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ABSTRACT We present a hybrid framework for the modeling and rendering of both homogeneous and
inhomogeneous textures with high realism by combining force and vibration feedback. Given a real texture
sample, we first capture a force-feedback model using photometric stereo, which is one of the most
accurate algorithms for 3D surface reconstruction in computer vision. This method allows us to model
the micro-geometry of the surface and represent it by a two-dimensional (2D) height map in a very high
resolution to the order of 10µm. We also provide a new force rendering algorithm adequate for such an
accurate and fine texture model. By a user study, we verify that the proposed force modeling and rendering
algorithms are suitable for our hybrid texture framework. Second, we model the homogeneous and stationary
vibrational characteristics of the real texture sample using the prevalent LPC (linear predictive coding)-based
method. Third, we merge the force and vibration feedback models appropriately into a hybrid framework
on the basis of their spectral characteristics. Last, another user study that assessed the perceived similarity
between real textures and their virtual simulations demonstrates that our hybrid framework can achieve a
high level of realism. To our knowledge, our framework is unique in that it can model inhomogeneous (in
additional to homogeneous) real textures and render them in a virtual environment with high realism by
providing both force and vibrational sensory cues.

INDEX TERMS Haptics, texture, force feedback, vibration feedback, hybrid, perception, realism.

I. INTRODUCTION
In haptics research, texture is one of the most important prop-
erties. Haptic texture generally refers to the feel experienced
when touching the fine structural irregularities on the surface
of an object. As texture greatly impacts the user’s haptic expe-
riences, modeling and rendering a haptic sensation identical
to that of the real texture have been one of the major research
topics in haptics for almost two decades.

However, it is nearly impossible to formulate the physi-
cal process of generating stimuli for haptic texture because
of the complexity of the physics involved. Consequently,
researchers have developed different types of approxima-
tion model, such as geometry-based deterministic force
models [1]–[5], stochastic models [6]–[8], and data-driven
acceleration models [9]–[14]. Despite such focused research
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endeavors, we are still void of standard methods for mod-
eling and rendering realistic haptic textures similar to
real textures. It is largely due to the fact that haptic
texture perception consists of multiple perceptual dimen-
sions, such as roughness-smoothness, warmness-coldness,
hardness-softness, and stickiness-slipperiness [15]. Further-
more, it remains very challenging to model and render inho-
mogeneous texture in which the textural property depends on
the contact position.

For homogeneous texture, a data-driven approach that
captures and renders vibrational contact acceleration based
on Linear Predictive Coding (LPC; adapted from technolo-
gies for speech) is the current state of the art [12], [16],
[17]. This method aims to create a vibration profile that has
the frequency spectrum identical to that of the real contact
acceleration that occurs when the user scans the textured
object using a rigid tool held in her/his hand. By doing so,
this method effectively simulates the sensation of roughness

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 149825

https://orcid.org/0000-0003-0290-2983
https://orcid.org/0000-0002-5889-1083
https://orcid.org/0000-0003-0677-4421


S. Shin, S. Choi: Hybrid Framework for Haptic Texture Modeling and Rendering

of the target object. Several studies demonstrated that the
LPC-based method is appropriate for the haptic modeling and
rendering of homogeneous texture.

A problem is that extending vibration-based data-driven
methods to inhomogeneous texture is not straightforward.
In this case, contact acceleration data must be collected and
modeled locally at every position, or at least in a very dense
array of surface points. It increases the amount of real contact
data exponentially and also the size and complexity of a
data-driven model commensurately.

To solve this problem, we propose a hybrid haptic texture
modeling and rendering framework using force and vibration
feedback in which both feedback models are captured from
real textured surfaces. Our framework is consistent with the
duplex theory of tactile texture perception [18]. The theory
indicates that tactile texture perception is mediated by a
combination of vibrational cues for fine texture and spatial
cues for coarse texture. Inspired by this theory, we break the
problem of modeling inhomogeneous texture into two steps:
one for a coarse inhomogeneous component of the texture,
and the other for a fine homogeneous vibrational component.
The former is rendered by force feedback, and the latter is by
vibration feedback.

A. RELATED WORK
For haptic texture rendering, most early algorithms used
geometry profiles for force feedback based on the two sem-
inal studies by Minsky [1] and Massie [3]. In 1995, Minsky
showed that rendering only the lateral force computed from
the spatial gradient of a texture height map can elicit different
roughness sensations. A year later, Massie demonstrated that
texture sensations can be invoked by varying the magnitude
of normal force as the user strokes a textured surface. These
findings have inspired the designs of many texture rendering
algorithms using force (kinesthetic) feedback, e.g., [4], [5],
[19]–[22]. These force-feedback texture rendering algorithms
are generally adequate for rough textures, even those includ-
ing visible geometric features.

In contrast, haptic modelingmethods for the geometric tex-
tural profiles of real surfaces have not been actively studied,
although it is the first step to re-create real textures in a virtual
environment. The methodology for texture geometry capture
generally relies on a profilometer (or a similar device). For
example, Costa et al. used an optical profilometer to scan rock
surfaces [23], andWall et al. used a linear variable differential
transformer to measure the displacement of a probe moving
on a surface [24]. Pai et al. developed a wireless haptic texture
sensor (WHaT) equippedwith a 3D accelerometer, a 1D force
sensor, and a visual marker [25]. Using a different approach,
Ikei et al. relied on photography to retrieve the height map
of a textured surface [26]. This image-based approach is
convenient and greatly faster than the mechanical scanning
methods, but it has not been popular due to the low modeling
resolution and accuracy of the early apparatus and algorithms.

Vibration is also an important feature in haptic texture
perception. Okamura et al. proposed a texture rendering

algorithm based on measured vibrations [9]. In this method,
force rendering for a virtual surface was added by a vibration
in the form of decaying sinusoidal pulses to simulate the
exploration of real surfaces, such as tapping and stroking with
a rigid stylus. Since then, manual surface exploration using a
handheld sensorized stylus has been the dominant data col-
lection method for data-driven texture modeling. This is inex-
pensive and easy to use, and also allows freeform scanning of
surface. Using WHaT [25], Lang and colleagues presented
a series of studies for data-driven haptic modeling and ren-
dering in virtual environments [10], [27], [28]. Another suc-
cessful approach proposed by Kuchenbecker and colleagues
is based on LPC, and their method generates virtual textures
with a very high level of realism in terms of the roughness
of isotropic micro-textures [29]. They consistently improved
their methods [12], [16], [17] and opened a public repos-
itory of one hundred vibration-based texture models [30].
While its application is limited to homogeneous textures, the
LPC-based method can simulate quite realistic virtual tex-
tures. Recently, Jeon and his group extended the LPC-based
model to anisotropic texture by using a two-dimensional
velocity vector as an additional input feature [13]. Contact
acceleration data is collected and segmented based on the
velocity vector. Their method effectively handles vibrations
induced by anisotropic textures.

