
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FIGURE 4. Average contraction-phase and DOF classification results for neural and global inputs with subject-specific and
general discriminative variants. a. Confusion matrix depicting the average output of the neural-based, subject-specific
contraction stages classification (averaging performed across all subjects). b. DOF classification accuracy output averages ± s.ds.
for neural and global inputs, for individual contraction stages and mixed (all) DOFs (top) and individual DOFs and mixed (all)
phases (bottom) (averaging performed across all subjects). c. Confusion matrices depicting the average output of the
EMG-based and MU-based contraction stages classification based on the general model (first row: LOOCV(1), second row:
LOOCV(2)). A1, P1, D1 – index finger contraction stages, A2, P2, D2 – middle finger contraction stages, A3, P3, D3 – ring finger
contraction stages, A4, P4, D4 – little finger contraction stages. Contraction stages’ classes: R – REST P – PLAT A – ASC D – DESC.

organisation of the muscle innervation detected from the skin
level is the main limitation of the generalisation process, as it
can differ significantly between people.

Next, we constructed the LOOCV (2) for which the train-
ing set comprised the LOOCV (1) training data with the
addition of 5% of a left-out participant’s data (corresponding
to just 6-s of recordings for each subject), and the test set
the remaining 95% data from nine out of the ten participants.
This testing condition corresponded to a universal interface
based on a database of training data with the addition of
a very small amount of user-specific training. As presented
in Fig. 4c, the average accuracy of the inter-participant DOF-
and-phase discrimination based on as little as 5% participant-
specific neural information increased over two-fold with
respect to the LOOCV(1) variant, and was only slightly
lower than that of the average subject-specific classification
showed in Fig. 4a (x accuracy LOOCV(2): 90%, +/− 0.38,
x accuracy – subject-specific training: 96.1%, +/− 0.061,
respectively). Conversely, the average LOOCV(2)-based

classification accuracy when using the EMG input remained
very poor, as it was in the LOOCV(1) variant (x accuracy
LOOCV(2): 11.38%, +/− 7.21). These findings imply that
the peripheral neural information manifests universal prop-
erties across subjects. The small subject-specific information
needed to exploit this generalisation across individuals relates
to the effect of the subjects’ anatomy on the distribution of
action potential amplitudes on the skin surface.

IV. DISCUSSION
We propose a technique for decoding an intended movement
from the neural drive to the muscle. We observed that unlike
the conventional peripheral movement decoding that uses
global EMG signal features, our approach enabled a highly
accurate, near-real time classification (30-ms data processing
interval) of finger movements at any force level with success-
ful movement phase discrimination. This result was obtained
by using physiology-inspired neural drive features that
displayed different statistical properties for both different
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finger flexions and muscle contraction stages. Our pattern
recognition of EMG signals and neural drive was comple-
mented by an additional analysis of the universality of the
peripheral neural information in humans, in which we dis-
criminated the movements and their phases after excluding
or limiting the amount of participant-specific information.

A. EMG VS NEURAL DRIVE
Our study builds on previous work that applied non-invasive
peripheral myoelectric analysis to study muscle activation
patterns andmovement control [20], [24], [40], [41].Whereas
the majority of the past studies used the indirect approach
based on global features of the surface EMG to charac-
terise a movement, we studied the neural information both
indirectly with standard EMG signal analysis, and directly
by decomposing HD-EMG signals into the neural drive to
the muscles. Our results for individual finger movements
when considering only a stable portion of force production
are in agreement with recent findings reporting dexterous
movement recognition from EMG signals [43]–[46], with the
neural drive slightly outperforming the EMG input. While
the gross EMG signal is sufficient for an accurate differen-
tiation between movements at stable force level, the transient
EMG (corresponding to ASC and DESC movement phases,
or increase/decrease force levels) has non-stationary proper-
ties with variable mean and covariance [47], [48], making
reliable pattern extraction difficult when contraction force
varies. Nonetheless, control of HMIs is fundamentally based
on variable-force contractions, causing difficulties for con-
ventional EMG-based control systems. In agreement with
previous research, we showed that the information carried in
the global EMG features is insufficient for an accurate move-
ment classification during the contraction onset and relax-
ation. This confirms that in order for the EMG-based intended
movement decoding to be correct, it has to be delayed until a
stable force level is achieved and halted right after [49].While
the problem of peripheral transient movement classification
has been addressed in the past, the proposed solutions tar-
geted transient decoding during the initial movement phase of
force increase only [42], [50], provided validation for gross
movement recognition but not dexterous [51], or validated
the algorithms on a low amount of movements not exceed-
ing 2 DOFs [52], [53]. Importantly, none of the previous
studies achieved the performance we present here. Moreover,
all previous studies focused on processing windows of hun-
dreds ofmilliseconds. Our direct movement decodingmethod
based on peripheral neural activity is highly advantageous in
terms of the temporal structure and variability in comparison
with the conventional surface EMG solutions. Together with
the high-density electrode setup, our approach allows for
establishing a movement analysis framework that offers a
superior spatio-temporal resolution of muscle activity that
accompanies movement execution. In the context of daily
living, the direct neural decoding can significantly enhance
the HMI systems’ robustness. Providing an extremely high
classification accuracy of >98%, based on near-real time

30-ms processing intervals, it allows for an accurate intended
actuation of different DOFs with a minimal delay accompa-
nying the movement class switching.

