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ABSTRACT Apple fruits can be easily damaged, and bruises occur on peels during harvest, transportation
and storage, which could decrease fruit quality. This paper proposed an apple bruise grading method based
on hyperspectral imaging (HSI). The spectral information of sound apples (Yantai Fuji 8) was first captured
using a hyperspectral reflectance imaging device (386-1016 nm). These apples were then mechanically
damaged by the same impact forces, and the bruised regions were exposed to room temperature for at most
120 min. The spectral data of the bruised apples at four different exposure times (30 min, 60 min, 90 min and
120min) were obtained. The spectral data were preprocessed using Procrustes analysis (PA) to enable a more
diverse distribution of the spectra among different patterns. To both accurately maintain the spectral informa-
tion of different patterns and reduce the dimensions of the spectra, piecewise nonlinear curve fitting (PWCF)
was presented using the least squares algorithm, where the resultant fitting coefficients from different
spectral intervals were catenated into a low-dimension feature descriptor. The feature descriptors were then
fed to an error-correction output coding-based support vector machine (ECOC-SVM) to grade the bruised
apples. To further evaluate the performance of the presented PWCF, conventional algorithms, including the
successive projections algorithm (SPA), genetic algorithm (GA), principal component analysis (PCA) and
kernel principal component analysis (KPCA), were introduced for comparison. Experimental results showed
that the proposed method obtained the best grading accuracy (97.33%) compared to the other methods.

INDEX TERMS Apple bruise grading, hyperspectral imaging, curve fitting, Procrustes analysis, support
vector machine.

I. INTRODUCTION
Apple is one of the most popular fruits around the world,
and its annual production amounts to 80 million tons [1].
Apple fruits can be easily damaged during the process of
harvest, transportation and postharvest storage, which might
cause obvious bruising of the apples and thus decrease the
fruit quality [2], [3]. Fruit sorting is usually considered to
filter out defective apples. Generally, accurate bruise grading,
especially the early detection and grading is an important
procedure involved in an apple sorting system. Typical fruit
bruise detection and grading methods are based on sen-
sory evaluation [4]–[6] and physicochemical analysis [7]–[9].
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However, sensory evaluation-based methods heavily depend
on personal subjective experience, leading to low reliability
and poor repeatability, while physicochemical analysis-based
methods usually require destructive sampling procedures,
which are time-consuming, laborious and costly. Recently,
many studies have focused on objective and nondestruc-
tive methods to detect and grade bruised fruits, especially
those methods based on machine vision and spectral imaging
techniques [10], [11].

The methods based on machine vision techniques usually
capture optical imageries of unbruised and bruised fruits and
detect bruises on fruits via appearance descriptors such as the
peel color, local texture and local shape features [12]–[19].
Based on the red/green/blue (RGB) color space, Pawar
and Deshpande [12] extracted the local texture and color
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features of pomegranate fruits using discrete wavelet trans-
formation (DWT) and spatial gray-level dependency matrices
(SGDM), respectively; the bruised regions of pomegranate
fruits were detected using a support vector machine (SVM).
Moradi et al. [13] extracted the local shape features of apples
from the L∗a∗b∗ color space using the active contour model
(ACM); then, the sound and bruised regions of the apple
fruits were segmented separately by statistical histogram-
based expectationmaximization (SHEM), reaching an overall
accuracy higher than 91%. Huang et al. [18] combined the
Gabor texture descriptor and SVM classifier to detect bruised
apples, with an accuracy of 85%. Zhu et al. [19] obtained
high-dimensional Gabor features to describe the sound and
defective regions of apple fruits from near-infrared images,
followed by the dimension reduction procedure using kernel
principal component analysis (KPCA); then, the defective
apples were detected by SVM and achieved an accuracy
of 90.6%. However, the detection performance of methods
using machine vision techniques mainly depends on the
appearance differences (e.g., peel color, local texture and
local shape features) between the sound and bruised/defective
fruits; therefore, these methods might fail to achieve accurate
results because insufficient information could be extracted
from the fruit regions without significant appearance differ-
ences, especially for fruits with slight bruising [3].