B. OUR APPROACH
We call our approach ‘hybrid’ because it integrates both
force and vibration feedback to deliver more realistic tex-
ture experiences. According to the duplex theory of texture
perception [31], a haptic texture sensation is a combina-
tion of two signals transferred through two neural channels.
Fine textural features (e.g., particle size < 100µm) induce
contact vibration when the user scans the textured surface.
The Pacinian (PC) mechanireceptive channel mediates this
contact vibration in the form of a temporal signal. Conversely,
coarse textural features (e.g., particle size ≥ 100µm) at bare
finger contact are encoded in terms of their spatial layout
through the SA (slowly adapting) 1 channel that has Merkel
receptors as the end organs. In the tool-mediated exploration,
the user can perceive the coarse texture information by tem-
porally integrating the force cues generated during scanning.
This theory inspired us to develop and render two respective
models for more realistic haptic texture rendering.

To model the potentially inhomogeneous micro-geometry
of a real surface, we rely on photometric stereo, where the
surface geometry is estimated by analyzing the correspon-
dence among different images photographed using a fixed
camera under precisely controlled lighting conditions. Pho-
tometric stereo can capture high-frequency tiny variations on
the target surface. Since the boundary between coarse and
fine textural features is approximately 100µm [31], such an
accurate algorithm is still required for the modeling of coarse
textures. A 3D profilometer, although extremely accurate,
is not attractive for our purpose due to its high price and slow
scanning velocity (in the order of 10−3mm/s). We designed
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and built a custom apparatus to apply photometric stereo to
texture modeling. A new force-feedback rendering algorithm
for our high-resolution geometry is proposed as well.

To model the contact vibration of texture scanning,
we adopt the LPC-based method. As described earlier, this
method is the state of the art for modeling homogeneous
haptic textures induced by fine textural features using con-
tact vibration signal that exhibits stationarity. To extend
this method to inhomogeneous textures, we filter out the
non-stationary components of the vibration signal induced
by textural inhomogeneity. This non-stationary component
is included in the micro-geometry model that we capture by
photometric stereo.

Then we integrate the two models to recreate virtual tex-
tures with high resolution and realism. Our hybrid framework
was evaluated by two user studies: one for the rendering
performance of our force-feedback algorithm and the other
for the realism achieved by our framework.

Themain contributions of our work are: 1) the combination
of an image model and a vibration model for haptic texture
modeling, 2) the integrated texture rendering algorithm using
both force and vibration feedback, 3) one user study to select
the most appropriate force-feedback rendering algorithm for
hybrid texture renderingl, and 4) the other user study to
evaluate our hybrid framework in terms of realism, i.e., the
similarity between real and virtual textures.

II. DATA COLLECTION AND MODELING
For force feedback in our hybrid framework, we construct
the height map of a real texture material and also estimate
its stiffness and friction coefficients. For vibration feedback,
we model the contact vibration signal using a finite filter
by LPC. Each modeling process is independent for better
usability.

Multi-modal modeling and rendering are prone to exag-
geration. Both force and vibration signals are captured from
a single touch interaction, and they may include common
components. We prevent this problem of overcompensation
by delineating the two signals at the critical frequency fc in
the frequency domain. Using an iterative process, fc is set
to the maximum frequency that contains the non-stationary
components of contact vibration. The frequency bandwidth
of force signal is limited to be below fc, whereas the texture
properties above are handled by the vibration signal.

We describe each modeling process in this section.

A. CONTACT VIBRATION MODELING
To model and synthesize contact vibration signals, we use
the LPC-based method [29]. LPC is standard in speech pro-
cessing for its good encoding quality at a low bit rate. LPC
expresses a speech signal using a linear filter and enables the
reconstruction of a signal that has the same spectrum with
the original signal. This advantage is attractive to many appli-
cations in which spectral information is important, including
haptic texture rendering.

FIGURE 1. A motorized texture scanning device. The vibration induced by
the interaction between the stylus and the material is captured during
scanning.

LPC assumes that the input signal is stationary and so
is applicable to only homogeneous textures. Such a texture
results in contact vibration signals of the same statistical
properties regardless of contact position or scanning trajec-
tory. However, many real textures exhibit inhomogeneity,
and it induces a non-stationary vibration signal. If the target
texture is inhomogeneous but anisotropic, we can apply the
velocity-based data segmentation method [13] owing to the
texture’s regularity. The segmented data can be effectively
modeled and rendered by an LPC-based method. This idea
is difficult to be extended to general inhomogeneous tex-
tures because the number of segments and the corresponding
models may increase indefinitely. To tackle this problem,
we extract only the stationary component of a contact vibra-
tion signal using a high-pass filter and model it using LPC.
The non-stationary component of the texture is handled by
force feedback (Section II-B).

To collect contact acceleration signals, we use a motor-
ized texture scanning device [14]. Manual data collection
using a sensor-equipped handheld tool demonstrates good
performance for modeling isotropic and homogeneous tex-
tures [25]. For inhomogeneous textures, however, it may be
very difficult for the user to keep the scanning velocity and
normal force constant during data collection. This problem is
not the case for our texture scanning device of high accuracy
and repeatability.

Figure 1 depicts our texture scanning device. A stylus
pen is moved by a linear motor (MX80L, Parker). The nor-
mal force is adjusted by changing the mass placed on the
shaft. Contact vibration is measured using an accelerometer
(8740A500, Kistler). Since the contact acceleration depends
on the normal force and the tangential velocity, we collect
data for various normal forces (0.85, 1.0, 1.15, and 1.3N)
and tangential velocities (1.5, 3.0, 4.5, · · · , 12 cm/s) in a grid.
For each combination of the two variables, we build an LPC
model using the collected contact acceleration data.

The collected data is high-pass filtered to remove the
non-stationary component originated from the texture inho-
mogeneity. The cut-off frequency of the high-pass filter is
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FIGURE 2. A diagram of LPC modeling from [29]. The model P(z) contains
a linear transfer function H(z) that takes the acceleration history a(k − 1)
to generate â(k), the estimate of a(k).

determined by iterative search. We find the smallest cut-off
frequency for which the resulting filtered signal passes the
augmented Dickey-Fuller test, a widely used test for signal
stationarity [32]. The cut-off frequency depends on the tex-
ture, varying generally in a 50–150 Hz range.

We use the same LPC-based model proposed by Kuchen-
becker’s group [29]. The filtered contact acceleration signal
is fed to the LPC modeling procedure as shown in Figure 2.
The goal is to find a linear filter that predicts the next sample
of contact acceleration a(k) from the previous acceleration
values. To this end, we need to find an optimal filter vector h
that produces the minimum value of e(k):

e(k) = a(k)− â(k) = a(k)− hT a(k − 1), (1)

where a(k−1) is a vector of the previous contact acceleration
samples. We use the vector size of 25 since the performance
is saturated above it [29].

For the mean-squared error, h can be found by solving
the Wiener-Hopf equation [33]. In practice, we can use
the Levinson-Durbin algorithm [34]. This filter-optimization
problem is solved for each combination of normal force and
tangential velocity. The resulting filters are used for the LPC
texture model. More details can be found in [29].

B. GEOMETRY MODELING
Texture sensations for a virtual surface can be rendered
by perturbing the magnitude or direction of the surface
normal force. Therefore, the texture quality rendered by a
force-feedback device is highly correlated with the accuracy
and resolution of the texture height map. We use photometric
stereo to model the micro-geometry of a real surface.1

One of the most important requirements for photometric
stereo is the precise control of lighting condition. The most
common hardware for this is a lighting dome with multiple
light sources installed at fixed locations. Generally, a light-
ing dome is a dedicated and expensive apparatus covering
a large workspace for an object of arbitrary shape. Instead,
we designed and custom-built a small lighting dome shown
in Figure 3, suitable for relatively small and flat texture

1Our early work on using photometric stereo for haptic texture modeling
and rendering was presented in the 2018 IEEEHaptics Symposium [35]. The
main algorithms of [35] are summarized in Section II-B and II-C, along with
some improvements.

