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ABSTRACT In real-time applications, the information system may often evolves over time. Dynamic
information processing is one of main challenges in the research fields related to information processing.
Rough sets theory is an excellent information processing tool which has been applied in dynamic information
processing researches in recent years. Dominance-based rough sets approach is an outstanding generation of
rough sets theory, which can process the ordered information related to the problems ofmulti-criteria decision
analysis and multi-criteria sort. In this article, we investigate some new strategies to unleash the performance
of updating approximations in dominance-based rough sets approach further. An original concept of coarse
boundary of approximations is given, which can be applied to prune more unnecessary computation in
updating approximations further. Then a new incremental approach for updating approximations under a
dominance relation is proposed and the corresponding algorithm is designed. A numeric illustration shows
the feasibility of the approach. By extensive experimental estimation, the performance of the approach
outperforms that of its counterpart on the computational time.

INDEX TERMS Rough sets, dominance relation, coarse boundary, approximation, dynamic data.

I. INTRODUCTION
In 1982, Zdzislaw Pawlak, a Polish scientist proposed the
original rough sets theory (RST) [1]. The theory has two
essential characteristics. The one is the granularity of universe
with a discernibility relation, which produces a family of
information granule. The another is to approximate the rough
concepts (rough sets) by their lower and upper approxima-
tions in order to obtain certain and uncertain knowledge.
In recent years, it has been proved that RST is one of most
excellent information processing tools, which can be applied
widely in different application fields [2] such as faults diag-
nose, image processing, knowledge discovery, feature selec-
tion, intelligent control systems and so on [3]–[6].

However, the original RST introduced by Pawlak can not
process information with preference-ordered attributes effec-
tively. Greco et al. introduced a dominance-based rough sets
approach (DRSA) to solve multi-criteria decision analysis
and multi-criteria sort problems [7], in which a dominance
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relation was used to granulate universe instead of the dis-
cernibility relation in RST forming two families of basic
information granule, i.e., dominating set and dominated set.
In DRSA, the concepts approximated are upward unions
and downward unions of decision classes, which are char-
acterized by the corresponding lower and upper approxima-
tions, respectively [7]. In order to deal with errors, missing
values in the domains of condition attributes and the strong
inconsistency of given data, Inuiguchi et al. proposed a
variation-precision dominance-based rough sets approach
(VP-DRSA) [8] following the idea of variable precision
rough sets approach (VP-RSA) introduced by Ziarko [9].
Considering the combination of the ‘‘do not care’’ and
unknown attribute values in the incomplete information sys-
tem and the preference-ordered domains of the attributes in
the ordered information system, Yang et al. proposed a sim-
ilarity dominance relation by combining a similarity relation
and a dominance relation, then developed a generation of
DRSA for incomplete ordered information processing [10].
Qian et al. considered that some of the attribute values in
many real-time information systems may be set-valued to
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characterize uncertain information and missing information
and summarized two types of set-valued information sys-
tems. Then they introduced two dominance relations to the
two types of set-valued information systems [11]. Du et al.
proposed a characteristic-based dominance relation under the
mainframe of DRSA to process information with the losing or
absenting attribute values [12]. DRSA is an useful generation
of RST, which can be used to analyzing the ordered data.
Hence it has been applied widely in many fields related to
multi-criteria decision analysis problems solving, e.g., peri-
odic prediction, group decision, multi-criteria web mining,
business indicator analysis, public security, territorial sustain-
able policies making, text processing and so on [13]–[18].

In fact, the information from the real-world evolves over
time, which often reflects to object set, attribute set, attribute
values in an information system. The evolution of these
three aspects in the information system had been paid
many attentions by many scholars in rough sets society
[19]–[35]. Many research works had been done by based
on DRSA, e.g., Jerzy et al. realized that concept descrip-
tions from facts incrementally refine when some new facts
become available. They introduced an approach for incre-
mentally inducing decision rules and selecting the most inter-
esting representatives from the final set of rules under a
domiance-based relation [19]. For multiple criteria decision
analysis problems in the dynamic data environment, Greco
et al. proposed an incremental strategy for updaing deci-
sion rules [20]. Jia et al. proposed an incremental algorithm
INRIDDM based on DRSA to update decision rule sets when
a new object being added into the universe [21]. Comput-
ing lower and upper approximations of concepts is a key
step for applying RST in data mining and knowledge dis-
covery. The computational time taken by computing lower
and upper approximations relates directly to whether RST
can be used to solve some real-time problems with high
timeliness. In recent years, many approach for dynamically
updating lower and upper approximations of upward and
downward unions of decision classes in DRSA in dynamic
data environment were introduced e.g., Li et al. analyzed
the variations happened in the computation of approxima-
tions in DRSA when the information system varying and
then explored the dynamic mechanism of updating approx-
imations of DRSA by incremental learning. They proposed
an incremental approaches for updating approximations of
DRSA under the object set varying [23]. Luo et al. pro-
posed an incremental approach for updating approximation
of set-valued dominance-based rough sets approach when
the set of objects varying [25]. Chen et al. proposed an
incremental approach for update approximations of DRSA
while attribute values refining or coarsening in incomplete
information system [22]. Wang et al. propose an incremental
algorithm which can efficiently update approximations of
DRSA when objects and attributes increase simultaneously
[28]. Huang et al. introduced a composite dominance-based
rough sets model and redefined the lower and upper approxi-
mations of upward and downward unions of decision classes.