Spectral imaging techniques can not only capture the
appearance changes caused by mechanical damage but also
reflect the fruits’ internal quality, which is more suitable
than other techniques to detect and grade apple bruising.
The methods based on hyperspectral imaging usually involve
spectral data preprocessing, spectral feature dimension reduc-
tion and pattern classification [20]–[24]. Ji et al. [22] inves-
tigated the performance of grading defective potatoes using
different preprocessing algorithms, including Savitzky-Golay
smoothing (SGS), standard normal variable transform (SNV)
and n-order derivative filtering, and conducted a performance
comparison with the methodology based on the raw spectral
data; they found that significant improvement in the accu-
racy of the grading of defective potatoes could be achieved,
especially when using the SNV method. A similar conclu-
sion was also drawn by Xing et al. [23], who adopted the
multiplicative scatter correction (MSC) and Norris’ first-
order derivative to preprocess the spectral data, and then
apple (Jonagold) bruising was detected using partial least
squares (PLS) analysis. Liu et al. [24] compared the perfor-
mance of the detection of defects in hawthorn using different
preprocessing algorithms, such as SNV, SGS, median filter-
ing and MSC, and the results indicated that the SNV method
was most suitable for the detection of hawthorn defects. The
above studies show that spectral data preprocessing plays an
important role in fruit or vegetable detection and grading
applications. In addition, because the raw spectral data might
carry some redundant information and could also lead to high
calculation complexity, spectral feature dimension reduction
is usually considered successively [25]–[31]. Li et al. [25]
used weighted coefficient analysis to extract the optimal

components for the description of citrus fungal infections
from three different multi-spectral bands, and then the fungal
infected citrus were detected using the combination of the
bi-dimensional empiricalmode decomposition andwatershed
segmentation, with a detection accuracy of 97.3%. Based
on the principle component analysis (PCA), Lu et al. [26]
extracted four principal components to describe the invisible
bruise of kiwi fruits from hyperspectral reflectance data (600-
1000 nm) and used the resultant components to model a par-
allelepiped classifier for the bruise detection. Tan et al. [27]
selected the featured wavelengths using the successive pro-
jections algorithm (SPA) and achieved the grading of apple
pulp bruise by the grid search based support vector machine
(GS-SVM), with a grading accuracy of 95%. Liu et al. [28]
first analysed the variation of content such as fructose, glu-
cose, sucrose and total water-soluble sugar in fungal infected
strawberries using high performance liquid chromatogra-
phy(HPLC), and selected several featured wavelengths from
the corresponding near-infrared hyperspectral data using SPA
to aid the rapid detection of the fungal decay in strawberry.
Moscetti et al. [29] adopted a near-infrared spectral imaging
technique to capture information on olive fruits damaged by
insects, selected several featured spectral wavelengths using a
genetic algorithm (GA), and detected insect-damaged olives
by using a combination of discriminant analysis and the
k-nearest neighbor (k-NN) algorithm. ElMasry et al. [30]
investigated the potential of using the hyperspectral imag-
ing technique for the early detection of bruises on ‘McIn-
tosh’ apples, where PLS and stepwise discriminant analysis
were used to select the important characteristic wavelengths
(750 nm, 820 nm and 960 nm) involved in the effective
description of the symptoms of early apple bruising.

Although much effort has been made to detect fruit defects
and bruises using hyperspectral imaging-based methods,
most studies have mainly focused on binary classification
tasks. To observe the dynamic changes of spectral response
of the bruised apples that might be helpful for the early
detection of bruised apples toward fruit sorting applications,
the grading of apple bruise with respect to the exposure times
were explored. In addition, although the conventional feature
extraction algorithms (e.g., PCA and KPCA) are useful to
conduct dimension reduction for the hyperspectral imaging
data, it is difficult to guarantee that the transformed low-
dimension data will maintain the optimal pattern classifica-
tion performance. On the other hand, although some feature
selection algorithms (e.g., SPA and GA) could be able to
combine several characteristic spectral wavelengths for fruit
classification tasks, they might attempt to ignore some spe-
cific wavelengths with similar spectral responses among dif-
ferent patterns and some ignored spectral wavelengths might
still carry useful information for separating patterns that can
be used to grade bruised fruits. Specifically, the above algo-
rithms focus on only some portion of the informative spectral
variables or transform instead of using the full spectrum.
However, it could be regarded that the raw spectra of different
patterns might also carry powerful information for the task of
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apple bruise grading, and thus, it would be interesting and
useful to approximate the raw spectrum of an apple sample
belonging to a certain pattern. Therefore, this study aimed to
both maintain the spectral information for the sound/bruised
apple fruits and reduce the dimensions of hyperspectral data
using piecewise nonlinear curve fitting (PWCF) procedure
to accurately represent spectral features. Furthermore, the
error-correcting output code-based support vector machine
(ECOC-SVM) was introduced to evaluate the apple bruise
grading (multiclass classification) performance based on the
presented PWCF.

