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ABSTRACT The goethite iron-removal process is an important procedure to remove the iron ions from
the zinc hydrometallurgy. However, as a coherent system with complex reaction mechanism, associated
uncertainties, and interconnected adjacent reactors, it is difficult for the process to accurately control the
ion concentration. Because a large amount of historical data can be obtained during the process, an optimal
control algorithm based on off-policy reinforcement learning is proposed in this paper to overcome these
difficulties. According to the historical data, the weights of neural network are learned offline, and the
optimal control strategy is solved online. Firstly, a bounded function is introduced to define the maximum
effect of the coherent system on the subsystem cost function and to extend the cost function of the nominal
system, so that the decentralized guaranteed cost control problem can be expressed as the optimal control
problem of the nominal system. Then, an approximate iterative control algorithm based on actor-critic
structure is proposed. The actor and critic neural networks are used to approximate control strategies and
cost functions respectively. To achieve complete off-line, a new neural network is added to the actor-critic
structure to approximate a part of the unknown system structure, and the three neural network parameters
are optimized by the state transition algorithm. Finally, the strategy update and strategy iteration operations
are performed alternately to learn optimal control strategies. The effectiveness and flexibility of the
proposed off-policy optimal control method is validated by data from a real industrial goethite iron-removal
process.

INDEX TERMS Goethite iron-removal process, optimal control, off-policy, reinforcement learning.

I. INTRODUCTION
Zinc is an important non-ferrous raw material, which plays
an important role in various fields. It is widely used in non-
ferrous metallurgy, batteries, machinery, automobile manu-
facturing and other industries. At present, most zinc smelting
enterprises adopt the atmospheric pressure oxygen enriched
direct leaching zinc smelting method with high iron zinc sul-
fide concentrate as rawmaterial [1], [2], which can effectively
reduce sulfur dioxide emissions and improve the recovery
rates of valuable metals in leaching solution. Because the
zinc sulfide concentrate is rich in iron, the leaching solution
will contain high concentration of iron ions. If the iron ion
concentration in the leaching solution exceeds the range of
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the technical requirement, it will lead to impurity of the zinc
product, and it will increase power consumption in the elec-
trolytic process. Therefore, the goethite iron-removal process
is an important link in the leaching process. In the goethite
iron-removal process, oxygen is added to oxidize the ferrous
iron into ferric iron. Then, the ferric iron is hydrolyzed to
goethite precipitate for iron-removal. In the process, exces-
sive oxygen is generally replenished into the rector for the
required range of iron ion concentration. This approach will
cause waste of raw materials and sharp fluctuation of pH
value, as well as low grade of goethite precipitate or even
no goethite precipitate. Therefore, in order to ensure the
quality of iron-removal and save raw materials, controlling
the oxygen addition rate is a critical step.

Goethite iron-removal process consists of four continu-
ous reactors arranged in descending order, overflowing zinc
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leach solution from one reactor to the next. It is a non-linear
process involving a series of complex chemical reactions
such as oxidation, hydrolysis, and neutralization. For the
non-linear problems in the industrial production process, a lot
of effective control methods have been proposed [3]–[10].
According to the law of mass conservation and reaction
kinetics, Chen et al. [4] established a single-tank contin-
uous stirred reactor model based on the law of conserva-
tion of mass and reaction kinetics for the first time. Based
on the single-reactor model, considering the existence of
unreacted oxygen in the leaching solution, a cascade reactor
coupled control distributed model is established. The dis-
tributed model predictive control strategy is adopted to solve
the optimization control problem of iron-removal process.
Xie et al. [5] established a weighted coupled CSTR model
for goethite iron-removal process by introducing weighting
parameters. A parameter identification method to determine
unknown parameters is proposed. Then, a model predic-
tive control scheme is designed to achieve process perfor-
mance objectives and minimize process costs. Han et al. [6]
and others transformed the dynamic optimization problem
of the iron-removal process into a nonlinear mathematical
programming problem and proposed a multi-objective opti-
mization method based on the state transition algorithm and
constrained non-dominated sorting to find the optimal solu-
tion of the oxygen concentration and zinc oxide addition.
Sun et al. [7] proposed a steady-state multiple reactors gra-
dient optimization, unsteady-state operational pattern adjust-
ment strategy, and a process evaluation strategy based on the
oxidation-reduction potential and proved the effectiveness of
this study in industrial experiments. Yang et al. [8] proposed
a model-based hybrid adaptive dynamic programming (ADP)
framework consisting of continuous feedback-based policy
evaluation and policy improvement steps as well as an inter-
mittent policy implementation procedure. Shahlavi et al. [9]
developed a novel fully distributed controller based on back-
stepping technique and neuro-adaptive update mechanism.
The simulation results are carried out to demonstrate the
effectiveness of the proposed approach. And literature [10]
presents a distributed solution for consensus control of a net-
work of single-integrator incommensurate fractional-order
systems with nonlinear and uncertain dynamics. However,
most of the industrial processes have complex environ-
ment, and the mechanism model cannot reflect the system
dynamics completely and truly, and there must be model-
ing errors, unmodeled dynamics and various uncertainties,
which makes the model-based control theory and method
defective.