They proposed a matrix-based incremental approaches for
the update of approximations in composite ordered deci-
sion systems while the attribute set varies over time [33].
Guo et al. analyzed the variations happened in equivalence
classes, decision classes, conditional probability, internal
grade and external grade while the set of objects evolves over
time and explored the updating mechanisms for the concept
approximations of two types of double-quantitative decision-
theoretic rough sets models with the incremental learning
technique [34].

Although there are many excellent approaches of incre-
mentally updating approximations of rough sets, they can
hardly be directly applied to update approximations of rough
sets under a dominance relation when the object set evolves
over time except for the one and its generalization presented
in [23], [28]. The incremental approach in literature [23]
can not directly deal with the cases that the insertion or
deletion of multiple objects at the same time. If the insertion
or deletion of multiple objects are processed in the way of
single object accumulation, redundant calculation will be
caused. The aim of the paper is to improve the performance
of updating approximations under a dominance relation when
some objects adding. An original concept of coarse boundary
is introduced with respect to lower and upper approxima-
tions of downward and upward unions of decision classes
in DRSA. Combined with the coarse boundaries of approx-
imations, a new available object can be directly assigned
into some approximations according to its available informa-
tion description if no variations happen in the corresponding
coarse boundaries of approximations. Then some unneces-
sary computation in approximations updatingmay be avoided
under this case. In another case that some variations hap-
pen in coarse boundaries of approximations when an object
becoming available, the unnecessary computation in updating
the dominance relation may be pruned by lessening the scan
range. Thus there is an alternative incremental approach that
can be used to update approximations under a dominance
relation. A numeric example illustrates the feasibility of the
approach. A corresponding algorithm is developed to esti-
mate the performance of the approach by several different
data sets downloaded from UCI [36].

The rest of this article is organized as follows. Section II
reviews the definitions of information system, dominance
relation, information granule and approximations in DRSA.
In Section III, the definitions and some properties of coarse
boundaries of lower and upper approximations of downward
and upward unions of decision classes are introduced respec-
tively. In Section IV, we investigate that the variations may be
happened on coarse boundaries in dynamic data environment.
In Section V, an alternative incremental approach is intro-
duced. An algorithm of updating approximations of DRSA is
developed and analyzed in Section VI. Section VII employs a
numerical example to validate the feasibility of the approach.
The experimental estimations are introduced in Section VIII.
The paper ends with conclusions and further research work
in Section VX.
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II. DOMINANCE-BASED ROUGH SETS APPROXIMATION
In this section, we review briefly some basic notations,
concepts and terminologies of DRSA on the basis of
references [7], [37], [38].
Definition 1: An information system can be presented for-

mally as a four-tuple S = (U ,A,V , f ), in which
• U is called as universe, a non-empty finite set of objects;
• A is a set of attributes, which can be divided into a
condition attribute set C and a decision attribute set {d},
A = C ∪ {d}, in where d is a decision attribute;

• V is regarded as the domain of all attributes;
• f is an information function that can be present as
f : U × A → V such that f (x, a) ∈ Va, ∀a ∈ A and
x ∈ U , where Va is a domain of attribute a.
∀a ∈ C , let �a present a preference relation on universe

U with respect to the criterion a. ∀x, y ∈ U , x �a y means
that x is at least as good as y with respect to the criterion
a. Let P ⊆ C , if there exists x �a y for all a ∈ P, then
x dominates y with respect to P, denoted by xDPy. DP is a
dominance relation on universe U with respect to the set of
criteria P which can be presented formally as

DP = {(x, y) ∈ U × U | f (x, a) ≥ f (y, a),∀a ∈ P}.

In DRSA, the basic information granules are called as the
knowledge granules, which can be obtained by granulating
the universe with a dominance relation. Then the universe
U can be granulated by the dominance relation DP into
two families of knowledge granules under the mainframe of
DRSA, which can be presented as follows.
• D+P (x) = {y ∈ U | yDPx} is the set of the objects that
are dominating the object x with respect to P, which is
called as P-dominating set of the object x;

• D−P (x) = {y ∈ U | xDPy} is the set of the objects that
are dominated by the object x with respect to P, which
is called as P-dominated set of the object x.

The concepts (rough sets) approximated in DRSA are
the downward and upward unions of decision classes. The
universe U can be partitioned by the decision attribute d
into a family of decision classes C1,C2, . . . ,Cm. For any
decision class Cn, its upward union and downward union
present respectively as follows.

Cl≥n =
⋃
n′≥n

Cln′ (1a)

Cl≤n =
⋃
n′≤n

Cln′ (1b)

In equations (1a) and (1a), let n, n′ ∈ {1, 2, . . . ,m}. Cl≥n
is the upward union of decision class Cln which means that
if x ∈ Cl≥n then x at least belongs to class Cln; Cl≤n is the
downward union of decision class Cln which means that if
x ∈ Cl≤n then x at most belongs to class Cln.
∀P ⊆ C , the lower and upper approximations of Cl≥n with

respect to P are defined respectively as:

P(Cl≥n ) = {x ∈ U | D
+

P (x) ⊆ Cl≥n } (2a)

P(Cl≥n ) = {x ∈ U | D
−

P (x) ∩ Cl
≥
n 6= ∅} (2b)

Analogously, the lower and upper approximations of Cl≤n
with respect to P are defined respectively as:

P(Cl≤n ) = {x ∈ U | D
−

P (x) ⊆ Cl≤n } (3a)

P(Cl≤n ) = {x ∈ U | D
+

P (x) ∩ Cl
≤
n 6= ∅} (3b)

In RST, the lower and upper approximations of any rough
sets can partition the universe into three regions as positive
region, boundary region and negative region. The lower and
upper approximations of the concept Cl≥n can partition the
universe U into three regions as follows.
• Positive region of Cl≥n : PosP(Cl

≥
n ) = P(Cl≥n );

• Negative region of Cl≥n : NegP(Cl
≥
n ) = U − P(Cl≥n );

• Boundary region ofCl≥n : BnP(Cl
≥
n ) = P(Cl≥n )−P(Cl

≥
n ).