II. MATERIALS AND METHODS
A. SAMPLE PREPARATION AND HYPERSPECTRAL
DATA ACQUISITION
A total of 75 undamaged apples (Yantai Fuji 8) with similar
sizes, weights and maturity degrees were collected as the
sound samples and stored in a room temperature environ-
ment (25◦C and 60% RH), as the short-time storage of the
apples was considered. To manually generate apple samples
with similar bruised appearances, an apple impact device
was designed, as shown in Figure 1(a). The device consisted
of a 25 g plastic cylinder (with a diameter of 10 mm and
thickness of 1 mm), a plastic guide tube (25 cm in length),
a trestle (20 cm in height) and an objective table (with an
area of 20 cm2). During the mechanical damage generation
process, the regions approximately 2 cm from both the stalk
and pedicle of the sound apples were first manually annotated

FIGURE 1. Configuration of the experimental platform: (a) apple impact
device, (b) hyperspectral imaging system.

as shown in Figure 2; a sound apple (marked as pattern
P0) was then placed under the plastic guide tube, with its
annotated regions facing the center of the guide tube; the
plastic cylinder was freely dropped along the cylinder tube
to form a bruised piece approximately 1.4 cm in diameter on
the annotated regions of the sound apple. To ensure the gen-
eration of the same forces, the falling height of the cylinder
and the orientation of the guide tube were fixed.

Figure 1(b) shows the adopted hyperspectral imaging
system, which consisted of a hyperspectral imaging cam-
era (GaiaSky-Mini, Sichuan ShuangliHepu Technology Co.,
Ltd., China), four light sources with 50-W ELC halogen
lamps, a sample carrier table, a data acquisition black box
(60 cm × 70 cm × 80 cm) and a personal computer.

During the hyperspectral data acquisition phase, the sound
apple fruit was placed on the sample carrier table, with one of
its annotated regions facing the hyperspectral imaging camera
(∼52 cm from the annotated regions). The range of the spec-
tral wavelengths was 386∼1016 nm, the spectral imaging
resolution was 786 pixels × 256 pixels, the forward speed of
the imaging device was 0.08 cm/s and the exposure time was
9.98 ms. The raw hyperspectral data I were calibrated using
dark and white calibration [32], and the resultant relative
reflectance hyperspectral data R could be written as follows:

R =
(I − B)
W − B

× 100% (1)

where B refers to the dark hyperspectral value (with 0%
reflectance) acquired by a camera lens fully covered by its
black cap, and W is the white hyperspectral value acquired
from a PETT reflectance panel with 100% reflectance values
(HSIA-CT-250 × 280, Dualix, Sichuan, China).
The hyperspectral data of the 75 sound apples were first

collected using the hyperspectral imaging system. Then, all
the sound apples were mechanically damaged, generating
bruises on the annotated regions using the apple impact
device. Since it was observed that the appearance of the
mechanically damaged regions represented little changes
with the exposure time longer than 120 min, the bruised
apples were placed in the room temperature environment for
at most 120 min, and the hyperspectral data of the apples at
four different moments (including 30 min, 60 min, 90 min
and 120 min) were recorded. Figure 2 shows some examples
for the bruised apple samples with the above five degrees
or bruising. The hyperspectral data of the different bruised
apples were marked as patterns P1, P2, P3 and P4, respec-
tively. Since there were two annotations (near the stalk and
pedicel) on each apple, two groups of spectral data were
recorded for each apple sample and were further regarded as
two different instances in this study. Therefore, 150 instances
were generated for each degree of bruising for the apple
samples, and there were 750 instances for the samples with
the five degrees of bruising. Three datasets consisting of 225,
225 and 300 instances were generated by randomly partition-
ing the 750 instances and were called the training, validation
and test datasets, respectively.
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FIGURE 2. Annotated regions for five bruised degrees of an apple fruit sample (take the stalk portion as an example): (a) sound apple (P0), (b) bruised
apple with the exposure time of 30 min (P1), (c) bruised apple with the exposure time of 60 min (P2), (d) bruised apple with the exposure time of 90 min
(P3), (e) bruised apple with the exposure time of 120 min (P4).