In order to solve a series of problems caused by impre-
cise model, many researches put forward data-based control
methods [11]–[13]. Different from other data-based control
methods, a significant advantage of reinforcement learning
based control method [14]–[23] is that it can achieve perfor-
mance optimization control in unknown environment, which
is undoubtedly of great significance to practical engineering
applications. Because of this, many researchers introduce

reinforcement learning into optimal control problems.
Li et al. [18] proposed a novel off-policy interleaved
Q-learning algorithm for solving optimal control problem
of affine nonlinear discrete-time systems, using only the
measured data along the system trajectories. Lewis and
Vamvoudakis [20] proposed an online strategy iteration algo-
rithm based on reinforcement learning. The algorithm uses
an actor-critic network architecture and adjusts the weights
of the actor network and the critic network synchronously.
Yang et al. [21] proposed a novel barrier-actor-critic algo-
rithm that is presented for adaptive optimal learning while
guaranteeing the full-state constraints and input saturation.
Luo et al. [22] proposed a data-based approximation strat-
egy iteration algorithm, which updates the weights using
the weighted residual method based on the least square.
Yan et al. [23] proposed a Q-learning algorithm based on
policy iteration, and proved that under the given bounded
condition, the approximate q-function would converge to the
finite neighborhood of the optimal Q-function. Zhu et al. [25]
transformed the H∞ optimal control problem into the
zero-sum game problem and obtained the H∞ optimal con-
trol law of the perturbed system by using the strategy iteration
algorithm. Dong [28] studied the event triggered iterative
ADP method and applied it to the optimal control of grinding
process [29]. Maldonado et al. [30] et al. studied the optimal
control of flotation cell by using adaptive dynamic program-
ming method. This method can learn from the operation
data of flotation cell and improve the controller iteratively.
In recent years, some scholars also extended RL method to
decentralized control. Liu et al. [31] used an online learn-
ing optimal control method based on neural network, put
forward a decentralized control strategy to stabilize a class
of continuous time nonlinear interconnected system, and
designed the optimal controller isolated from the system by
using the cost function reflecting the interconnect boundary.
Wang et al. [32] proposed a learning based optimal control
method for the optimal control of interconnected systems.
By combining the robust decentralized control formula with
adaptive critical learning technology, the decentralized guar-
anteed cost [33], [34] controller was designed. This method
is still implemented under the condition where the model is
known. At present, the modeless RL method for nonlinear
continuous time decentralized control is still an open prob-
lem, which also promotes the research of this paper.

In this paper, the decentralized control problem of con-
tinuous time nonlinear system with unknown model is con-
sidered. Inspired by Wang et al. [32], this paper introduces a
bounded function to transform the decentralized guaranteed
cost control problem into the nominal system optimal con-
trol problem. Based on the literature [32], a reinforcement
learning based optimal control algorithm is proposed. Three
neural networks are used to approach the critic network, the
actor network and a part of the unknown system structure
respectively. For the problem that the traditional solution
method, such as the minimum residual method [22] doesn’t
work when the linear relationship between the residual and
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the parameters is not satisfied, the three neural network
parameters are optimized by the state transition algorithm
[35], and the optimal control strategy is learned when the
system model is unknown.

The rest of this paper is arranged as follows. In the sec-
ond section, the decentralized optimal control problem is
described. In the third section, the iterative algorithm of
decentralized control based on data is derived. In the fourth
section, through the simulation experiment of real industrial
data, the applicability of the decentralized control strategy is
verified. A brief conclusion is given in Section 5.

II. DESCRIPTION OF THE OPTIMAL CONTROL OF
IRON-REMOVAL SYSTEM
The object of goethite process is zinc sulphate solution
obtained by direct leaching of zinc concentrate. Usually, the
iron-removal needs to be performed in the temperature range
of 65◦C to 82 ◦C.

FIGURE 1. Process flow chart of goethite process.

The goethite process in a representative Chinese zinc
smelting plant is taken to investigate, the simplified flow chart
is shown in Fig.1. The iron-removal is completed slowly in
the continuous stirred reactors. The zinc sulphate solution
from the previous procedure, which enters the 1# reactor and
can be called as inlet solution, would flow out of reactor
1# as the outlet solution and flow into reactor 2# after-
wards. Similarly, the outlet solution of the previous reactor
is the inlet solution of the next one. Moreover, the outlet
concertation of Fe3+, Fe2+ and pH in each reactor should
be controlled with in the set range, making the excessive
iron-ion less than 1g·L−1, and the pH value between 3.0
and 4.0. Therefore, the zinc sulphate solution leaves the
4# reactor is qualified for the next procedures. In addition,
partial zinc sulphate solution exiting in the last reactor is
sent back to 1# reactor as the backflow solution, since the
crystal nucleus of goethite in it can promote the proceed of
iron-removal.

In the process, each reactor has a series of complex chemi-
cal reactions among gas, liquid and solid. From the aspect of
the influence on iron-removal, the main chemical reactions
are presented as follows:

Oxidation reaction:

4Fe2+ + 4H+ + O2→ 4Fe3+ + 2H2O (1)

Neutralization reaction:

2H+ + ZnO→ Zn2+ + H2O (2)

Hydrolysis reaction:

Fe3+ + 2H2O↔ FeOOH + 3H+ (3)

In the oxidation reaction, Fe2+ is oxidized to Fe3+ that
hydrolyzes to form goethite precipitation, which can be
removed through filtration. And the neutralization reaction
ensures certain reaction conditions, i.e. The pH value of the
solution is kept within a certain range.

In the actual goethite process, data sampling can only be
carried out every two hours because of the sealed reactors.
Under this condition, those process data obtained by periodic
sampling cannot be directly used in continuous time optimal
control. Therefore, it is necessary to establish the mechanism
model of the iron-removal process for optimal control.