Analogously, the universe U can be divided by the lower and
upper approximations of the concept Cl≤n into three regions
as follows.
• Positive region of Cl≤n : PosP(Cl

≤
n ) = P(Cl≤n );

• Negative region of Cl≤n : NegP(Cl
≤
n ) = U − P(Cl≤n );

• Boundary region ofCl≤n : BnP(Cl
≤
n ) = P(Cl≤n )−P(Cl

≤
n ).

In addition, if n > 1 then there are the following properties.
• PosP(Cl≥n ) = NegP(Cl

≤

n−1);
• NegP(Cl≥n ) = PosP(Cl

≤

n−1);
• BnP(Cl≥n ) = BnP(Cl

≤

n−1).

III. COARSE BOUNDARIES
Following our previous work [23], we attempt to explore
some new strategies to reduce more computation than those
we had. Here we will introduce some concepts of coarse
boundaries of lower and upper approximations of upward
unions and downward unions of decision classes, respec-
tively.
Definition 2: ∀ai ∈ P and ∀x ∈ P(Cl≥n ), let ȧ

n
i present the

minimal value of the information function f (x, ai) in its value
domain, denoted by

ȧni = min{f (x, ai)|x ∈ P(Cl≥n )}.

The coarse lower boundary of P(Cl≥n ) is the vector formed by
ȧni for all ai in P, denoted by

BP(P(Cl
≥
n )) = 〈ȧ

n
1, ȧ

n
2, . . . , ȧ

n
|P|〉. (4)

Similarly, ∀x ∈ P(Cl≥n ), let ȧ
n
i present the minimal value of

the information function f (x, ai) in its value domain, denoted
by

ȧ
n
i = min{f (x, ai)|x ∈ P(Cl≥n )}.

The coarse lower boundary of P(Cl≥n ) is the vector formed by
ȧ
n
i for all ai in P, denoted by

BP(P(Cl
≥
n )) = 〈ȧ

n
1, ȧ

n
2, . . . , ȧ

n
|P|〉. (5)

In equations (4) and (5), |P| presents the cardinality of
the criterion set P. The coarse lower boundary of lower or
upper approximation of an upward union of decision classes
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may be seen as the description of available information of
a virtual or real object which is dominated by all objects
in the corresponding approximation. Then, we may regard
BP(P(Cl

≥
n )) as the description of available information of an

object x ′. No matter whether x ′ is a virtual or real object,
all objects assigned into P(Cl≥n ) are dominating x ′. If x ′ is
a real object, then the set P(Cl≥n ) is same to the set D+P (x

′),
i.e., P(Cl≥n ) = D+P (x

′). Otherwise, for all x ∈ P(Cl≥n ), it is
obvious that D+P (x) ⊂ D+P (x

′). So does BP(P(Cl≥n )). Based
on three regions divided from the universe U by lower and
upper approximations of upward union of decision classes,
the following equations can be obtained.

BP(P(Cl
≥
n )) = BP(PosP(Cl

≥
n ))

BP(P(Cl
≥
n )) = BP(BnP(Cl

≥
n ))

For the coarse upper boundaries of lower and upper approxi-
mations of upward union of decision classes, we have

BP(P(Cl≥n )) = BP(P(Cl≥n )). (6)

Assume that x ∈ P(Cl≥n ), y ∈ P(Cl
≥
n ) and y /∈ P(Cl≥n ), then

x � y and the equation (6) holds.
Next, the definition of the coarse upper boundaries of lower

and upper approximations of downward union of decision
classes is introduced in the following.
Definition 3: ∀ai ∈ P and ∀x ∈ P(Cl≤n ), let a.

n
i
present the

maximal value of the information function f (x, ai) in its value
domain, denoted by

a.
n
i
= max{f (x, ai)|x ∈ P(Cl≤n )}.

The coarse upper boundary of P(Cl≤n ) is the vector formed by
a.
n
i
for all ai in P, denoted by

BP(P(Cl≤n )) = 〈a.
n
1
, a.

n
2
, . . . , a.

n
|P|
〉. (7)

Similarly, ∀x ∈ P(Cl≤n ), let ȧ
n
i present the maximal value of

the information function f (x, ai) in its value domain, denoted
by

a.
n
i = max{f (x, ai)|x ∈ P(Cl≤n )}.

The coarse upper boundary of P(Cl≤n ) is the vector formed by
a.
n
i for all ai in P, denoted by

BP(P(Cl≤n )) = 〈a.
n
1, a.

n
2, . . . , a.

n
|P|〉. (8)

The coarse upper boundary of lower or upper approximations
of an downward union of decision classes may also be seen
as the description of available information of a virtual or real
object which is dominating all objects in the corresponding
approximation. Such as, BP(P(Cl≤n )) may be regarded as the
description of available information of a virtual or real object
x ′ which is dominating all objects assigned into P(Cl≤n ).
Based on three regions divided by lower and upper approxi-
mations of downward union of decision classes, we have two
equations as follows.