FIGURE 3. The flow chart of the proposed apple bruise grading method.

B. APPLE BRUISE GRADING
Figure 3 summarizes the three main procedures of the pro-
posed apple bruise grading method: spectral data preprocess-
ing, spectral feature representation and pattern classification.

1) SPECTRAL DATA PREPROCESSING
As shown in Figure 2, the spectral data of both the sound
(P0) and bruised (P1, P2, P3 and P4) regions were regarded
as the regions of interest (ROIs) with a spatial resolution
of 15 pixels × 15 pixels. The average spectral information of
the ROIs was calculated using ENVI software (version V5.3).

The spectrum (spectral curve) of the sound or any bruised
apple pattern could be regarded as a specified shape depicting
the corresponding pattern. As reported by Goodall [33], PA is
very suitable for the task of shape correspondence due to its
orthogonal nature. A recent work [34] also reported that PA

provided great potential for preprocessing the hyperspectral
data and further brought significant improvements to the
following pattern classification tasks. Therefore, the MSC,
SNV, SGS-FD and PA were considered and used for the per-
formance comparison during the spectral data preprocessing
phase.

2) SPECTRAL FEATURE REPRESENTATION
The resultant hyperspectral data might contain some redun-
dant information due to the large number of wavelength vari-
ables. In addition, the high dimensionality of the raw spectral
data could further increase the calculation complexity of the
following pattern classification procedures. To both maintain
the spectral information of the sound or bruised apples as
accurately as possible and reduce the spectral dimension,
a spectral feature representation algorithm termed PWCFwas
proposed, where piecewise one-element high-order equations
would be modelled to approximate the raw spectrum of an
apple sample belonging to a certain pattern.

First-order derivative calculation was first adopted to
locate the points with a zero first-order derivative from the full
spectrum. The resultant points contained the potential piece-
wise points, which were used to segment the full spectrum
into several disjointed spectral intervals with more regular
shapes because the points with zero first-order derivatives
might refer to the extreme points; thus, it would be helpful
to obtain several local truncated spectra with low complex-
ity by segmenting the full spectrum based on the extreme
points. However, some extreme points were located within
the relatively smooth regions, and it might be less useful
to segment the raw spectrum into more disjointed inter-
vals using such extreme points due to the low complexity
of the relatively smooth regions. Therefore, by combining
both the raw average spectrum and its first-order derivative,
all the extreme points were reordered according to their cor-
responding reflectance spectral responses in the full spec-
trum, and the extreme points with high reflectance spectral
responses were considered as additional potential piecewise
points.

Furthermore, optimization of the number of spectral
intervals (labeled as s) was then conducted using the
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trial-and-error method to further locate the optimal piecewise
points for the task of apple bruise grading. Suppose that
there are k reordered piecewise points, the raw average
spectrum would be segmented into 2, 3, . . . , and (k + 1)
disjointed spectral intervals. Specifically, only the first one
reordered extreme point was used to truncate the raw average
spectrum into 2 disjointed spectral intervals, only the first two
reordered extreme points were used to truncate the raw aver-
age spectrum into 3 disjointed spectral intervals, and so forth.
Since at most k extreme points were located, the maximum
number of possible spectral intervals was (k + 1).
The least squares algorithm was then used to conduct

the local spectrum curve fitting for each segmented spec-
tral interval, and the corresponding fitting equation f (x)
with respect to the spectral wavelength x could be written
as follows:

f (x) = a0 + a1x + a2x2 + · · · + anxn (2)

where ai (i = 0, 1, . . . , n) refers to the i-th fitting coefficient
of f (x) and n is the order of the one-element fitting equation.
Obviously, due to the nonlinear shape of the spectral intervals,
parameter n in Eq. (2) was set to larger than 2 (i.e., n ≥ 2).
Finally, all the fitting coefficients from different spectral
intervals were successively catenated into a feature descriptor
for each raw spectrum.