Assume the temperature in the reactor remains unchanged
and the solution is mechanically stirred uniformly. Then the
rates of the oxidation, hydrolysis, and neutralization reaction
in the solution can be obtained from the chemical reaction
kinetics:

rFe2+ = k1cαFe2+c
β

H+c
γ
O2

(4)

rFe3+ = k2cFe3+ (5)

rH+ =
3m
ρRs

k3cH+ (6)

where k1, k2, k3 are the reaction rate constants, α, β, γ
are the reaction orders. CO2 is the concentration of dis-
solved oxygen in the solution and an important variable
that affects the oxidation rate of the ferrous ions. Param-
eter m is the mass of zinc oxide, ρ represents the density
of zinc oxide particles and Rs is the radius of zinc oxide
particles.

Simulation based on the CSTRmodel of goethite process is
proposed in reference [5]. In the research, the control variable
available to the controller is oxygen. According to the reac-
tion rate equation, the dynamic equation of dissolved oxygen
and the law of mass conservation, the ion concentration and
dissolved oxygen in the solution at the outlet of the reactor are
taken as states. The model of a single reactor can be described
as follows:

dcFe2+
dt
=
F
V
(CFe2+,in − CFe2+ )− k1C

α
Fe2+C

β

H+C
γ
o2

dcFe3+
dt
=
F
V
(CFe3+,in−CFe3+ )+k1C

α
Fe2+C

β

H+C
γ
o2−k2CFe3+

dcH+
dt
=
F
V
(CH+,in − CH+ )− k1C

α
Fe2+C

β

H+C
γ
o2

+ k2CFe3+ −
3mzno
ρRs

k3CH+

(7)
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where F is the flow rate, V is the reactor volume. Parameters
CFe2+,in,CFe3+,in and CH+,in are the inlet concentrations of
Fe3+, Fe2+ and H+, respectively. Parameter mzno represents
the mass of zinc oxide, and CO2 is the dissolved oxygen con-
centration. The dissolved oxygen concentration is selected
as a new state variable, where ρ,RS ,V and ρO2 are con-
stants, and F,CFe2+,in,CFe3+,in,CH+,in,CFe2+ ,CFe3+ ,CH+
are obtained from the sampled data. The reaction rate con-
stants k1, k2, k3 and the reaction orders α, β, γ are the param-
eters to be obtained.

In the actual goethite process, the ion concentration range
at the inlet of the reactor is shown in the table below:

TABLE 1. Concentration ranges of three ion at the reactor inlet.

And reaction rate constant range is shown as the table
below:

TABLE 2. Reaction rate constant range.

According to literature [4], normally the value of reaction
rate constants α, β, γ can be 1. In this paper, therefore, the
value of α, β, γ is set 1.

However, even if only the key variable set of the goethite
process is considered, the interaction between these variables
makes the solution of the parameters still a considerable
challenge. Therefore, a certain degree of modelling accuracy
is often sacrificed in practice, which directly affects control
accuracy.

Moreover, the goethite system is a coherent system. The
solution in the former reactor will flow into the latter reactor,
hence the ion concentration at the outlet of the former reactor
is equal to the ion concentration at the inlet of the subsequent
reactor. Consider the j# reactor as subsystem j, define the
state of subsystem j as xj(t) = [cj,Fe2+ , cj,Fe3+ , cj,H+ ]

T , and
uj = cj,o2 as the control variable of subsystem j. To obtain
the optimal control when the parameters are difficult to solve,
it is assumed that the goethite process in any reactor can
be expressed as the state space in equation (8) referring to
equation (7).

ẋj(t) = fj(xj)+ gj(xj)uj + hj(x), j = 1, . . . , 4 (8)

The system functions fj(·) and gj(·) are both differentiable,
and hj(x(t)) represents the concentrations between subsystem
j and other subsystems. System functions and concentrations
have two forms in the iron-removal process. For the 1#

reactor:

f1(x1) =


F
V
C1,in −

F
V
x11

F
V
C2,in − x12

F
V
− k12x12

F
V
C3,in − x13

F
V
+ k12x12 −

3mi,zno
ρRs

k13x13

 ,

g1(x1) =

−k11x11x13k11x11x13
−k11x11x13


h1(x) =

[
(
Fb
V
x41)T (

Fb
V
x42)T (

Fb
V
x43)T

]T
(9)

where C1,in,C2,in and C3,in represent the Fe2+,Fe3+ andH+

concentration of the solution at the inlet of the 1# reactor,
respectively. Fb represents the backflow rate of the 4# reactor.
For 2#-4# reactors:

fj(xj) =


−
F
V
xj1

−xj2
F
V
− kj2xj2

−xj3
F
V
+ kj2xj2 −

3mj,zno
ρRs

kj3xj3

,

gj(xj) =

−kj1xj1xj3kj1xj1xj3
−kj1xj1xj3


hj(x)=

[
(
F
V
x(j−1)1)T (

F
V
x(j−1)2)T (

F
V
x(j−1)3)T

]T
, j=2, 3, 4.