FIGURE 3. Apparatus for texture modeling. The LEDs (marked by orange
circles) are installed inside the polycarbonate dome.

samples. We also use an ordinary digital camera for better
reproducibility of the system.

Our lighting-dome has a diameter of 15 cm, which is
sufficient to cover most haptic texture samples. Thirty power
LEDs are installed at specific locations based on the rela-
tionship between illumination angle and reconstruction error.
According to an empirical experiment [36], the modeling
error of photometric stereo is the lowest when the illumina-
tion angle from the lighting sources onto the target object is
55◦ for general objects. The similar holds for the illumination
angle of 40 and 70◦. Therefore, we place light sources at three
elevations of 40, 55, and 70◦. This configuration is repeated
for every 36◦ in azimuth, resulting in 30 different lighting
conditions. Each power LED (1 W) is controlled by a driver
circuit to provide sufficient and equivalent illumination.

To construct a height map, we use a photometric stereo
algorithm in [37]. This method works well with a regular
DSLR camera and multiple flashlights.

Before constructing a height map, we need to estimate the
radiance (incident light intensity) function L(x, y) at position
(x, y) on the surface. For this, we use a blank white paper
as the surface material. This supports the assumption that
the normal vector and the albedo (reflection coefficient) are
constant over the surface. Therefore, a photographed image
of the paper represents the radiance function.

Using the radiance function L(x, y), the photographed light
intensity I (x, y) can be represented by

I (x, y) = β(x, y)L(x, y), (2)

where β(x, y) is a bidirectional reflectance distribution func-
tion (BRDF). The BRDF is a function that defines light
reflectance and depends on the surface parameters such as
albedo, normal vector, incident light vector, and view vector.
Several distinct models exist for BRDF; we use the Lamber-
tian model as it is effective for perfectly diffuse surfaces2

2Diffuse reflection occurs on a non-glitter and irregular surface, which is
the main target of haptic texture modeling and rendering.
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despite its simple form [37]. Specifically,

β(x, y) = α(x, y)n(x, y)T l(x, y), (3)

where α is the albedo, n is the normal vector, and l is the
incident light vector. l is determined using the lighting dome.
Thus, α and n are the only unknowns in (2) and (3), and they
need to be determined at each point (x, y).

For robust estimation of α and n, we use multiple pho-
tographs taken under N lighting conditions (N = 30).
The problem is then reduced to an optimization problem as
follows:

(α(x, y), n(x, y)) = argmin
N∑
i=1

|Ii(x, y)− α(x, y)

×n(x, y)T li(x, y)L(x, y)
∣∣∣2 . (4)

To solve this optimization problem, we initialize n =
(0, 0, 1) and then find α using singular value decomposition
(SVD). A new n is then computed with this α using SVD.
This procedure is terminated until the changes in n and α
become negligible. In most cases, 20 iterations are sufficient
to achieve convergence.

Finally, the normal vectors n(x, y) are integrated over the
surface to construct the height map h(x, y) [38].

Detailed results of modeling real texture geometry using
the above lighting dome and photometric stereo algorithm are
provided in [35]. An analysis of the results demonstrated that
the modeling resolution is in the order of 10µm.

C. STIFFNESS AND FRICTION MODELING
The stiffness and friction of a material are another major
haptic properties, and their behaviors should also be acquired
from real materials [39]. In our hybrid texture framework,
we use the Hunt-Crossley model for stiffness and the Dahl
friction model for friction. We use these relatively simple
physics-based models because texture samples are usually
thin and allow only shallow deformation. More complex and
realistic data-driven methods for general objects would be an
overkill for our purpose.

For data collection, we use our texture scanning device
with somemodifications. Tomodel stiffness, we need profiles
of reaction force vs. normal deformation measured from real
materials. As shown in Figure 4, we add a linear variable
differential transformer (LVDT; LDI-119, Omega Engineer-
ing) to the stylus for accurate position sensing in the normal
direction and a small, light, accurate triaxial force sensor
(Nano 17, ATI Technology) for reaction force sensing. For
measurement, we lift the stylus slightly above a texture sam-
ple and then drop it. This procedure is sufficient to capture the
data of shallow deformations. This is an improvement over
the measurement method reported in our previous work [35],
leading to better handling of thin texture samples.

To collect friction-related data, such as tangential position,
velocity, and force, we use the same hardware as in Figure 1
with the force sensor. We repeat the stop-and-move action

FIGURE 4. An LVDT is attached to the texture scanning device to collect
force profiles for stiffness estimation.

FIGURE 5. Tangential velocity and acceleration profiles used to collect
friction-related data.

of the stylus to collect data in the pre-sliding and sliding
regimes. Generally, the pre-sliding distance is limited to sev-
eral micrometers. To acquire sufficient data in the pre-sliding
regime, we limit the acceleration and velocity in the tangen-
tial direction to be very low for the first few seconds. After
that, we increase the acceleration to measure data samples
at various tangential velocities (Figure 5). This profile con-
tains all the frictional states, supporting the estimation of all
parameters in the Dahl model.

The Hunt-Crossley model has the form

FHC (t) = KznN (t)+ Bz
n
N (t)żN (t), (5)

where K and B are the stiffness and damping parameters
of the object, zN (t) is the normal displacement, and n is a
constant exponent between 1 and 2. This model has been
successful in capturing the deformation behavior for haptics
[40], [41] by virtue of its balanced performance between
modeling accuracy and the ease of parameter identification.

For parameter identification, we use the iterative
estimation algorithm proposed by Haddadi and Hashtrudi-
Zaad [42]. We supply the collected input data to the identi-
fication process. As the stylus for data collection can move
only in the vertical direction (Figure 4), the response force can
be assumed to result solely from the stiffness and damping.
In addition, we discard the input samples that have force
amplitudes higher than 2N as we want to model only the
deformation of the fine texture geometry near the surface, not
the whole deformation of the object. Users usually exert no
more than 2N of normal force when they stroke the surface
of an object [43], so we use this value as the cut-off point.