To evaluate the feature representation performance of the
proposed PWCF, conventional algorithms including SPA
[27], [28], GA [29], PCA [21], [26] and KPCA [19] were
introduced for the experimental comparison. In addition,
the curve fitting based on the full average spectrum (consider-
ing that there was only one disjointed spectral interval) would
serve as a baseline.

3) PATTERN CLASSIFICATION
Apple bruise grading refers to a multiclass pattern classi-
fication task. The work [35], [36] reported that the ECOC
framework was suitable to solve multiclass learning prob-
lems. Therefore, this study aimed to model a multiclass SVM
based on the ECOC framework [36] for the task of apple
bruise grading.

The design of a multiclass SVM classifier based on the
ECOC could be summarized as two main steps: (1) Coding
for the training phase. Based on the training and validation
dataset, 10 (there were 5 different patterns in this study) base
SVM classifiers were first trained using the one-against-one
manner, where each pattern was encoded into a unique 10-bit
(the same as the number of generated base classifiers) binary
codeword using the patterns’ membership; thus, an encoded
table with the size of 5 (patterns) × 10 (bits) was obtained.
(2) Decoding for the test phase. Using the 10 base SVM
classifiers, a code would be generated for each instance in the
test dataset and matched with the codeword of each pattern in
the encoded table. Then, the test instance would be classified
as the pattern with the closest codeword using Hamming
distance decoding.

4) EVALUATION METRICS
The performance of the proposedmethodwas evaluated using
statistical metrics including the overall accuracy (A), preci-
sion (P), recall rate(R) and F1-score. The four metrics can be
defined as follows:

A =
TP+ TN

TP+ FP+ TN + FN
(3)

P =
TP

TP+ FP
(4)

R =
TP

TP+ FN
(5)

F1-score =
2× P× R
P+ R

(6)

where TP is the number of correctly classified sound apple
instances (pattern P0), TN is the number of correctly classi-
fied bruised apple instances (patterns P1, P2, P3 and P4), FP
is the number of incorrectly classified bruised apple instances
and FN is the number of incorrectly classified sound apple
instances.

III. RESULTS AND DISCUSSION
A. PERFORMANCE EVALUATION OF THE SPECTRAL DATA
PREPROCESSING
1) ANALYSIS OF THE RAW AVERAGE SPECTRUM
Due to the low sensitivity of the adopted spectrometer,
the wavelengths at both ends of the resultant spectra could
usually be defined as noisy spectral regions. Considering
the similar configuration reported by Miao et al. [34], only
the truncated spectra ranging from 400 nm to 1014 nm
were reserved for the following experiments and analysis.
Figure 4 shows the reflectance spectra from the five apple
patterns (i.e., P0, P1, P2, P3 and P4).

As illustrated in Figure 4, the average spectra from the four
bruised apples share a more similar tendency with respect to
the spectral wavelengths, especially at some absorption peaks
(e.g., 675 nm, 982 nm, etc.) than the sound apples, which
could provide useful information to separate the patterns
for sound apples from the other four bruised patterns. For
example, Tan et al. [27] reported that the reflectance spectral
response is sensitive to the concentration of pericarp chloro-
phyll near the wavelength of 680 nm; thus, the absorption
peak at approximately 675 nmmight be caused by the chloro-
phyll content in the apple pericarp. The bruised regions in
the apple pericarp might affect the spectral absorption caused
by chlorophyll, resulting in a decreased reflectance spectral
response, as shown in Figure 4. In addition, with the increase
in exposure time (from 30 min to 120 min) of the bruised
regions, the apple tissue became oxidized, and the concen-
tration of the chlorophyll content in the apple pericarp might
degrade accordingly and further affect the reflectance spectral
responses of the four bruised apple patterns, which could pro-
vide some information for recognizing apples with different
degrees of bruising. A similar finding could also be observed
at 982 nm. Baranowski et al. [32] found that the reflectance
spectral responses could be affected by the vibration in the
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FIGURE 4. Reflectance spectra from the five apple patterns: (a) the
average reflectance spectra and (b) the raw reflectance spectra for all the
instances.

O-H bond; hence, the absorption peak at the wavelength
of 982 nm might be caused by the O-H structure of water in
apples. Specifically, with the increase in exposure time (from
30 min to 120 min) of the bruised regions, the concentra-
tion of water might decrease accordingly and further affect
the reflectance spectral responses of the four bruised apple
patterns.