(10)

For further study, if the concentrations are not considered,
the nominal subsystem of subsystem (8) can be defined as
follows:

ẋj(t) = fj(xj(t))+ gj(xj(t))uj(t), j = 1, . . . , 4. (11)

Hypothesis 1 [32]:Assume the concentrations of three ions
Fe2+, Fe3+, and H+ in subsystem j are within the boundary
given in TABLE 1, and satisfy the following structure:

hj(x) = Dj(x)cj(ζ (x)) (12)

cTj (ζ (x))cj(ζ (x)) ≤ dTj (ζ (x))dj(ζ (x)) (13)

where Dj(·) ∈ Rnj×rj and ζ are function structures of con-
centrations, and there is ζ (0) = 0. cj ∈ Rrj is the uncertainty
function of the concentrations, with cj(0) = 0. dj(·) ∈ Rrj is
a known bounded function with dj(0) = 0, j = 1, . . . , 4.
For the nominal system (11), the cost function of subsys-

tem j can be expressed as:

V̄j(xj(t)) =
∫
∞

0
(Qj(xj)+ uTj Rjuj)dτ (14)

where Qj(xj) is a positive definite function and Rj = RTj > 0
is a square matrix.

The objective of optimal control for goethite process is:
give an initial state xj0, design an approximate optimal con-
trol strategy uj(t) = u∗j (x) to make the local subsystem j
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asymptotically stable and minimize the cost function (14).
The optimization control problem can be described as:

uj(t) , u∗j (x) , argmin
uj

V̄j(xj0) (15)

III. DECENTRALIZED OPTIMAL CONTROL OF
IRON-REMOVAL SYSTEM BASED ON REINFORCEMENT
LEARNING
A. APPROXIMATE ITERATIVE ALGORITHM
From the former section, it is known that the cost func-
tion (14) cannot directly evaluate the coherent system.
To solve that problem, the optimal guaranteed cost control
problem of the original coherent system (8) is converted into
the optimal feedback control problem of the nominal system
(11), according to the idea in [17].
Lemma 1 [32]:Assume that there are a cost function Vj(x),

a bounded function Bj(x) with Bj(x) > 0, and a control law
uj(x), hence:

[∇Vj(x)]T hj(x) ≤ Bj(x) (16)

Qj(xj)+ uTj Rjuj + (∇Vj(x))T

×(fj(xj)+ gj(xj)uj)+ Bj(x) = 0 (17)

where ∇Vj(x) is the partial derivative of the cost function V
of the subsystem j to the system state x, ∇Vj(x) , ∂Vj/∂x.
Then a neighbourhood of the origin system (8) is locally
asymptotically stable. Also, V̄j(xj0, uj) ≤ Vj(x0, uj), where
Vj(x0, uj) is themodified cost function of nominal system (11)
described as:

Vj(x0, uj) =
∫
∞

0
(Qj(xj)+ uTj Rjuj + Bj(x))dτ (18)

To deal with interconnections,Bj(x) is set to a specific form
as:

Bj(x) =
1
4
(∇V (i+1)

j (x))TDj(x)DTj (x)∇V
(i+1)
j (x)

+ dTj (ξ (x))dj(ξ (x)) (19)

For the new cost function (18), the Hamiltonian equation
of the nominal system (11) can be defined as:

Hj(xj, uj,∇Vj) , Qj(xj)+ uTj Rjuj + Bj(x)

+ (∇Vj)T (fj(xj)+ gj(xj)uj) (20)

Set the Hamilton function as Hj(xj, uj,∇V ∗j ) = 0, the
optimal control of the HJB equation can be obtained:

u∗j (x) = −
1
2
R−1j gTj (xj)∇V

∗
j (x) (21)

The modified HJB equation can be written as:

Qj(xj)+ (u∗j )
TRju∗j + Bj(x)+ (∇Vj)T (fj(xj)+ gj(xj)u∗j )

1
4
(∇V ∗j (x))

TDj(x)DTj (x)∇V
∗
j (x)+ d

T
j (ξ (x))dj(ξ (x)) = 0

(22)

Therefore, the optimal guaranteed cost control problem of
the original coherent system is transformed into the optimal

feedback control problem of the nominal system. The optimal
control strategy (21) depends on the solution of the HJB equa-
tion (22), and the equation can be successively approximated
by the GHJB sequence as follow:[

∇V (i+1)
j

]T [
fj(xj)+ gj(xj)u

(i)
j

]
+ Qj(xj)

+ (u(i)j )TRju
(i)
j + dTj (ξ (x))dj(ξ (x))

+
1
4
(∇V (i+1)

j (x))TDj(x)DTj (x)∇V
(i+1)
j (x)

= 0 (23)

u(i)j = −
1
2
R−1j gTj (xj)∇V

(i)
j (x) (24)

Since the model of the actual goethite process is not com-
pletely accurate, Rj and gj(xj) in equation (24) are often not
precisely obtained. In order to obtain the optimal control
strategy when the model is not accurate enough or the model
is unknown, an approximation strategy iterative algorithm is
proposed. In the strategy, the actual system data is used to
learn the solution of the HJB equation through neural network
learning. For that purpose, system (11) can be rewritten as:

ẋj = fj(xj)+ gju
(i)
j + gj(xj)

[
uj − u

(i)
j

]
(25)

For system (25), the derivative of V (i+1)(x) with respect to
time can be found as:

dV (i+1)
j (x)

dt
=

[
∇V (i+1)

j

]T [
fj(xj)+ gj(xj)u

(i)
j

]
+

[
∇V (i+1)

j

]T
gj(xj)

[
uj − u

(i)
j

]
(26)

Using equations (23) and (24), equation (25) can be written
as follows:

dV (i+1)
j (x)

dt

= −(u(i)j )TRju
(i)
j + 2

[
u(i+1)j

]T
Rj
[
u(i)j − uj

]
−Qj(xj)−

1
4
(∇V (i+1)

j (x))TDj(x)DTj (x)∇V
(i+1)
j (x)

− dTj (ξ (x))dj(ξ (x))