The Dahl friction model has been frequently used in hap-
tics applications. This simple but useful model can portray the
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behaviors of various real frictional responses accurately with
reasonable complexity. The original form of the Dahl model
is given by

dFD
dxT
= κ

(
1−

FD
FC

sgn(vT )
)γ
, (6)

where FD is the Dahl friction force, xT is the tangential
displacement, vT is the tangential velocity, κ is the stiffness
coefficient, and γ is a constant exponent. FC is the Coulomb
friction force, such that

FC = µkFnorm, (7)

where µk is the Coulomb friction coefficient and Fnorm is
the normal load. For efficient computation, we employ a
discrete-time representation of the Dahl model [44], such that

FD(t + 1) = FC (t)sgn(vT (t))+ (FD(t)− FC (t)sgn(vT (t)))

· e−
κ

FC (t) |xT (t)−xT0|, (8)

where xT0 is the initial displacement, which is reset to xT (t)
when vT (t) becomes zero. As the original Dahl approach
focuses on modeling near-static friction, it does not consider
the tangential velocity. To account for the effect of dynamic
friction, we add a simple viscous term after completing the
calculation of the Dahl friction as other researchers do [45].
Then the total friction FF (t) becomes

FF (t) = µbvT (t)+ FD(t)

= µbvT (t)+ FC (t − 1)sgn(vT (t − 1))

+ (FD(t − 1)− FC (t − 1)sgn(vT (t − 1)))

· e−
κ

FC (t−1) |xT (t−1)−xT0|, (9)

were µb is the viscous friction coefficient.
Assuming the target surfaces are flat, the force readings in

the recorded force profile are divided into the normal load
Fnorm and the tangential friction force FF .
We identify the parameters in (9) separately according

to the movement state (pre-sliding or sliding), as shown in
Algorithm 1. When the tangential velocity of the stylus is
below Tv1 = 0.5mm/s, we consider that the system is in
the pre-sliding regime. In this regime, the tangential displace-
ment |x(t) − x0| is very small, and (9) can be approximated
by a linear function of κ and fD(t) using the Taylor expansion
of the exponential term. Then (9) is simplified to

FF (t) ' µbvT (t)+ FC (t − 1)sgn(vT (t − 1))

+ (FD(t − 1)− FC (t − 1)sgn(vT (t − 1)))

·

(
1−

κ

FC (t − 1)
|xT (t − 1)− xT0|

)
. (10)

If we replace FD(t − 1) with FF (t − 1)−µbvT (t − 1) and
FC (t − 1) with µkFnorm(t − 1), then we can write κ as

κ =
µkFnorm(t − 1)
|xT (t − 1)− xT0|

·
FF (t)− FF (t − 1)− µbvT (t)+ µbvT (t − 1)
sgn(vT (t − 1))− FF (t − 1)+ µbvT (t − 1)

. (11)

Algorithm 1 Friction Parameter Estimation Algorithm
1: procedure Estimator(κ0, µk0, µb0, Tv1, Tv2, TC )
2: κ ← κ0
3: µk ← µk0
4: µb← µb0
5: repeat
6: read current vT , xT , xT0,Fnorm,FF
7: if vT ≤ Tv1 then
8: κ̂ ← estK(vT , xT , xT0,Fnorm,FF , µk , µb)
9: 1κ ← κ̂ − κ

10: κ ← κ̂

11: else if v ≥ Tv2 then
12: µ̂k , µ̂b← estM(vT , xT , xT0,Fnorm,FF , κ)
13: 1µk ← µ̂k − µk
14: 1µb← µ̂b − µb
15: µk ← µ̂k
16: µb← µ̂b
17: end if
18: until 1κ,1µk ,1µb < TC
19: return κ, µk , µb
20: end procedure

As we can read the values of FF , Fnorm, vT from the force
sensor and the optical encoder of the linear motor, we use
(11) to return κ in the estK function in Algorithm 1.
In the sliding regime where the tangential velocity exceeds

Tv2 = 3mm/s, the exponential term e−
κ

FC (t) |xT (t)−xT0| in (9)
converges rapidly to zero. In this case, the friction force can
be approximated by the sum of the Coulomb friction and the
viscous friction, as follows:

FF (t) ' µbvT (t)+ µkFnorm(t − 1)sgn(vT (t − 1)). (12)

This equation is included in the estM function in Algorithm 1
to determine µk and µb using the least squares method.

The algorithm stops the repetition when the changes for all
the three parameters fall under TC = 10−9.

III. HYBRID TEXTURE RENDERING
After we construct all the models as described in Section II,
we use these models to render a hybrid haptic texture. Our
hybrid texture rendering algorithm consists of three steps: one
step that generates a force signal, another step that synthesizes
a vibration signal, and the last step that adjusts the force and
vibration signals so that their combination does not lead to an
exaggeration and generates a feel that is most similar to the
target real texture. Figure 6 shows the whole processes of our
texture rendering framework.

For tool-mediated interaction, we attach a custom alu-
minum stylus-shaped grip to a force-feedback device
(Omega.3 by Force Dimension) as shown in Figure 7).
A Haptuator (BM3C) by TactileLab is installed for vibration
generation inside the grip. A sharp tooltip Under the grip
enables the user to interact with real textures (for user studies)
in the same manner for virtual textures.
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FIGURE 6. Rendering process of the presented framework. First, the contact position information and its derivatives are fed into a force generation
algorithm and LPC based model. Our framework uses a force generation algorithm and an LPC-based model simultaneously to synthesize both
force-feedback and vibrotactile-feedback signal. The force-feedback signal is low-pass filtered to emphasize the inhomogeneous characteristic of
textures. The vibrotactile signal is high-pass filtered to delivers texture perception correlated with high-frequency vibration. The shared cut-off frequency
fc was determined empirically to minimize the cross-talk between two signals from the viewpoint of the duplex theory of texture perception.

FIGURE 7. Our texture-rendering hardware setup.

Omega.3 device is chosen for its high structural stiffness
and spatial resolution. These features improve texture render-
ing stability, which is a problem in haptic texture rendering
using a force-feedback device [5], [21], [46]–[48]. The Hap-
tuator has a flat amplitude response and strong output, which
contribute to precise vibrotactile rendering. The voltage com-
mand to the Haptuator for a target vibration amplitude is
computed using an experimentally-obtained linear calibration
function.

A. FORCE GENERATION ALGORITHMS
Generally, force-feedback texture rendering algorithms elicit
the rough feel of a virtual surface by perturbing the normal
response force. However, they are prone to rendering instabil-
ity when the normal force fluctuation makes the interaction
active in terms of energy flow [46], [47], leading to the
occurrence of oscillation or vibration. Such artifacts greatly
reduce the realism of virtual exploration. Therefore, a critical
requirement in force-feedback texture rendering is to main-
tain an optimal balance off between realism and stability.

We calculate the texture rendering force as follows. We
assume that a flat and thin texture material is overlaid on a
stiff base object. First, we calculate the response force FO
with no consideration of texture:

FO = FM + FB + FF , (13)

where FM is the stiffness force from the texture material,
FB is the stiffness force from the base object under the tex-
ture, and FF is the friction force. FM is computed using the
Hunt-Crossleymodel in (5) using the normal displacement zN
into the material. The base object force FB is calculated using
a linear springmodel. This simplemodel is sufficient as we do
not consider the deformation of the base object. The stiffness
coefficient of the base object is set to half the maximum linear
stiffness allowed by the force-feedback device. FB has the
same direction as the surface normal. The friction force FF
is computed using the Dahl model, and its direction is the
opposite of the user’s tangential moving direction.

After computing FO, we apply texture rendering to gen-
erate the final force output Ft . In Figure 8, we present two
representative methods. AlgorithmA renders a virtual texture
by aligning the direction of the normal force to the gradient
of the texture height map [49]. That is,

Ft = |FM |nt + FB + FF , (14)

where nt is the normal vector perpendicular to the textured
surface and equivalent to the gradient ∇h(x, y) of the texture
height map h(x, y). As the texture height map varies quickly,
algorithm A elicits the sensation of roughness effectively.
However, it is quite prone to unstable artifacts [46]–[48].