2) ANALYSIS OF THE PREPROCESSING EFFECTS USING
DIFFERENT ALGORITHMS
The performance of spectral data preprocessing using SNV,
SGS-FD, MSC and PA was first evaluated. Figure 5 gives
the preprocessing results on the raw average spectra from
different apple patterns using the above algorithms.

As illustrated in Figure 5(a), compared to the raw average
spectra, the results obtained by SNV provided significant
differences at some absorption peaks (e.g., at wavelengths
of 641 nm and 675 nm), which would be beneficial for more
accurate classification of sound and bruised apple patterns.

However, except for some absorption peaks, the SNV might
also result in similar spectra within several spectral inter-
vals for different patterns; for instance, within the spectral
range of 600-700 nm, the preprocessed spectra of the four
bruised apple patterns provided small between-class variance,
which might make it difficult to separate the four bruised
patterns using the spectral information within such wave-
length ranges. Similar results were also obtained by SGS-FD,
as shown in Figure 5(b). Some absorption peaks of different
spectra were further enhanced by the first-order derivative
operation; however, some local noise could also be enlarged.
On the other hand, a more diverse distribution of the resultant
spectra from different apple patterns was generated by both
MSC and PA than those generated using the other two pre-
processing algorithms. The diverse distribution guaranteed
the generation of sufficiently large between-class variances
among the five apple patterns and more powerful feature
representation for the following procedures, especially for the
results obtained by PA.

To quantitatively evaluate how spectral data preprocessing
affects the accuracy of apple bruise grading, ECOC-SVM
was directly adopted on the full spectra obtained by the four
different preprocessing algorithms. Furthermore, another
ECOC-SVM model trained from the raw spectra without
any preprocessing procedure was introduced as the baseline
classifier. The above training processes were based on the
training dataset. Using the validation dataset, the comparison
results (recall rate R was given) are illustrated in Table 1.

Table 1 demonstrates that encouraging grading results
were obtained using all preprocessing algorithms compared
to the results using the baseline classifier, especially when
combined with the MSC and PA. This result is probably
because within certain ranges of spectral wavelengths (e.g.,
600-760 nm and 700-900 nm), more significant spectrum
differences among different apple patterns were generated by
these preprocessing algorithms and thus providedmore useful
discriminant information while modeling the ECOC-SVM
classifiers. However, much less accurate grading results (with
an average recall rate less than 46%, which was slightly better
than that using the baseline classifier) were obtained using
either SNV or SGS-FD than those obtained by both MSC and
PA. According to Table 1, most of the incorrectly classified
apple instances were from patterns P2, P3 and P4, probably
because with the increase in exposure time of the bruised
apple regions, the concentration of chlorophyll content in the
apple pericarp degraded gradually and tended to converge
[27], [37], resulting in similar reflectance spectral responses
in the corresponding ranges. Such overlapping spectra among
the three bruised apple patterns, i.e., P2, P3 and P4, could
not be significantly separated by either SNV or SGS-FD,
and it thus led to a low recall rate among the three patterns,
as shown in Figure 5(a) and Figure 5(b). Although accu-
rate results were obtained using both MSC and PA, high
computational complexity for grading bruised apples using
the full hyperspectrum was required, and it was necessary
to conduct spectral feature representation for dimensional
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FIGURE 5. Results of spectral data preprocessing using different algorithms: (a) SNV, (b) SGS-FD, (c) MSC and (d) PA.

TABLE 1. Comparison of apple bruise grading accuracy using the combination of different spectral data preprocessing algorithms and ECOC-SVM.

reduction. Due to the encouraging performance of spectral
data preprocessing using both MSC and PA, spectral feature
representation was conducted based on these two algorithms.

B. SENSITIVITY ANALYSIS ON THE
PARAMETERS IN PWCF
Figure 6 provides an illustration of the raw average spectrum
for all the apple instances, where all the reordered poten-
tial extreme points (7 points in total) were located at the
wavelengths of 675 nm, 715 nm, 641 nm, 982 nm, 810 nm,
760 nm and 490 nm, respectively. As a result, the raw average
spectrum could be segmented into 2, 3, 4, 5, 6, 7 and 8
disjointed spectral intervals, respectively.