= −Qj(xj)+ 2
[
u(i+1)j

]T
Rj
[
u(i)j − uj

]
− dTj (ξ (x))dj(ξ (x))− (u(i)j )TRju

(i)
j

−g−1j (xj)RTj u
(i+1)
j Dj(x)DTj (x)g

−1
j (xj)RTj u

(i+1)
j

= 0 (27)

Both sides of (27) on the interval [t, t + 1t] can be inte-
grated as:

V (i+1)
j (t)−V (i+1)

j (t+1t)+2
∫ t+1t

t

(
u(i+1)j

)T
Rj
[
u(i)j −uj

]
dτ

=

∫ t+1t

t
[g−1j (xj)RTj u

(i+1)
j Dj(x)DTj (x)g

−1
j (xj)RTj u

(i+1)
j ]dτ

+

∫ t+1t

t

[
dTj (ξ (x))dj(ξ (x))+ Qj(xj)+ (u(i)j )TRju

(i)
j

]
dτ

(28)
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where V (i+1)
j (x) and u(i+1)j (xj) are unknown functions and

unknown vectors of subsystem j, respectively. The problem of
solving the GHJB equation (23) for V (i+1)

j (x) is transformed
to the problem of solving equation (28).
Lemma 2: Note λ(x) ∈ Rm, b(x) ∈ R and c ∈ Rm, in which

c is the variable. If ∀c 6= 0, there is λT (x)c = b(x), then
λ(x) = 0 and b(x) = 0. When c is given a fixed value that
satisfies c0 6= 0, then there is λT (x)c0 = b(x). Summing up
the above analysis, the equation in (29) can be obtained.

λT (x)(c− c0) = 0 ∀x,∀c 6= 0. (29)

Let F(x, c) = λT (x)(c− c0), then:

F(x, c) = 0∀x, ∀c 6= 0 (30)

The partial derivative to c for equation (30) is:

∂F(x, c)
∂c

=
∂(λT (x)(c− c0))

∂c
= λ(x) = 0 (31)

Hence, b(x) = λT (x)c = 0.
Theorem 1: Equation (28) is the equivalent of equa-

tions (23) and (24).
Proof: Rewrite equation (28) as:[
∇V (i+1)

j

]T [
fj(xj)+ gj(xj)u

(i)
j

]
+ (dTj (ξ (x))dj(ξ (x))+ Qj(xj)+ (u(i)j )TRju

(i)
j )

+
1
4
(∇V (i+1)

j (x))TDj(x)DTj (x)∇V
(i+1)
j (x)

=−

{[
∇V (i+1)

j

]T
gj(xj)+2

[
u(i+1)j

]T
Rj

}[
uj−u

(i)
j

]
(32)

According to Lemma 2, there are:[
∇V (i+1)

j

]T [
fj(xj)+ gj(xj)u

(i)
j

]
+ (dTj (ξ (x))dj(ξ (x))+ Qj(xj)+ (u(i)j )TRju

(i)
j )

+
1
4
(∇V (i+1)

j (x))TDj(x)DTj (x)∇V
(i+1)
j (x) = 0 (33)[

∇V (i+1)
j

]T
gj(xj)+ 2

[
u(i+1)j

]T
Rj = 0 (34)

By observing equations (33) and (34), it is easy to find that
they are exactly the same as (23) and (24), respectively.
Accordingly, the proof is completed.

B. ACTOR-CRITIC NEURAL NETWORK AND ITS
PARAMETER SOLUTION
In order to solve Eq.(28) for V (i+1)

j (x) and u(i+1)j (x), a method
based on actor-critic neural network (NN) structure is
adopted. Combining the advantages of both actor-only and
critic-only, actor-critic neural network has low variance
and continuous action. The actor neural network is used
to approximate the cost function V (i+1)

j (x), and the critic
neural network is used to approximate the control strategy
u(i+1)j (x). ϕj(x) , [ϕj,1(x) . . . ϕj,LV (x)]

T is the vector of
linearly independent activation functions for critic NN, where
jk = 1, . . .LV is the number of hide layer neuron for critic

NN. ψ l
j (x) , [ψ l

j,1(x) . . . ψ
l
j,Lu (x)]

T is the vector of linearly
independent activation functions for actor NN, where k =
1, . . .Lu is the number of hide layer neuron for actor NN.
The outputs of the critic NN and the actor NN are given by:

V̂ (i)
j (x) =

LV∑
jk=1

θ
(i)
j,V ,jkϕj,jk (x) = ϕ

T
j (x)θ

(i)
j,V (35)

û(i)j,l(x) =
Lu∑
k=1

θ
(i)
j,ul ,kψ

l
j,k (x) = (ψT

j (x))
T θ

(i)
j,ul (36)

∀i = 0, 1, 2, . . . , θ (i)j,V , [θ (i)j,V ,1 . . . θ
(i)
j,V ,LV ]

T and θ (i)j,ul ,

[θ (i)j,ul ,1 . . . θ
(i)
j,ul ,Lu ]

T are the weight vectors of critic and actor
neural network, respectively.