The next one, algorithm B, is given by

Ft = FM + FB + (1− h(x, y))FF , (15)
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FIGURE 8. Schematic diagrams for texture rendering algorithms with force feedback. Circles represent the position of the haptic tool (HIP: Haptic
Interface Point) in the virtual space. Red thick straight lines represent the nominal surface. Blue thick straight lines indicate the border between
the texture and the base. Dashed lines show textured surfaces, and h(x, y ) is the normalized texture height. zN and zB are the normal
displacement of the HIP into the nominal surface and the base, respectively. nt is the normal vector perpendicular to textured surfaces. vT is the
tangential velocity of the HIP.

where h(x, y) stands for the normalized texture height. Algo-
rithmB changes themagnitude of the friction force to render a
textured surface. It has better rendering stability [5], because
the direction of the friction force does not change very rapidly
and the magnitude of the texture force falls to zero when the
user stops moving.

The two algorithms often face issues when applied to
the height maps constructed using photometric stereo. As
reported in Section II-B, our photometric stereo method gen-
erates height maps with a resolution approximately ten times
higher than in prior studies. Our height maps contain greatly
smaller and detailed height fluctuations and higher-frequency
components than previous height maps. For such height
maps, the rendering algorithm A in Figure 8 can be inad-
equate. This algorithm aligns the texture stiffness force FM
with the texture gradient in direction, and it makes algorithm
A more vulnerable to the instability problem when applied to
our height maps. By contrast, algorithm B renders a virtual
surface with high stability; it adjusts only the magnitude of
frictional force using the normalized texture height. However,
this algorithm is less effective in conveying the fine roughness
caused by small height variations on the surface.

Based on these observations, we propose a new force
rendering algorithm that lies somewhere between algorithm
A and B. Our approach modulates the magnitude of the
frictional force as does algorithm B. The difference is that
the magnitude depends on the gradient of height nt, not the
normalized height, as follows:

Ft = FM + FB + (1− cos θt )FF , (16)

where θt is the angle between the moving direction vT of the
haptic interface point (HIP) and nt . If the normalized height
has very small local fluctuation, the friction force variation
rendered by algorithm B is imperceptible. It can be even so
when the spatial frequency of the height map is sufficient to
elicit a roughness sensation. By contrast, θt is related more
to the spatial frequency of height, not the normalized height
itself. This enables our algorithm to deliver a fine roughness
sensation more faithfully than algorithm B.

B. STABILITY ANALYSIS
The three algorithms can be compared as to stability by exam-
ining the conservativity of the force field generated by each
algorithm [5]. When an algorithm creates a non-conservative
force field, the energy confined there might create artifacts.
For this test, we calculate the energy gain following a cyclic
trajectory shown in Figure 9. AlgorithmA is tested using path
A, and the two friction-based algorithms (B and the proposed
algorithm) are tested on path B.

Both paths are determined tomaximize the energy gain fol-
lowing a cyclic trajectory. In path A, we move from the origin
in the tangential direction by the quarter wavelength of the
sinusoidal height map. This maximizes the texture stiffness
forceFM rendered byAlgorithmA, somaximizing the energy
gain. For the friction-based algorithms, energy gain occurs
only in the pre-sliding regime; the energy is dissipated during
the sliding regime. Thus, we limit the tangential movement to
dmaxx , the maximum displacement in the pre-sliding regime.
The maximum vertical displacement dmaxz is limited by the
thickness of the texture material.

For easy calculation, we use a sinusoidal height map
h(x) = A sin(2πx/L). Then |FM | of algorithm A is

|Fm| =


κA sin

(
2πx
L

)
for z < 0

κ
(
A sin

(
2πx
L

)
− z

)
for 0 ≤ z ≤ h(x)

0, for z > h(x)

(17)

while κ is the stiffness coefficient of the material. Also nt is

nt =

[
−2πA
L cos

(
2πx
L

)
, 1
]T

√
1+

(
2πA
L cos

(
2πx
L

))2 . (18)

Then the energy generated by algorithm A while cycling
through path A is (see Appendix A for derivation)

1E =
κA2

2
+
κL2

4π2

1−

√
L2 + 4A2π2

L2

 . (19)
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FIGURE 9. Paths used to calculate the energy gain of force-feedback
texture rendering algorithms. Red dashed lines represent the cyclic
trajectories for energy integration with direction, and the blue line in path
A is the texture height map. 2D trajectories are chosen for easier
calculation. dx

max is the tangential displacement during the stick phase,
and d z

max is the maximum normal displacement of texture limited by the
thickness of the texture material.

(19) proves that algorithm A generates a non-conservative
force field3 following path A. If a haptic texture rendering
system is generative, the accumulated internal energy might
introduce undesirable buzzing and other kinds of noise during
exploration on a textured surface [5]. These phenomena can
degrade the perceived stability of the textured surface [46].
Depending on the values of κ , A, L and the type of haptic
device, the energy gain in (19) can result in perceptible
artifacts. Generally, algorithm A generates non-conservative
force fields and is known to cause the feel of an active surface
with other height maps [5].

For algorithm B and the proposed algorithm, only the
friction force FF generates energy following path B. We
calculate the upper bound of the energy gain instead of the
exact value since the Dahl model cannot be simplified to
a closed form. The friction force FF consists of the Dahl
model term FD and the viscous friction termµbvT . The upper
bound of FD is FC = µkFmaxnorm = µkκd zmax . The upper
bound of µbvT is µbvfinal , where vfinal is the final velocity
in the pre-sliding regime and d zmax is the maximum normal
displacement limited by the thickness of the texture material.
Then the upper bound of the energy gain is,

1E ≤
(
µbvfinal + µkκdmaxz

)
dmaxx (20)

for algorithm B and

1E ≤ 2
(
µbvfinal + µkκdmaxz

)
dmaxx (21)

for the proposed algorithm, where dxmax is the tangential
displacement during the pre-sliding regime. Considering that
dxmax is generally in the range from 10−2m to 10−6m and
d zmax is limited by the thickness of the texture material, the
energy gain is negligible. Thus, the proposed algorithm gen-
erates highly stable texture surfaces.

C. VIBRATION SYNTHESIS
To synthesize the contact acceleration of texture, we use the
same filter coefficients h optimized in Section II-A, but in the
reverse direction (Figure 10) as described in [29]. This filter
synthesizes the contact acceleration of the target material by

3In physics, we call a system conservative if and only if the system exerts
zero work along any cycle.

FIGURE 10. Diagram of vibration synthesis using an LPC-based
model [29]. The inverse model 1/P(z) computes the contact vibration
ag(l ) of texture by adding white noise eg to the filtered value of ag(l )
using the filter H(z).

adding the inner product between h and the contact acceler-
ation history ag(l) with the white noise eg. The power of the
white noise is the same as that of the residual e(k) resulted
from the modeling process.

The filter coefficients for the current normal force FNorm
and the tangential velocity vT are determined by barycen-
tric interpolation using FNorm and vT as the interpolation
variables. The tangential velocity can be acquired using the
position encoders of the force-feedback device and the device
kinematics. However, estimating the normal force applied by
the user requires an additional force sensor. Instead, we use
the normal force generated by the force-feedback algorithm.
Given the values of FNorm and vT , we find four neighbor
LPC filters and interpolate their coefficients individually to
generate a new filter. Then, we synthesize the next contact
acceleration sample using the new filter, the previous samples
of contact acceleration, and white noise input. As long as the
user maintains the contact and moves faster than a threshold
velocity (1 cm/s), this process is repeated to synthesize a
continuous vibration signal.