B. DECODING AND TRACKING INTENDED MOVEMENT
WITH PERIPHERAL NEURAL CORRELATES
The ultimate neural determinant of motion is the firing
of spinal motor neurons that excites the contractile tis-
sue [30], [54]. Thus, at the peripheral level, muscles and
(by proxy) movements are controlled by the motor neurons’
timings of action potentials discharges. This neural informa-
tion has been successfully used for classifying gross grasps
and wrist movements [21], [27], [28]. Here, we designed a
set of features extracted from motor neuron activation tim-
ings that represents the temporal structure of motor neuron
activation. The force exerted by a muscle during a voluntary
contraction depends on the number of active motor units (i.e.
motor unit recruitment), and the rates at which the motor neu-
rons discharge action potentials (i.e. rate coding) [30], [31].
Concurrent changes in these two properties control the force
generated by the muscle: an increase (decrease) in force
follows the increase (decrease) in motor unit recruitment and
motor neuron firing rate. Recruitment is difficult to track
accurately by EMG decomposition since the decomposition
does not identify all active motor units but only a subset [32].
For this reason, our quantitative motor unit analysis showed
that a similar number of units was identified across different
finger flexion tasks (Fig. 2c-d, Appendix, Supplementary
Fig. 1.). On the other hand, rate coding can be detected with
good temporal resolution even from a small subset of identi-
fied motor units. The features we proposed for characterising
the neural drive reflect both mechanisms. The first extracted
feature was the sum of spikes, which is an estimate of the
strength of the neural drive to the muscle based on the subset
of identified units. This feature is proportional to the force
exerted by the muscle [47], and therefore contains infor-
mation for discriminating steady (PLAT) movement phases
from transient (ASC, DESC). The second feature was the
standard deviation of the timings, which measures the tem-
poral spread of the detected action potentials in the process-
ing window. This feature proved helpful in discriminating
between different contraction stages and DOFs in cases when
the sum of spikes was equal for different conditions. As for
the third and final feature, we extracted the mean inter-spike
interval in order to determine whether spikes were fired in
bursts or continuously. Recruitment information was mainly
associated to the spatial distribution of the detected motor
unit action potentials in different finger flexion tasks, thus
it was addressed with the spatial activation thresholding of
the feature space. Physiological information embedded in the
selected feature space could not be obtained from the global
EMG, which explains the large difference in performance
between the proposed method and conventional EMG classi-
fication, especially for challenging classification tasks (such
as for the same force during and increasing or decreasing
trend).
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C. TESTING THE UNIVERSALITY OF PERIPHERAL NEURAL
INFORMATION AMONG HUMANS
Understanding the neural principles underlying the genera-
tion of a voluntary action remains a major neuroscientific
goal [55]. Towards this end, we identified a set of physiology-
inspired spatio-temporal properties of motor neuron activity
that, collectively, explained force generation during various
isometric dexterous contractions. Because motor unit recruit-
ment and rate coding accompany muscle activation across
all humans [30], [48], we hypothesized that the proposed
neural feature set, which is based on these two mecha-
nisms, would generalize across participants. The relatively
accurate movement discrimination achieved with the leave-
one-subject-out cross validation using a linear classification
algorithm indicated that the selected features are associated to
movement in a similar way across the investigated subjects;
yet, we observed a decrease in performance with respect
to subject-specific training. We infer that this was due to
our feature space comprising the information related to the
spatial distribution of action potential amplitudes, which is
influenced by the volume conductor properties and therefore
by the participant’s anatomy. Eliminating this feature may
increase the generality of the model across individuals, how-
ever the discriminative power of our approachwould decrease
since motor unit recruitment cannot be easily tracked with
only temporal features. Interestingly, we found that by train-
ing the classifier on a small amount of participant-specific
data, we achieved classification accuracy close to the ideal
case of subject-specific training. In the context of neural inter-
facing, this finding implies that the extensive training periods
usually required for an accurate calibration of HMIs [56], [57]
can undergo significant reduction, shifting the paradigm
towards more effective and user-friendly systems.
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