According to [22], equation (36) can be rewritten as:

û(i)j (x) = [û(i)j,1(x) . . . û
(i)
j,m(x)]

T

= [(ψ1
j (x))

T θ
(i)
j,u1

. . . (ψm
j (x))

T θ
(i)
j,um ]

T (37)

Define residuals as:

σ
(i)
j (x(t), uj(t), x(t +1t))

, [ϕj(x(t))− ϕj(x(t +1t))]T θ
(i+1)
j,V

+ 2
∫ t+1t

t
[u(i)j (x(τ ))− uj(τ )]

T
Rju

(i+1)
j (x(τ ))dτ

−

∫ t+1t

t
Qj(xj(τ ))dτ−

∫ t+1t

t

[
dTj (ξ (x(τ )))dj(ξ (x(τ )))

]
dτ

−

∫ t+1t

t
u(i)j Rjujdτ−

1
4

∫ t+1t

t
[(∇V (i+1)

j )TOj(x)∇V
(i+1)
j ]dτ

= [ϕj(x(t))− ϕj(x(t +1t))]T θ
(i+1)
j,V −

∫ t+1t

t
Qj(xj(τ ))dτ

−

∫ t+1t

t

[
dTj (ξ (x(τ )))dj(ξ (x(τ )))

]
dτ + 2

m∑
l1=1

m∑
l2=1

rl1,l2

×

∫ t+1t

t
[ψ l1

j (x(τ ))
T θ

(i)
j,ul1
−uj,l1 (τ )]

T
(ψ l2

j (x(τ )))
T θ

(i+1)
j,ul2

dτ

−

∫ t+1t

t
[g−1j (xj)RTj u

(i+1)
j Dj(x)DTj (x)g

−1
j (xj)RTj u

(i+1)
j ]dτ

−

m∑
l1=1

m∑
l2=1

rl1,l2×
∫ t+1t

t
θ
(i)
j,ul1

ψ
l1
j (x(τ ))(ψ

l2
j (x(τ )))

T θ
(i)
j,ul2

dτ

(38)

In order to eliminate the dependence of the
interconnecttions on gj(xj), based on the actor-critic neural
network, a structural neural network is constructed as the
follows:

q̂(i)j (x) = g−1j (xj)RTj u
(i)
j

=

LA∑
s=1

θ
(i)
j,q,sφj,s(x) = φ

T
j (x)θ

(i)
j,q (39)

where ∀i = 0, 1, 2 . . . , θ (i)j,q , [θ (i)j,q,1 . . . θ
(i)
j,q,LA]

T is the vector
of linearly independent activation functions for the structural

VOLUME 8, 2020 149735



N. Chen et al.: Optimal Control of Iron-Removal Systems Based on Off-Policy Reinforcement Learning

neural network, then the residual can be expressed as:

σ
(i)
j (x(t), uj(t), x(t +1t))

, −
∫ t+1t

t
Qj(xj(τ ))dτ

+ [ϕj(x(t))− ϕj(x(t +1t))]T θ
(i+1)
j,V + 2

m∑
l1=1

m∑
l2=1

rl1,l2

×

∫ t+1t

t
[ψ l1

j (x(τ ))
T θ

(i)
j,ul1
−uj,l1 (τ )]

T
(ψ l2

j (x(τ )))
T θ

(i+1)
j,ul2

dτ

−

m∑
l1=1

m∑
l2=1

rl1,l2×
∫ t+1t

t
θ
(i)
j,ul1
ψ
l1
j (x(τ ))(ψ

l2
j (x(τ )))

T θ
(i)
j,ul2

dτ

−

∫ t+1t

t

[
dT (ξ (x(τ )))d(ξ (x(τ )))

]
dτ−

w∑
s1=1

w∑
s2=1

Oj,s1,s2 (x)

×

∫ t+1t

t
[(θ (i+1)j,qs1

)Tφs1j (x(t))(φs2j (x(t)))T θ (i+1)j,qs2
]dτ (40)

where Oj(x) = Dj(x)DTj (x).
In order to solve the unknown parameters in equation (38),

the parameters of the neural network are first obtained by
solving the following objective function:

min J (θj) =
1
2
(σ (i)
j )2 (41)

where σ (i)
j is the residual defined in equation (40), and θj =

[θj,V , θj,u, θj,ρ] are the weight vector to be identified by the
critic neural network and the actor neural network.

It is necessary for the commonly used methods such as the
minimum residual method [22] to satisfy the linear relation-
ship between the residuals and parameters defined by the HJB
equation, when it comes to solving optimization problems.
However, there are many optimization variables in the opti-
mal control problem of goethite process, and it is difficult
to meet the constraint where the residuals and parameters
must have a linear relationship. In considering the above
problems, an intelligent global optimization, algorithm-State
Transition Algorithm [35] (STA), is used to optimize the
solution parameters.

The parameter to be identified in equation (41) is encoded
as the state x̃, and the process of parameter optimization by
the state transition algorithm can be expressed as follows:{

x̃k+1 = Ãk x̃k + B̃k ũk
ỹk+1 = f̃ (x̃k+1)

(42)

where x̃ ∈ Rn
′

represents the state of the parametric solution,
k is the number of iteration steps, and ỹk represents the fitness
of the state x̃k . Ãk and B̃k indicate the state transition matrices
at each update of the solution state. ũk is a function related
to the current state x̃k and historical state x̃k−1, while f̃ (·)
is regarded as the fitness function corresponding to the state
x̃k . The state transition algorithm generates random iterative
solutions through four operators: a rotation transformation
operator, a translation transformation operator, a telescopic
transformation operator, and an axis search operator.

1) ROTATION TRANSFORM OPERATOR

x̃(k + 1) =
(
In′ + α

′
1

n′||x̃(k)||2
Rr

)
x̃(k) (43)

where α′ is the rotation transformation operator of the STA,
and it usually takes a positive integer; n′ is the dimension of
the solution state. Rr ∈ Rn

′
×n′ obeys the uniform distribution

of [-1,1]. The rotation transformation of the state x̃(k) is
performed in the hypersphere with its current value as the
center and the rotation operator α′ as the radius.