D. HYBRID RENDERING ALGORITHM
Computations for force feedback and vibration synthesis
are performed by two dedicated but asynchronous threads
because of their different requirements for update rate. In
our current implementation on a regular PC (CPU: Intel I7
7700, RAM: 16 GB), the update rate for force feedback is
approximately 2 kHz, and the sampling rate for vibration
synthesis is 10 kHz. These high values are sufficient for haptic
stimulus reconstruction without perceptual artifacts. In each
iteration, the force feedback thread computes vT and FNorm.
Based on their values, the force feedback thread turns the
vibration synthesis thread on or off.

As mentioned earlier in Section II-A, the simultaneous
rendering of force and vibration signals may exaggerate the
texture sensation because they are modeled independently.
To prevent this problem, we apply a low-pass filter with
the cut-off frequency fc to the force signal and ensure that
force feedback delivers information only on the inhomoge-
neous components of the texture. The vibration signal is
high-pass filtered also with fc to preserve only the homoge-
neous characteristics. This process is for cross-talk removal
in the viewpoint of the duplex theory of texture perception.
After filtering, the signals are sent to their target devices.
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FIGURE 11. Texture materials used in user studies. The first and third rows show the photographs of the materials. The second and fourth rows show
corresponding height maps captured by our photometric stereo system.

IV. USER STUDY 1: COMPARISON OF FORCE-FEEDBACK
RENDERING ALGORITHMS
We compared three force-feedback texture rendering algo-
rithms (Algorithm A: Norm, Algorithm B: Fric1, and the
proposed algorithm: Fric2) described in Section III-A by
means of a user study. The aim was finding the best match
for the LPC-based vibration texture rendering algorithm used
in our hybrid haptic texture framework. The emphasis was on
the perceived realism of virtual textures, which was evaluated
as the subjective similarity between virtual textures and their
corresponding real textures. This study (and the next one)
was approved by the institutional review board of the author’s
institution (PIRB-2019-E014).

A. METHODS
We used ten textured materials shown in Figure 11. They
were selected for diversity. The ten materials can be classified

into three types of textiles (denim, velvet, towel), three types
of wood (bamboo, cork, wood), one rubber (rubber mat),
one plastic (acryl), one tile (tile), and one paper (coated
hardboard). A half of them (bamboo, cork, rubber mat, tile,
andwood) had fine visible geometric featureswhile the others
did not. Both stiffness and friction characteristics were also
widely different. Based on the stiffness characteristics, the
materials can be into three groups (Hard: acryl, bamboo mat,
tile, wood, Medium: coated hardboard, denim, velvet, Soft:
cork, rubber mat, towel). Similarily friction characteristics
can also be divided into three groups (High: cork, rubber mat,
tile, Medium: bamboo mat, denim, towel, wood, Low: acryl,
coated hardboard, velvet).

We recruited 15 participants (9 males and 6 females;
19–31 years old with an average of 22.9; all right-handed)
who had no experience in using haptic interfaces. None of
them reported any existing sensory or motor impairment.
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FIGURE 12. Experimental setup of the user studies.

The participants all signed an informed consent form after
we explained the goals and procedure of the experiment. The
participants were paid KRW 15,000 (approximately USD 13)
after the experiment.

A stand was placed in front of the Omega.3 device to
balance the height difference between real and virtual tex-
tured surfaces (Figure 12). Participants operated the Omega.3
device to stroke texture samples (both virtual and real) while
holding its grip. Their view to the texture samples was
blocked by a screen. Instead, the stylus positionwas displayed
relative to the real and virtual textures on the monitor using
a spherical cursor and two white rectangles. Participants
wore noise-canceling headphones that played white noise to
remove auditory cues.

Participants were asked to assess the subjective similar-
ity between real and virtual textures under three criteria:
roughness, friction, and overall similarity. Roughness and
friction are two major dimensions of texture perception,
and all force-feedback texture rendering algorithms control
the roughness or friction of a virtual surface to elicit tex-
ture sensations. The meanings of the three criteria were
explained to participants using real texture samples for clear
understanding. Each measure was rated in a scale of 0–100
(0: completely different and 100: identical).

The experiment consisted of training and main sessions.
In the training session, the ten virtual texture samples were
rendered one by one in random order. Participants were asked
to stroke each virtual texture while applying adequate pres-
sure on the surface (0N–12N; maximum linear force of the
Omega.3 device) for ten seconds. It was to prevent inexpe-
rienced participants from damaging the real texture samples
and penetrating the virtual texture surfaces excessively. The
main session contained 90 trials (10 materials× 3 rendering
methods× 3 repetitions). The order of the trials was random-
ized for each participant. In each trial, participants evaluated
the similarity between a virtual texture and its corresponding
real texture. Their positions were shuffled randomly. Par-
ticipants could freely explore the real and virtual textures.
As discussed in Section III-B, Algorithm Norm has a high
possibility of inducing unstable artifacts. If a participant

FIGURE 13. Average similarity scores of user study 1 for the three criteria.
Error bars indicate 95% confidence intervals. Pairs grouped by asterisks
were significantly different according to Tukey’s HSD tests
(∗ : 0.01 < p < 0.05 and ∗∗ : p < 0.01).

experienced such an instability issue, we gave a one-minute
break and resumed the trial.

Participants were allowed to take a break whenever nec-
essary. On average, the experiment took approximately
80 minutes for each participant.

B. RESULTS
The average similarity scores for the three rendering methods
are shown in Figure 13 for the three criteria. No significant
outlier was found by a boxplot inspection. Error bars indicate
95% confidence intervals.

The average similarity scores for friction were all similar
among the three rendering methods (Norm: 61.0, Fric1: 61.6,
Fric2: 60.3). However, in roughness (Norm: 66.4, Fric1: 56.3,
Fric2: 66.2) and overall similarity (Norm: 64.3, Fric1: 57.3,
Fric2: 63.7), Fric1 showed a lower average score than the
other two. For statistical analysis, we performed a two-way
repeated-measure ANOVA on each measure using the texture
material and the rendering method as independent variables.
The data for all three measures passed the Shapiro-Wilk nor-
mality test and Mauchly’s sphericity test, which are the pre-
requisites for ANOVA. Table 1 shows the results of ANOVA
for each measure.

Regarding the similarity score for roughness, only the
effect of the rendering method was found to be significant.
The roughness similarity score depended mostly on the ren-
dering method (η2 = 0.071), rather than the texture material
(η2 = 0.043) or the interaction between them (η2 = 0.017).
By contrast, the similarity score for friction exhibited sig-

nificant correlation with the texture material and the inter-
action term, but not with the rendering method. In terms
of effect sizes, the variation of the friction similarity score
mostly came from the texture material (η2 = 0.154). The
rendering method showed almost no effect on the friction
similarity score (η2 < 0.001).
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TABLE 1. ANOVA statistics of user study 1.

Both the two main factors and their interaction had signifi-
cant effects on the overall similarity score. The material type
had the largest effect size (η2 = 0.086), while the interaction
term and the renderingmethod hadmedium (η2 = 0.041) and
small effect size (η2 = 0.027) respectively.