BP(P(Cl≤n )) = BP(PosP(Cl≤n ))

BP(P(Cl≤n )) = BP(BnP(Cl≤n ))

For lower or upper approximations of downward unions of
decision classes, we do not discuss their coarse lower bound-
aries any more.
Property 1: ∀n, k ∈ {1, . . . ,m}, if n < k then the follow-

ing items hold.
1) BP(P(Cl

≥
n )) � BP(P(Cl

≥

k ));
2) BP(P(Cl

≥
n )) � BP(P(Cl

≥

k ));
3) BP(P(Cl≤n )) � BP(P(Cl

≤

k ));
4) BP(P(Cl≤n )) � BP(P(Cl

≤

k )).
In where � presents the meaning of ‘‘dominated’’.

Proof: 1) If n < k , then Cl≥k ⊆ Cl≥n and P(P(Cl≥k )) ⊆
P(P(Cl≥n )). Hence, BP(P(Cl

≥
n )) � BP(P(Cl

≥

k )) holds.
Similarly, the items 2), 3) and 4) also hold.
Property 2: Let i ∈ {1, . . . , |P|} and ∀n, k ∈ {1, . . . ,m},

the following items hold.
1) If ȧni ≤ ȧ

k
i , then BP(P(Cl

≥
n )) � BP(P(Cl

≥

k ));
2) If ȧ

n
i ≤ ȧ

k
i , then BP(P(Cl

≥
n )) � BP(P(Cl

≥

k ));
3) If a.

n
i
≤ a.

k
i
, then BP(P(Cl≤n )) � BP(P(Cl

≤

k ));
4) If a.

n
i ≤ a.

k
i , then BP(P(Cl

≤
n )) � BP(P(Cl

≤

k )).
Proof: 1) ∵ ȧni ≤ ȧki for all i ∈ {1, . . . , |P|}, then there

is 〈ȧn1, ȧ
n
2, . . . , ȧ

n
|P|〉 � 〈ȧ

k
1, ȧ

k
2, . . . , ȧ

k
|P|〉 ⇔ BP(P(Cl

≥
n )) �

BP(P(Cl
≥

k )). ∴ The item 1) holds.
Similarly, the items 2), 3) and 4) also hold.
Property 3: ∀n, k ∈ {1, . . . ,m}, the following items hold.
1) If BP(P(Cl

≥
n )) � BP(P(Cl

≥

k )), then P(Cl
≥

k ) ⊂ P(Cl≥n );
2) If BP(P(Cl

≥
n )) � BP(P(Cl

≥

k )), then P(Cl
≥

k ) ⊂ P(Cl≥n );
3) If BP(P(Cl≤n )) � BP(P(Cl

≤

k )), then P(Cl
≤
n ) ⊂ P(Cl≤k );

4) If BP(P(Cl≤n )) � BP(P(Cl
≤

k )), then P(Cl
≤
n ) ⊂ P(Cl≤k ).

Proof: The proof of Property 3 can be proved easily by
based on Properties 1 and 2 and is omitted.

IV. COARSE BOUNDARIES EVOLVES OVER TIME
Some variations will be happened in the steps of approxima-
tions computing when some new object being added into the
universe [23]. Here we focus on variations happened on the
coarse boundaries of approximations under the case when a
new object becoming available. The case of some new objects
becoming available simultaneously may be regarded as the
accumulation of single object becoming available.

Let U be the original universe in the initial time of a
dynamic course. Within the dynamic course, the new object
x ′ becomes available. This means that the original universe
U is outdated. Then we need to discovery new knowledge on
the universe U ′ = U ∪ {x ′} instead of that obtained form
the universe U to ensure the timeliness of useful knowledge.
The coarse boundary of an approximation can be seen as the
description of the available information of an object nomatter
which is a virtual or real. To discuss whether variations will
be happened on coarse boundaries when a new object adding
into the universe, the available information description of the
object is introduced in the following.
∀ai ∈ P, the available information of x ′ with respect to P

can be described as

I (x ′) = 〈f (x ′, a1), f (x ′, a2), . . . , f (x ′, a|P|)〉. (9)
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As for the coarse boundaries when a new object becoming
available, we discuss unchanged and changed coarse bound-
aries respectively. In the rest of the paper, letCl ′n = Cln∪{x ′}.

A. UNCHANGED COARSE BOUNDARIES
If f (x ′, d) ≥ dn then x ′ must be assigned into Cl ′≥n . The
coarse lower boundaries remain unchanged if satisfying the
following proposition.
Proposition 1: There exists B(P(Cl ′≥n )) = B(P(Cl≥n )) if

satisfying the following items.
1) f (x ′, d) ≥ dn;
2) B(P(Cl≥n )) � I (x

′);
3) B(P(Cl≤n−1)) � I (x

′).
Proof: ∵ f (x ′, d) ≥ dn ⇒ x ′ ∈ Cl ′≥n and ∵

B(P(Cl≤n−1)) � I (x ′) ⇒ P(Cl ′≤n−1) = P(Cl≤n−1). Then,
there is P(Cl ′≥n ) = P(Cl≥n ) ∪ {x

′
}. ∵ B(P(Cl≥n )) � I (x ′),

∴ B(P(Cl ′≥n )) = B(P(Cl≥n )).
Proposition 2: If B(P(Cl≥n )) � I (x ′), then B(P(Cl ′≥n )) =

B(P(Cl≥n )).
Proof: ∵ B(P(Cl≥n )) � I (x ′) ⇒ BP(P(Cl

′≥

n )) =
〈ȧ
n
1, ȧ

n
2, . . . , ȧ

n
|P|〉 ⇒ B(P(Cl ′≥n )) = B(P(Cl≥n )). ∴

B(P(Cl ′≥n )) = B(P(Cl≥n )).
As for the coarse upper boundaries remain unchanged,
we obtain the following proposition.
Proposition 3: There exists B(P(Cl ′≤n )) = B(P(Cl≤n )) if

satisfying the following items.
1) f (x ′, d) ≤ dn;
2) B(P(Cl≤n )) � I (x

′);
3) B(P(Cl≥n+1)) � I (x

′).
In where � presents the meaning of ‘‘dominating’’.