2) TRANSLATION OPERATOR

x̃(k + 1) = x̃(k)+ β ′Rt
x̃(k)− x̃(k − 1)
‖x̃(k)− x̃(k − 1)‖2

(44)

where β ′ is a positive integer, which is the translation operator
of STA. Rt ∈ Rn

′
×n′ obeys the uniform distribution among

[0,1]. The translation of state x̃(k) is performed in a gradient
direction of x̃(k) to x̃(k − 1) with a maximum step size of β ′.

3) SCALING OPERATOR

x̃(k + 1) = x̃(k)+ γ ′Rex̃(k) (45)

where γ ′ is a normal number, which is a scaling operator of
STA; Re ∈ Rn

′
×n′ is a diagonal matrix obeying a Gaussian

distribution. The scaling operator can be optimized across the
entire search space.

4) AXIS SEARCH OPERATOR

x̃(k + 1) = x̃(k)+ δ′Rax̃(k) (46)

where δ′ is a coordinate search operator of the STA, and
its value is a positive integer. Ra ∈ Rn

′
×n′ is a diagonal

sparse matrix, which has only non-zero elements at a random
position, and the elements obey Gaussian distribution.

After the parameters of the critic and actor of the neural
network are obtained, the final control strategy u can be
solved according to the weights, basis functions and the
current state of each subsystem to minimize the cost func-
tion. Combining the approximate iterative algorithm and STA
algorithm proposed in this paper, the steps to solve the control
strategy of the associated iron-removal system are as follows:

Step 1: Under the given initial stable controller and initial
state, collect sample data of ion concentration at the reactor
outlet for a period of time;

Step 2: Select the basis functions for critic NN, actor NN,
and the structure NN, then encode the weights to be identified
as the states in the STA algorithm;

Step 3: Select the state of a set of solutions that make
the fitness function f̃ (·) (that is, the objective function (41))
reach theminimumvalue from the current population. Record
it as best and the corresponding fitness is fbest , then copy
best as the number of individuals with SE. The population
is recorded as x̃(k), and a new population is obtained by per-
forming a scaling transformation according to equation (45).

149736 VOLUME 8, 2020



N. Chen et al.: Optimal Control of Iron-Removal Systems Based on Off-Policy Reinforcement Learning

The optimal individual in the population after the scaling
transformation is newbest , and the corresponding fitness is
gbest . If gbest is less than fbest , then use equation (44). Perform
a translation transformation on the individual newbest , and
update the best and fbest after the translation transformation.

Step 4: Copy the best into a group with S individuals,
and then perform rotation transformation according to equa-
tion (43) to obtain a new population. Select the best individual
newbest in the population after the rotation transformation,
and the corresponding fitness is gbest ; if gbest is less than
fbest , perform translation transformation according to equa-
tion (44), and update the best and fbest after the translation
transformation.

Step 5: Copy best into a group, and SE is the number of
group. Then perform coordinate search and transformation
according to equation (46). Select the solution state of the
optimal solution among all individuals after transformation
as newbest , and the corresponding fitness as gbest ; if gbest is
less than fbest , perform translation transformation according
to equation (44), and update the best and fbest after the trans-
lation transformation.

Step 6: Repeat steps 3-5. When the given termination
condition

∥∥∥θ (i)j − θ (i+1)j

∥∥∥ ≤ ζ is satisfied or the number of
iterations is greater than the given number of times, find a set
of parameter vectors that minimizes the objective function as
parameters for critic NN and actor NN;

Step 7: According to the weights and basis functions of
the neural network obtained by optimization and the current
status of each subsystem collected by the system, the real-
time optimization control strategy uj for each subsystem is
solved according to equation (41).

IV. SIMULATION
Assume that the goethite iron-removal system satisfies the
affine nonlinear structure of formula (25). And to verify the
proposed decentralized optimization control method of the
coherent iron-removal system, simulation experiments are
carried out by actual data of the goethite iron removal process.
According to these data, the flow rates of the reactors are
Fb ∈ [110m3/h, 120m3/h], F ∈ [120m3/h, 150m3/h], and
the effective volume of the reactor is V = 300m3. Therefore,
for the 1# reactor, the parameters of the concentrations can be
set as:

D1 =

 1 0 0
0 1 0
0 0 1

 d1(ξ (x)) =

 0.4x41
0.4x42
0.4x43


Similarly, the parameters of 2#-4# reactor concentrations can
be set as:

D2 =

 1 0 0
0 1 0
0 0 1

 D3 =

 1 0 0
0 1 0
0 0 1

 D4 =

 1 0 0
0 1 0
0 0 1


d2 =

 0.5x11
0.5x12
0.5x13

 d3 =

 0.5x21
0.5x22
0.5x23

 d4 =

 0.5x31
0.5x32
0.5x33



FIGURE 2. Fe2+ and Fe3+ concentrations in 1#-4# reactor.