To direct the focus to the effect of the rendering method,
we ran Tukey’s HSD test for post-hoc multiple comparisons
on the roughness and overall similarity score. In both mea-
sures, the differences between Norm and Fric2 were not
significant, but Norm and Fric2 showed statistically higher
scores than Fric1 (Figure 13).

As we also found the significant interaction effect on the
friction and overall similarity scores, we analyzed the effect
of the rendering method for every material using a simple
effect test. For the friction similarity score, the rendering
method was found to be significant only with Rubber mat
(p = 0.02). The rendering method significantly affected the
overall similarity scores for Rubber mat (p < 0.001), Tile
(p = 0.05), and Towel (p = 0.05).

C. DISCUSSION
The rendering method showed a significant effect on the
roughness similarity score. The Fric1 method scored much
lower than the other two methods across all the texture sam-
ples. The Fric1 algorithmmodulates the magnitude of friction
force depending on the normalized texture height and can
simulate a rough texture when the height variation is large
compared to the texture thickness. However, if the height
variation is small and changes quickly, the fluctuation in the
friction force may be too small for perception. As a result,
a user cannot feel the roughness adequately from the virtual
surface. Actually, materials with visible geometry of height
variations, such as Bamboo mat and Rubber mat (Figure 11),
showed smaller score differences between Fric1 and Fric2
than the other materials.

The Fric2 algorithm also adjusts the magnitude of fric-
tional force. but using the gradient of the height map. Con-
sequently, Fric2 results in generally a greater gain than Fric1,
while maintaining good passivity. Even when the height vari-
ation is small compared to the surface thickness, the Fric2
algorithm can deliver the rough feel with improved detail.

The results of user study 1 indicate that the Norm and Fric2
methods are more adequate for hybrid texture rendering with
similar perceptual quality. Since Fric2 has better rendering
stability than Norm, Fric2 must be our choice.

The friction similarity score was not significantly affected
by the rendering method except for Rubber mat. Instead, the
texture material had a significant impact on the score. For all
the materials except Acryl, the higher the maximum friction
force, the lower the similarity score.

One interesting finding is that the participants could not
discern the frictional difference among the three rendering
algorithms. Norm uses the friction force calculated from the
Dahl model directly, but Fric1 and Fric2 modulate the mag-
nitude of friction force for texture rendering, It appears that
these high-frequency friction modulations did not contribute
to the perception of different frictional properties but to the
perception of different roughness properties [50], [51]. It is
presumably due to our prior knowledge that friction informa-
tion is contained in a relatively low-frequency band of surface
response force.

The experimental results about the overall similarity score,
including the scores and the ANOVA results, lie between the
results of the roughness and the friction score. This tendency
is natural as roughness and friction are the two major percep-
tual dimensions for haptic texture. Similarly to roughness, the
rendering method was significant for overall similarity, but
with a much smaller effect size.

The simple effect tests showed that the rendering method
highly affected the three texture materials of Rubber mat,
Tile, and Towel. These surfaces had both large grooves and
small asperities on the surface and so greater height variations
than the other materials.

V. USER STUDY 2: ASSESSING THE REALISM OF HYBRID
HAPTIC TEXTURE
In user study 1, we compared the three force-feedback texture
rendering algorithms for hybrid texture rendering. The results
showed that the Fric2 algorithm is the most suitable. In user
study 2, we evaluated the realism of our hybrid framework
in comparison to the previous haptic texture rendering algo-
rithms that use either force or vibration feedback.

A. METHODS
User study 2 had the same experiment apparatus and proce-
dure as user study 1. We recruited 20 participants (11 males
and 9 females; 20–27 years old with an average age of
23.6 years; all right-handed) who were all inexperienced in
using haptic interfaces.

For hybrid haptic texture rendering (Hybrid), we used the
Fric2 algorithm. To render force-only virtual textures (FF),
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FIGURE 14. Average similarity scores obtained in user study 2 for three
comparison criteria. Error bars indicate 95% confidence intervals. Pairs
grouped by asterisks were significantly different by Tukey’s HSD tests
(∗ : 0.01 < p < 0.05, ∗∗ : p < 0.01).

we rendered the force signal generated by the force gen-
eration module described in Section III-A with no hybrid
filtering or vibration feedback. For vibration-only textures
(LPC), we applied no texture rendering algorithm in the force
feedback module to render only the flat surface. No hybrid
filtering was applied either. The physical parameters for the
Dahl model and the Hunt-Crossley model were same for the
three rendering methods.

The same training session as in user study 1 followed
the main session consisting of 90 trials (10 materials× 3
rendering methods× 3 repetitions).

B. RESULTS
The average similarity scores for the three rendering methods
are shown for each criterion in Figure 14. No significant out-
liers were found by boxplot inspection. We applied two-way
repeated-measure ANOVA on the data of each measure using
the rendering method and the texture material as indepen-
dent variables. The data for all three measures passed the
Shapiro-Wilk normality test and Mauchly’s sphericity test.
ANOVA results for each measure are detailed in Table 2.
The average scores for roughness similarity were ordered

as Hybrid (66.5) > FF (62.4) > LPC (59.5), and this was sta-
tistically significant. Tukey’s HSD test for post-hoc multiple
comparisons showed that Hybrid had a significantly better
score than FF and LPC (Figure 14). The texture material
was also significant for roughness similarity, as well as the
interaction term. The effect sizes in terms of η2 showed that
the interaction term was the most dominant factor (Table 2).
For friction similarity, the rendering method did not cause

significant differences in the average scores. The texture
material and the interaction term were significant, and the
effect size of the texture material was almost double of the
effect size of the interaction term.

The overall similarity scores showed a very similar trend
to that for roughness similarity. The effect of the rendering

TABLE 2. ANOVA statistics of user study 2.

method was statistically significant, and the average scores
were ordered as Hybrid (65.30) > FF (61.3) > LPC (59.0).
Hybrid had a significantly better score than FF and LPC
according to Tukey’s tests (Figure 14). The texture material,
however, was not significant for the overall similarity. The
effect size was greatest with the interaction term (Table 2).

In addition, we examined the interaction effect on all
three similarity scores by performing a simple effect test
on the rendering method for each material. For roughness
similarity, Acryl (p = 0.04), Bamboo (p < 0.01), Velvet
(p < 0.01), andWood (p < 0.01) were significant affected by
the rendering method. Furthermore, for Acryl, Bamboo, and
Wood, both FF and Hybrid outperformed LPC by pairwise
comparisons. For Velvet, LPC and Hybrid were significantly
better than FF. In case of friction similarity, the rendering
methodwas significant for Tile (p < 0.01), Towel (p = 0.01),
and Velvet (p < 0.01). For Tile, both LPC and Hybrid
were significantly more effective than FF. For Towel, FF and
Hybrid were superior to LPC. For Velvet, the friction simi-
larity scores were ordered as LPC > FF > Hybrid with sig-
nificance. Finally, for overall similarity, Bamboo (p < 0.01),
Velvet (p < 0.01), and Wood (p < 0.01) had the significant
effect of the rendering method. For Bamboo, Hybrid gave
a significantly higher score than FF and LPC. For Velvet,
the scores were significantly higher with Hybrid and LPC
than FF. For Wood, FF and Hybrid resulted in higher scores
than LPC.