Since there are two important parameters (i.e., the number
of disjointed spectral intervals s and the order of the one-
element fitting equation n) in the proposed PWCF, experi-
ments were performed to (1) conduct the sensitivity analysis
of the two parameters and (2) select the optimal combina-
tion of both s and n using 5-fold cross validation. As men-
tioned above, all the possible settings for the parameter
s could be written as the set S = {k|1 ≤ k ≤ 8}.
Considering both the nonlinear curve shape of the possible
truncated spectra and the complexity of the curve fitting
procedure, all possible settings for the parameter n formed
the set N = {l|2 ≤ l ≤ 6}. To reduce the random-
ness of the instances partition involved in a single cross
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TABLE 2. Cross validation results (%) for each combination of the parameters s and n using the training and validation dataset preprocessed by MSC.

TABLE 3. Cross validation results (%) for each combination of the parameters s and n using the training and validation dataset preprocessed by PA.

FIGURE 6. The average spectrum and its corresponding first-order
derivative.

validation, the 5-fold cross validation was independently
conducted 20 times, and the resultant overall accuracy and
corresponding standard deviation were considered for the
parameter optimization.

Table 2 and Table 3 show the grading results under dif-
ferent configurations for the two parameters using the train-
ing and validation datasets after being preprocessed by MSC
and PA, respectively. The spectra processed by both MSC
and PA reveal that (1) the grading results were much less

sensitive to the settings of parameter n than parameter s; in
addition, although a high value of n might usually guarantee
a more precise curve fitting result, it not only requires a high-
level of computational complexity but also generates a large
number of fitting coefficients, which would further increase
the dimensions of the resultant feature descriptors; (2) much
less accurate grading results were obtained when not enough
disjointed spectral intervals (s 6 4) were considered. Small
values of s generate intervals with wide spectral ranges,
which might still carry complex and irregular curve shapes
containing more absorption peaks. With the increase in the
parameter s (at the threshold equaling 5), more acceptable
grading results were obtained, probably due to the decrease in
the complexity of the resultant intervals at narrower spectral
ranges, which simplifies the nonlinear curve fitting proce-
dure. However, the continuous increase in s (s > 7) did not
guarantee higher grading accuracy according to Table 2 and
Table 3, probably because the last two piecewise points (at
760 nm and 490 nm) fell into the spectral intervals with rela-
tively smooth regions. It is less helpful to decrease the com-
plexity of the raw spectrum by such truncations; furthermore,
it might generate more breakpoints between the adjacent two
spectral intervals, as shown in Figure 7, which gives the curve
fitting results using different numbers of spectral intervals
with a fixed value of n = 3.
Table 2 and Table 3 also demonstrate that more encour-

aging results were generated from the spectra preprocessed
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FIGURE 7. Comparison of piece-wise 3-order curve fitting using different settings of parameter s: (a) s = 1,
(b) s = 2, (c) s = 3, (d) s = 4, (e) s = 5, (f) s = 6, (g) s = 7 and (h) s = 8.
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TABLE 4. Comparison of apple bruise grading results (metric R).

TABLE 5. Comparison of apple bruise grading results (metric P).

TABLE 6. Comparison of apple bruise grading results (metric F1-score).

using PA than those using MSC, especially when the number
of spectral intervals was 6 and the order of the one-element
fitting equation was 3. The preprocessed spectra provided
large between-class variance among different patterns using
PA, as indicated in Figure 5. Therefore, the optimal config-
uration of the parameters s and n involved in PWCF was
determined by the tuple {6, 3} for the following experiments,
where PA was chosen as the best preprocessing algorithm.

C. PERFORMANCE EVALUATION OF APPLE BRUISE
GRADING
1) EVALUATION OF THE SPECTRAL FEATURE
REPRESENTATION
To evaluate the feature representation performance of the
proposed PWCF, traditional algorithms including SPA, GA,
PCA and KPCA were introduced for comparison using the
test dataset. Table 4, Table 5 and Table 6 give the grading
results using the combination of different feature representa-
tion algorithms and the ECOC-SVM classifier. The overall
grading accuracies A obtained by PWCF, SPA, GA, PCA and
KPCA were 97.33%, 77.88%, 75.82%, 81.02 and 90.78%,
respectively.