Proof: The proof is similar to the proof of Proposition 1.

Proposition 4: If B(P(Cl≤n )) � I (x ′), then B(P(Cl ′≤n )) =
B(P(Cl≤n )).

Proof: The proof is similar to the proof of Proposition 2.

B. CHANGED COARSE BOUNDARIES
The case that coarse boundaries will be changed when some
objects becoming available is inevitable in dynamic data
environment. Here we discuss the changing trends of coarse
boundaries after an object adding into the universe.
Proposition 5: There exists B(P(Cl ′≥n )) � B(P(Cl≥n )) if

satisfying the following items.
1) f (x ′, d) ≥ dn;
2) B(P(Cl≥n )) � I (x

′);
3) B(P(Cl≤n−1)) � I (x

′).
Proof: ∵ f (x ′, d) ≥ dn ⇒ x ′ ∈ Cl ′≥n and ∵

B(P(Cl≤n−1)) � I (x ′) ⇒ P(Cl ′≤n−1) = P(Cl≤n−1). Then,
there is P(Cl ′≥n ) = P(Cl≥n ) ∪ {x

′
}. ∵ B(P(Cl≥n )) � I (x ′),

∴ B(P(Cl ′≥n )) � B(P(Cl
≥
n )).

Proposition 6: If f (x ′, d) ≥ dn and B(P(Cl≥n )) � I (x ′),
then B(P(Cl ′≥n )) � B(P(Cl

≥
n )).

Proof: ∵ f (x ′, d) ≥ dn ⇒ x ′ ∈ Cl ′≥n ). And ∵
B(P(Cl≥n )) � I (x ′), then there is at least an information

function f (x ′, ai) ≤ ȧ
n
i for i = 1, 2, . . . , |P|. ∴ B(P(Cl ′≥n )) �

B(P(Cl≥n ))holds.
Proposition 7: There exists B(P(Cl≤n )) � B(P(Cl ′≤n )) if

satisfying the following items.
1) f (x ′, d) ≤ dn;
2) B(P(Cl≤n )) � I (x

′);
3) B(P(Cl≥n+1)) � I (x

′).
Proof: The proof is similar to the proof of Proposition 5.

Proposition 8: If f (x ′, d) ≤ dn and B(P(Cl≤n )) � I (x ′),
then B(P(Cl ′≤n )) � B(P(Cl

≤
n )).

Proof: The proof is similar to the proof of Proposition 6.

V. APPROXIMATIONS UPDATING
After some new objects becoming available, the knowledge
discovered from the original information system may be
outdated. In order to obtain the timeliness and effectiveness
of knowledge, we need to recompute the approximations
of RST which is applied in our problem solving. In many
cases, the new available information just cause a small part
of approximations to be outdated. In [23], an incremental
approach for updating approximations had been introduced.
However, that approach requires the beginning from com-
puting the dominating and dominated sets of the new object
over the whole universe. In addition, it also needs to update
all approximations that are related to the dominating and
dominated sets of the new object. Obviously, we still can
prune unnecessary computation from that approach. Then,
we investigate a streamlined strategy of updating approxima-
tions of DRSA in this section.

When a new object becomes available, approximations
may be updated by adding it according to the following
theorems.
Theorem 1: P(Cl ′≥n ) = P(Cl≥n ) ∪ {x

′
} holds if satisfying

the following items.
1) f (x ′, d) ≥ n;
2) I (x ′) � B(P(Cl≤n−1));
Proof: ∵ f (x ′, d) ≥ dn ⇒ x ′ ∈ Cl ′≥n and x ′ /∈

Cl ′≤n−1. Then we have P(Cl ′≥n ) = {x ∈ U ∪ {x ′}|D+P (x) ⊆
Cl ′≥n } = P(Cl≥n ) ∪ {x ∈ {x

′
}|D+P (x) ⊆ Cl ′≥n }. And ∵ I (x ′) �

B(P(Cl≤n−1))⇒ x ′ /∈ P(Cl≤n−1)⇒ D+P (x
′)∩P(Cl≤n−1) = ∅ ⇒

D+P (x
′) ⊆ Cl ′≥n . Then, there is x ′ ∈ P(Cl ′≥n ). ∴ P(Cl ′≥n ) =

P(Cl≥n ) ∪ {x
′
}.

Theorem 2: P(Cl ′≥n ) = P(Cl≥n ) ∪ {x
′
} holds if satisfying

the following items.
1) f (x ′, d) ≥ n;
2) I (x ′) � B(P(Cl≤n−1));
Proof: ∵ f (x ′, d) ≥ dn ⇒ x ′ ∈ Cl ′≥n and x ′ /∈ Cl ′≤n−1.

Then we have P(Cl ′≥n ) = {x ∈ U ∪ {x ′}|D−P (x) ∩ Cl
′≥

n 6=

∅} = P(Cl≥n ) ∪ {x ∈ {x
′
}|D−P (x) ∩ Cl

′≥

n 6= ∅}. And ∵
I (x ′) � B(P(Cl≤n−1)) ⇒ x ′ /∈ P(Cl ′≤n−1) ⇒ x ′ ∈ P(Cl ′≥n ).
∴ P(Cl ′≥n ) = P(Cl≥n ) ∪ {x

′
}.