Taking the 1# reactor as an example, according to the initial
value of the actual system setting state x10 = [14 1.7 3.6]
and the initial controller u10 = 51.6164 according to the
established model (10). The parameters kj1 = 1.4623,
kj2 = 1.6693, kj3 = 0.2802 in the model are identified
by the least squares method. With the choice of Q1 =

xT1 x1 and R1 = I in the cost function (18), the following
functions are selected as the basis functions of the critic
network: ϕ1(x) = [x1,1, x1,2, x1,3, x1,1x1,2, x1,1x1,3, x1,2x1,3,
x21,1, x

2
1,2, x

2
1,3, x4,1, x4,2, x4,3]. The selection rules of ϕ2(x),

ϕ3(x), ϕ4(x) are the same as ϕ1(x), and the number of hidden
m3/h layer nodes LV = 12. Similarly, the following function
is selected as the basis function for actor network:
ψ1(x) = [x1,1, x1,2, x1,3, x21,1, x

2
1,2, x

2
1,3, x

3
1,1, x

3
1,2, x

3
1,3,

x41,1, x
4
1,2, x

4
1,3]. And ψ2(x), ψ3(x), ψ4(x) is the same as

ψ1(x). The number of hidden layer nodes is Lu = 12.
Similarly, the following is selected as the basis function of
the structural neural network: φ1(x) = [x1,1, x1,2, x1,3, x21,1,
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TABLE 3. Oxygen consumptions in iron-removal process 1#-4# reactor.

TABLE 4. pH change in iron-removal process 1#-4# reactor.

FIGURE 3. Oxygen consumptions in 1#-4# reactor.

x21,2, x
2
1,3, x

3
1,1, x

3
1,2, x

3
1,3, x

4
1,1, x

4
1,2, x

4
1,3]. The selection rules

of φ2(x), φ3(x), φ4(x) are the same as φ1(x). The initial con-
troller u0 is obtained from actual experience. Set an initial
weight vector according to the initial state and the initial
control u0: θ

(0)
1,u = [−11.91 −11.91 −11.91 −11.91 −11.91

−11.91 −11.91−11.91 −11.91 −11.91 −11.91 −11.91].

Setting the value of the convergence criterion ξ = 10−4,
it is found that the critic and actor NN weight vectors
converge respectively to θ∗V , θ

∗
u and θ∗q . For the first reac-

tor critic network, the weight vector converges to θ1,v =
[−14.9446 −0.1209 14.9999 −2.4667 1.7839 −3.9240
0.8326 −7.3507 −9.6520 0.0006 14.9481 2.3172], the actor
network’s weight vector converges to θ1,u = [−1.4835
9.3696 −0.1576 −8.2513 5.7104 14.8071 1.5260 4.1283
11.2396 −14.9668 −12.8070 14.9220] and the structural
neural network’s weight vector converges to θ1,q =

[1.3457 15.0001 0.8082 15.0021 0.0107 −0.1543 −7.6880
8.3908−0.0680 14.9888 3.3743].
Similarly, in 2#-4# reactors, the initial values x20 =

[7.92 1.63 3.37], x30 = [4.21 1.59 3.41] and x30 =

[2.03 1.52 3.28] are set according to the exit value of the
previous reactor. The initial controller u20 = 43.8154, u20 =
39.9451, u20 = 31.6164.
Taking the 1# reactor as an example, the con-

trol strategy (33) is used for closed-loop simulation.
Figures 2 (a), (b), (c) (d) are the Fe2+,Fe3+ concentrations
in 1#-4# reactor, respectively. Figures 3 (a), (b), (c) and (d)
are the compared results of oxygen consumption between
the proposed optimal control and initial control in the 1#-
4# reactor, respectively. Figures 4 (a), (b), (c) and (d) are the
changes of the pH value in the 1#-4# reactor within two hours,
respectively. It can be seen from Figure 2 that the Fe2+ ion
concentration in the solution to be treated is reduced from
14g/L to 0.4g/L, while the Fe3+ ions are reduced from 1.7g/L
to 0.8g/L, Changes in the concentration of these ions all meet
the process technical requirements. The fluctuations of the
Fe2+ and Fe3+ concentrations in the reactors are small, which
avoids the formation of some by-products and ensures the
smoothness of the goethite process. It can be seen fromFigure
3 that the oxygen consumptions of the proposed optimal con-
trol have been significantly reduced compared to the initial
control. The results of the oxygen consumption comparisons
are shown in Table 1. Compared with the initial controller,
the proposed optimal control reduced oxygen consumptions
of the 1#-4# reactors by 13.73m3/h, 10.86m3/h, 8.12m3/h,
8.91m3/h respectively in two hours. The results show that the
proposed control method is resources-saving. Table 2 shows
the detailed comparison results of pH values, which indicates
that compared to the initial control, the proposed optimal
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FIGURE 4. pH value of the solution in 1#-4# reactor.

control leads to smaller pH value fluctuations of the solution
in reactor.

V. CONCLUSION
This paper proposes an off-policy optimal control method
based on reinforcement learning for the associated
Iron-Removal system. A bounded function is introduced to
define the maximum impact of the associated system on the
subsystem cost function. The bound function extends the cost
function of the nominal system, and optimizes the new cost
function to ensure that the cost function of the associated
system is not higher than the nominal system cost function,
thereby obtaining approximately optimal control. Taking
advantages of the large amount of data obtained in goethite
iron-removal process, the weight of neural network learned
offline, and the strategy of solving optimal control online,
this method provides convenience for practical operation of
industries. Based on the actor-critic structure, a new neural

network is introduced to approximate a part of the unknown
system structure. In this way, we extended the optimal control
method in [22] to the coherent system. And this method
relaxes the constraints between parameters and residuals.
According to the actual industrial data from the simulation
experiment, the two ion concentrations and pH values in the
goethite iron-removal process are strictly controlled within
the range required by the technological requirement, and the
ion fluctuation is less than that under the initial control, which
proves the effectiveness of the proposed off-policy optimal
control method.
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