C. DISCUSSION
For the texture rendering performance of roughness, the
Hybrid method showed the best subjective performance with
statistical significance, and the other two methods, LPC and
FF, were not distinguished. We can obtain more insights
by examining the scores for individual texture materials
shown in Table 3, where the materials are grouped into
six homogeneous and four inhomogeneous ones. For all the

VOLUME 8, 2020 149837



S. Shin, S. Choi: Hybrid Framework for Haptic Texture Modeling and Rendering

TABLE 3. Similarity scores about roughness for each texture.

TABLE 4. Overall similarity scores for each texture.

inhomogeneous materials, FF received a higher score than
LPC except Tile, which generates very strong contact vibra-
tion for texture. Conversely, LPC received higher scores than
FF for all the homogeneous textures except Acryl. Hence,
we can deduce that the FF algorithm is appropriate for inho-
mogeneous textures and LPC is suitable for homogeneous
ones; also see [52] for the detailed and categorized com-
parisons between force and vibration texture rendering as to
perceived realism. The results also indicate that our hybrid
rendering method appropriately inherits the respective advan-
tages of the twomethods, leading to the superior performance
for rendering texture roughness.

For friction similarity, the three texture rendering methods
resulted in similar perceptual performance without signifi-
cant effects, as user study 1.

For overall similarity, the Hybrid method outperformed
FF and LPC with statistical significance. These results are
well aligned with the results of roughness and friction simi-
larity. Table 4 displays the average overall similarity scores
for each material and rendering method. While the overall
similarity scores of LPC and FF largely depend on the texture
homogeneity, the Hybrid method shows consistently higher
or comparable scores.

The simple effect test on the interaction effects showed
that in most materials except Velvet about friction score,
Hybrid method got higher or comparable scores to the other
rendering methods. Thus, the previous discussion on the
main effects holds for the interaction effects. FF method
was more adequate for rendering inhomogeneous materials
such as Bamboo, Wood, Towel, while LPC resulted in higher

similarity score for Velvet, which can be categorized as
homogeneous texture.

The above results allow us to conclude that our hybrid
rendering method is more effective than the prior ones in
terms of realism (similarity to real textures) and the scope of
application (the type of materials).

When users are asked to compare the haptic similarity
between two identical real objects or textures, they generally
give around 70—80 out of 100 because of the general regres-
sion bias. For very different real textures, the scores lie in the
range of 20—30 out of 100 [12], [35], [41]. In user study 2,
the grand mean of the overall similarity scores was 65.30
for our hybrid rendering, with the highest of 70.2 (bamboo)
and the lowest of 57.8 (towel and hardboard). This indicates
that we still have room for further improvement in terms of
realism for haptic texture modeling and rendering.

VI. CONCLUSION
In this paper, we have proposed a hybrid framework for haptic
texture modeling and rendering using simultaneous force
and vibration feedback. This framework is suitable for the
effective and realistic modeling and rendering of both homo-
geneous and inhomogeneous textures. A geometry-based tex-
ture modeling algorithm and a new force-feedback texture
rendering algorithm using friction modulation are presented,
as well as parameter identification procedures for the Dahl
friction model and the Hunt-Crossley stiffness model. More-
over, a hybrid texture rendering algorithm is designed and
validated, which blends force and vibration feedback while
removing the perceptual overlap between the two modalities.

Our methods and algorithms have been evaluated by two
user studies as to the perceived similarity between real and
virtual textures. User study 1 compared three force-feedback
texture rendering algorithms and indicated that the proposed
force-feedback rendering algorithm, which also preserves
fine inhomogeneous textural features, is more suitable for
our hybrid texture framework. In user study 2, we compared
the textures rendered using the hybrid framework with the
textures rendered using either force or vibration, which rep-
resents the previous practice. The results demonstrated that
the hybrid texture framework achieves higher realism and a
wider application scope.

Our hybrid framework still has room for further improve-
ment. First, the hybrid texture rendering algorithm is based
on the simplified physics, and it may be replaced with a
more advanced one. Data-driven techniques using machine
learning can be a good solution for that. Second, a thermal
modeling and rendering model suitable for haptic texture
has been left as future work. Adding thermal feedback may
greatly enhance the realism of virtual textures.

APPENDIX A
DERIVATION OF THE ENERGY GAIN ON PATH A
The energy gain by algorithmAwhile cycling through path A
can be calculated by integrating the inner product between the
material’s stiffness force FM and the displacement following
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the given path, such that.

1E =
∮
pathA

FM · ds

=

∮
pathA
|FM |nt · ds, (22)

where ds is infinitesimal arc length on path A.
The line integral of (22) consists of four integrals,∮
pathA
|FM |nt · ds

=

∫ 0

A
|FM |nt · dz

∣∣∣∣
x=0
+

∫ L
4

0
|FM |nt · dx

∣∣∣∣∣
z=0

+

∫ A

0
|FM |nt · dz

∣∣∣∣
x= L

4

+

∫ 0

L
4

|FM |nt · dx

∣∣∣∣∣
z=A

. (23)

As the HIP does not penetrate the material when x = 0
and z = A, |FM | for the first and the last integral is zero.
Thus, only the second and third integral contribute to the line
integral.∮
pathA
|FM |nt · ds

=

∫ L
4

0
|FM |nt · dx

∣∣∣∣∣
z=0

+

∫ A

0
|FM |nt · dz

∣∣∣∣
x= L

4

. (24)

By substituting (17) and (18) into the first term on the right
side of (24),∫ L

4

0
|FM |nt · dx

∣∣∣∣∣
z=0

=

∫ L
4

0

−2πA2κ sin
(
2πx
L

)
cos

(
2πx
L

)
√
L2 + 4π2A2 cos2

(
2πx
L

) . (25)

Factoring out the constants gives

= −
2πA2κ
L

∫ L
4

0

sin
(
2πx
L

)
cos

(
2πx
L

)
√
1+

4π2A2 cos2
(
2πx
L

)
L2

dx. (26)

For the integrand
sin
(
2πx
L

)
cos

(
2πx
L

)
√
1+

4π2A2 cos
(
2πx
L

)2
L2

, use u = 2πx
L and du =

2π
L dx

= −A2κ
∫ π

2

0

sin (u) cos (u)√
1+ 4π2A2 cos (u)2

L2

du. (27)

For the integrand sin (u) cos (u)√
1+ 4π2A2 cos (u)2

L2

, substitute

s = 4π2A2cos2(u)
L2

+ 1 and ds = − 8π2A2 sin (u) cos (u)
L2

du

=
κL2

8π2

∫ 1

1+ 4π2A2

L2

1
√
s
ds. (28)

Then the value of (27) is

κL2

4π2

√
s

∣∣∣∣1
1+ 4π2A2

L2

=
κL2

4π2

1−

√
1+

4π2A2

L2

 . (29)

The remaining second term on the right side of (23) is∫ A

0
|FM |nt · dz

∣∣∣∣
x= L

4

=

∫ A

0
κ

(
A sin

(
2πx
L

)
− z

)
=
κA2

2
. (30)

Summing up (29) and (30) gives the total energy gain of
algorithm A on path A.

1E =
κL2

4π2

1−

√
1+

4π2A2

L2

+ κA2
2
. (31)
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