Theorem 3: P(Cl ′≤n ) = P(Cl≤n ) ∪ {x
′
} holds if satisfying

the following items.

146476 VOLUME 8, 2020



Z. Hong et al.: Accelerating Update of Approximations Under a Dominance Relation

FIGURE 1. A flowchart of updating approximations in DRSA by using the coarse boundaries of
approximations when new objects being inserted.

1) f (x ′, d) ≤ n;
2) I (x ′) � B(P(Cl≥n+1));
Proof: The proof of Theorem 3 is similar to the proof

of Theorem 1 and is omitted.
Theorem 4: P(Cl ′≤n ) = P(Cl≤n ) ∪ {x

′
} holds if satisfying

the following items.
1) f (x ′, d) ≤ n;
2) I (x ′) � B(P(Cl≤n+1));
Proof: The proof of Theorem 4 is similar to the proof

of Theorem 2 and is omitted.
In the cases satisfying Theorems 1, 2, 3 and 4, approxima-

tions may be updated by comparing the description of avail-
able information of the object added to their corresponding
coarse boundaries. In other cases, if these Theorems do not
work at all, then we may improve the incremental approach
introduced in [23] to update approximations.

According the concept of coarse boundary, we can obtain
the following Remark easily.
Remark 1: 1) If I (x ′) � B(P(Cl≥n )) then P(Cl≥n ) ⊂

D+P (x
′);

2) If I (x ′) � B(P(Cl≥n )) then P(Cl
≥
n ) ⊂ D+P (x

′);
3) If I (x ′) � B(P(Cl≤n )) then P(Cl

≤
n ) ⊂ D−P (x

′);
4) If I (x ′) � B(P(Cl≤n )) then P(Cl

≤
n ) ⊂ D−P (x

′).
Then Remark 2 may be used to reduce the scan range

in computing the dominating or dominated sets of the
object x ′.
Remark 2: Let n > 1,
1) If I (x ′) � B(P(Cl≥n )) then

D+P (x
′) = {x ∈ P(Cl≤n−1)|xDPx

′
} ∪ P(Cl≥n );

2) If I (x ′) � B(P(Cl≥n )) then
D+P (x

′) = {x ∈ P(Cl≤n−1)|xDPx
′
} ∪ P(Cl≥n );

and let n ≥ 1,
1) If I (x ′) � B(P(Cl≤n )) then

D−P (x
′) = {x ∈ P(Cl≥n+1)|xDPx

′
} ∪ P(Cl≤n );

2) If I (x ′) � B(P(Cl≤n )) then
D−P (x

′) = {x ∈ P(Cl≥n+1)|xDPx
′
} ∪ P(Cl≤n ).

The procedure of approximations updating based on their
corresponding coarse boundaries is shown in Figure 1. When
a new object becomes available, at first we decide whether
the coarse boundaries of approximations need to be updated
according to its basic available information description. Next,
for some coarse boundaries that need not to be updated,
the corresponding approximations may be updated by Theo-
rems 1, 2, 3 and 4. Otherwise, the dominating and dominated
set of the new object can be computed according to Remark
2. Then we use the incremental approach [23] to update the
approximations related to the new object. Finally, we obtain
the updated approximations and the procedure ends.

VI. ALGORITHM
According to the strategies of updating approximations with
their corresponding coarse boundaries, we develop a new
incremental algorithm. The main idea of the algorithm is to
reduce more computation in approximations updating than
the counterpart introduced in [23]. By using the coarse bound-
aries, some approximations may be updated by adding the
new object directly. For the cases that Theorems 1, 2, 3
and 4 do not work, the scan range in the computation of
the dominating and dominated sets may be reduced by using
the corresponding coarse boundaries. Combination of these
strategies, Algorithm 1may be designed for updating approx-
imations in DRAS when the new object adding.

In Algorithm 1, the steps 3-11 and 13-15 are to update
lower and upper approximations of an upward union of deci-
sion classes under the cases satisfying Theorems 1 and 2,
respectively. The time complexity of these steps is O(|P|).
The steps 12 and 16 are to update lower and upper approx-
imations by calling function fun-IncAlg1 under the cases
when Theorems 1 and 2 do not work, respectively. The time
complexity of function fun-IncAlg1 is O(|U ′|). Analogously,
the steps 19-26 and 28-30 are to update lower and upper
approximations of an downward union of decision classes
under the cases satisfying Theorems 3 and 4, respectively.
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Algorithm 1: A New Algorithm for Updating Approxi-
mations of DRSA When the Object Being Added
Input:
1. The new object will be added x ′;
2. Approximations and its coarse boundaries;
Output:
The updated approximations and the updated coarse
boundaries of approximations.

1 begin
2 forall n ∈ Vd do
3 if f (x ′, d) > n then
4 if I (x ′) � B(P(Cl≥n )) then
5 if I (x ′) � B(P(Cl≤n−1)) then
6 P(Cl ′≥n )← P(Cl≥n ) ∪ {x

′
};

7 end
8 if I (x ′) � B(P(Cl≤n−1)) then
9 P(Cl ′≥n )← P(Cl≥n );
10 end
11 end
12 else Call fun-IncAlg1(x ′, 1, 1,P(Cl≥n ));

if I (x ′) � B(P(Cl≤n−1)) then
13 P(Cl ′≥n )← P(Cl≥n ) ∪ {x

′
}

14 end
15 else Call fun-IncAlg1(x ′, 1, 0,P(Cl≥n ));
16 end
17 else if f (x ′, d) < n then
18 if I (x ′) � B(P(Cl≤n )) then
19 if I (x ′) � B(P(Cl≥n+1)) then
20 P(Cl ′≤n )← P(Cl≤n ) ∪ {x

′
};

21 end
22 if I (x ′) � B(P(Cl≥n+1)) then
23 P(Cl ′≤n )← P(Cl≤n );
24 end
25 end
26 else Call fun-IncAlg1(x ′, 0, 1,P(Cl≤n ));

if I (x ′) � B(P(Cl≤n+1)) then
27 P(Cl ′≤n )← P(Cl≤n ) ∪ {x

′
}

28 end
29 else Call fun-IncAlg1(x ′, 0, 0,P(Cl≤n ));
30 end
31 else
32 Do the steps 4-16 and 19-31;
33 end
34 end
35 Output the results.
36 end

Their time complexity also is O(|P|). The steps 27 and 31
are to update the corresponding approximations by calling
function fun-IncAlg1 under the cases when Theorems 3 and 4
do not work, respectively. In addition, the steps 33-35 are to
update approximations when f (x ′, d) = dn.

The function fun-IncAlg1 is designed based on the
improvement of the incremental approach introduced in [23].
Due to reduce the scan range in computing the dominating

Function fun-IncAlg1(x, i, j,X )

1 Compute D+P (x) and D
−

P (x) /* According to
Remark 2. */;

2 Compute lP(x) and uP(x) /* lP(x) and uP(x) were
defined in Definition 3 in [23]. */;

3 if i == 1 then
4 if j == 1 then
5 ComputeM /* M is Mn that was

defined in Proposition 4 in
[23]. */;

6 X ← X −M;
7 end
8 else
9 X ← X ∪ D+P (x);

10 end
11 end
12 else
13 if j == 1 then
14 Compute X /* X is Xn that was

defined in Proposition 2 in
[23]. */;

15 X ← X − X;
16 end
17 else
18 X ← X ∪ D−P (x);
19 end
20 end
21 return X ;

and dominated sets, the function fun-IncAlg1 reduce unnec-
essary computation further. Then, even though the time com-
plexity of function fun-IncAlg1 is same to the corresponding
steps in the incremental algorithm designed in [23], it is better
to certain extent.

From the analysis above, the time complexity of Algo-
rithm 1 is O(|Vd |(|P| + |U ′|)). Algorithm 1 may reduce more
unnecessary computation in approximations updating than its
counterpart, the Algorithm 2 developed in [23].

VII. A NUMERIC ILLUSTRATION
Example 1: Table 1 shows a information system, in which

U = {u1, u2, . . . , u16}, A = {a1, a2, d}, C = {a1, a2}, Va1 =
Va2 = {1, 2, . . . , 7} and Vd = {1, 2, 3}.

TABLE 1. An information table.

146478 VOLUME 8, 2020



Z. Hong et al.: Accelerating Update of Approximations Under a Dominance Relation

FIGURE 2. The scatter chart of the information system with respect to
attributes a1 and a2.

According to condition attributes a1 and a2, we can draw
a scatter chart as Figure 2.

In Figure 2, the red, blue and black points present the
objects whose decision attribute values are 1, 2 and 3, respec-
tively.

Let P = {a1, a2}, the lower and upper approximations of
upward union and downward union of decision classes can be
calculated, respectively. The results are listed as follows.

P(Cl≥3 ) = {u9, u12, u15, u16};

P(Cl≥3 ) = {u9, u11, u12, u14, u15, u16};

P(Cl≥2 ) = {u6, u7, u8, u9, u10,u11, u12,u13, u14, u15, u16};

P(Cl≥2 ) = {u3,u4, u5, u6,u7, u8, u9, u10,u11, u12,u13, u14,

u15, u16};

P(Cl≤1 ) = {u1, u2};

P(Cl≤1 ) = {u1, u2, u3, u4, u5};

P(Cl≤2 ) = {u1, u2, u3, u4, u5, u6, u7, u8, u10, u13};

P(Cl≤2 ) = {u1, u2, u3,u4, u5, u6,u7, u8, u10, u11, u12, u13,

u14}.

The coarse boundaries of approximations above are listed
as follows.

B(P(Cl≥3 )) = 〈6, 4〉; B(P(Cl≥3 )) = 〈5, 4〉;

B(P(Cl≥2 )) = 〈2, 2〉; B(P(Cl≥2 )) = 〈2, 1〉;

B(P(Cl≤1 )) = 〈2, 3〉; B(P(Cl≤1 )) = 〈4, 3〉;

B(P(Cl≤2 )) = 〈6, 6〉; B(P(Cl≤2 )) = 〈6, 6〉.

Assumed that a new object x ′ is added into the information
system, which I (x ′) = 〈4, 4〉 and f (x ′, d) = 3. The scatter
chart is updated as Fig.3.

It is not difficult to find that B(P(Cl≥3 )) need to be updated,
and the rest of coarse boundaries do not change after the
object x ′ being added. Then the updated coarse boundaries
are listed as follows.

B(P(Cl ′≥3 )) = 〈6, 4〉; B(P(Cl ′≥3 )) = 〈4, 4〉;

B(P(Cl ′≥2 )) = 〈2, 2〉; B(P(Cl ′≥2 )) = 〈2, 1〉;

B(P(Cl ′≤1 )) = 〈2, 3〉; B(P(Cl ′≤1 )) = 〈4, 3〉;

FIGURE 3. The scatter chart of the information system with the object x ′ .

B(P(Cl ′≤2 )) = 〈6, 6〉; B(P(Cl ′≤2 )) = 〈6, 6〉.

The lower and upper approximations of upward union and
downward union of decision classes can be updated, respec-
tively. The results are listed as follows.

P(Cl ′≥3 ) = {u9, u12, u15, u16};

P(Cl ′≥3 ) = {x ′, u9, u11, u12, u14, u15, u16};

P(Cl ′≥2 ) = {x ′, u6, u7, u8, u9, u10, u11, u12, u13, u14, u15,

u16};

P(Cl ′≥2 ) = {x ′, u3, u4, u5, u6, u7, u8, u9, u10, u11, u12, u13,

u14, u15, u16};

P(Cl ′≤1 ) = {u1, u2};

P(Cl ′≤1 ) = {u1, u2, u3, u4, u5};

P(Cl ′≤2 ) = {u1, u2, u3, u4, u5, u6, u7, u8, u10, u13};

P(Cl ′≤2 ) = {x ′, u1, u2, u3, u4, u5, u6, u7, u8, u10, u11, u12,

u13, u14}.

VIII. EXPERIMENTAL EVALUATIONS
In order to estimate the performance of Algorithm 1, in this
section some experiments are designed and executed. These
experiments are to compare the computational time of updat-
ing approximations of DRSA taken by it and its coun-
terpart, the incremental algorithm designed in [23]. Here
we call them as BAlgorihm and IAlorithm, respectively.
The platform of experiments is a personal computer with
GNU/Linux Debian 9 (Stretch) and Intel(R) Core(TM) i5
CPU and 4 GB memory. BAlgorihm and IAlorithm are coded
in GNU Octave, version 4.0.3. The Datasets of experiments
are downloaded from machine learning data repository, Uni-
versity of California at Irvine [36]. The Datasets include
Abalone, Car Evaluation, Ionosphere and Sonar. The basic
information of them are listed in Table 2.

For satisfying the experimental requirements, we select
some attributes from these Datasets to act as the condition cri-
teria and the decision criterion, respectively. Such as Dataset
Ablone, we select Length, Diameter, Height, Whole weight,
Shucked weight, Shucked weight and Shell weight as the
condition criteria, meanwhile, we select Rings as the decision
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FIGURE 4. Comparison of the computational time taken by IAlgorithm and BAlgorithm versus the objects added on four
different datasets.

TABLE 2. The basic information of four datasets in the experiments.

criterion. The similar operations has been done on other
Datasets.

In order to obtain the more convincing experimental
results, we scaled Car Evaluation two times, Ionosphere
and Sonar five times to better results in the experiments,
respectively. We divided four Datasets of experiment into
five subsets of same size and called them as Dataset 1, . . .,
Dataset 5, respectively. For each of these four experiment
Datasets, we united Dataset 1, Dataset 2, Dataset 3 and
Dataset 4 as the training set to compute approximations and
the corresponding coarse boundaries. We select randomly 1,
10, 20, 30, 40 and 50 objects fromDataset 5 as the new objects
being added, respectively. IAlgorithm and BAlgorithm were
employed to update approximations of DRSA when the new
objects adding. The trends of computational time taken by
two algorithms are shown respectively in Figure 4.

Figure 4 shows the trends of the computation time taken
by IAlgorithm andBAlgorithm on four experimental Datasets,
respectively. In each of four sub-figures, the horizontal axis
is related to the number of objects added while the vertical
axis concerns the computational time. From Figure 4, one can
see that the computational time taken by IAlgorithm and BAl-
gorithm increase monotonically with the increasing number
of objects added. As shown in each sub-figure of Figure 4,

BAlgorithm is always faster than IAlgorithm. Moreover, the
difference of computational time taken by IAlgorithm and
BAlgorithm enlarges with the increasing of the number of
objects added.

The results from experiments show that the performance
of BAlgorithm outperforms that of IAlgorithm in updating
approximations in dynamic data environment. Hence, BAlgo-
rithm is more effective than IAlgorithm for updating approx-
imations of DRSA when some objects becoming available.

IX. CONCLUSION AND FUTURE WORK
How to obtain knowledge effectively and timely from the
dynamic data is a hot issue in the research field related to data
mining, which has been paid highly attention in recent years.
The ordered data is often used to present people’s preference
in daily lives. The analysis of ordered data is one of main
tasks for multi-criteria decision making and multi-criteria
sort. DRSA is an effective tool to the ordered data mining.
Approximations computing is one of main steps for applying
RST in data mining and knowledge discovery, which is the
starting point to attribute reduction and rule extraction. In
this article, an alternative incremental approach for updating
approximations of DRSA when some new objects becoming
available. Themain innovation is to give the concept of coarse
boundaries of approximations of DRSA. According to the
coarse boundaries, we can reduce more unnecessary com-
putation in approximations updating further. By the experi-
mental estimation and the numeric illustration, we can draw
conclusions as follows: (1) The approach has the feasibil-
ity in updating approximations of DRSA; (2)The perfor-
mance of the approach outperforms that of its counterpart;
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(3) The approach can be applied in updating approximations
of DRSA when multiple objects adding. Due to the incre-
mental algorithm can not directly be used to massive big pro-
cessing, then our future work is to design the corresponding
parallel algorithm for updating approximations of DRSA on
cluster and multi-core platforms.
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