For all the feature representation algorithms used for
comparison, the most acceptable results were obtained for
the classification of sound apples (P0), probably due to
the significant spectral differences between the sound apple
pattern and the other bruised apple patterns, at least at
some absorption peaks and within several spectral intervals.

The feature selection algorithms (SPA and GA) usually focus
on specific characteristic spectral wavelengths based on a
certain optimization function, but they might attempt to
ignore some global and intrinsic characteristics contained in
the full spectrum that could still provide a positive effect on
the task of apple bruise grading. In addition, some feature
selection algorithmsmight encounter the problem of resulting
in local optima, which cannot always guarantee an acceptable
combination of informative characteristic spectral bands. For
example, it has been reported [38] that premature conver-
gence might appear in GA and sometimes it might be difficult
to prevent the generation of a local optima. On the other
hand, the grading results obtained by both PCA and KPCA
were better than those obtained using the feature selection
algorithms, probably because PCA and KPCA considered the
data transform using the full spectra while conducting the
dimension reduction (e.g., only the first 8 components with
accumulative variance of approximately 99% were extracted
by PCA), and this process might preserve some intrinsic
features of the spectra among different patterns. However,
the principle components might not always guarantee the
ability to classify all the apple patterns because PCA and
KPCA consider only the data distribution along the orien-
tation with the largest variability [39], [40], i.e., along the
orientation with the widest distribution of scatters. In addi-
tion, the up-sampling nonlinear projection using the Gaussian
kernel made it more possible to group different apple patterns
in a very high-dimensional feature space specified by the
KPCA; therefore, the KPCA-based feature representation
was more suitable to grade the bruised apples than the PCA.

Unlike SPA, GA, PCA and KPCA, the proposed PWCF
tries to approximate the basic shape of the full spectrum,
which is suitable to preserve the intrinsic information of the
original spectra for both the sound and bruised apple patterns.
Using the parameters specified by the tuple {6, 3}, a number
of 6 spectral intervals were fitted by the least squares algo-
rithm, and there were 4 coefficients in each fitting equation.
Hence, a total number of 6 × 4 = 24 fitting coefficients was
calculated and formed the feature descriptor, so the PWCF
could also be regarded as a dimensional reduction procedure
compared to the original 1014 – 400+ 1= 615 spectral wave-
lengths in the full spectrum. The results in Table 4, Table 5
and Table 6 indicate that the best bruised apple grading per-
formance (with regard to the metrics including R, P and F1-
score) was obtained using the proposed PWCF, compared to
those using the other feature selection and feature extraction
algorithms.

2) EVALUATION OF THE PATTERN CLASSIFICATION
To evaluate what benefit could be provided by the ECOC-
SVM, a conventional multiclass SVM model (marked as
C-SVM in this study) using the indirect application of one-
against-one concepts and majority voting was created for
performance comparison, where the publicly released LIB-
SVM toolbox [41] was adopted. Based on the test dataset,
Figure 8 gives the confusion matrices indicating the bruised
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FIGURE 8. Confusion matrix depicting the results of apple bruise grading using: (a) ECOC-SVM classifier and (b) C-SVM
classifier.

apple grading results using the ECOC-SVM and C-SVM
classifiers.

Figure 8 demonstrates that the grading model incorporat-
ing the ECOC-SVM classifier provided a higher recall rate
and precision on the test dataset than the C-SVM classifier.
Specifically, 6 instances from pattern P1 was incorrectly
predicted as pattern P2, and 2 instances from pattern P2 were
incorrectly predicted as pattern P1, resulting in an overall
grading accuracy of 97.33% using the combination of PA,
PWCF and ECOC-SVM. On the other hand, more instances
from patterns P1 and P2 were incorrectly predicted by the
C-SVM classifier, resulting in an overall grading accuracy
of 81% using the combination of PA, PWCF and C-SVM.
The encouraging grading results provided by the ECOC-
SVM were probably due to the advantage that the learn-
ing of the base SVM classifiers was viewed as a type of
communication problem using the error-correcting coding
framework, where the identity of the correct output pattern for
any instance from the finite training dataset was transmitted
over a channel consisting of both the input features and
the basic SVM learning algorithm. According to the find-
ings reported by Dietterich and Bakiri [35], this framework
encoded each apple pattern into an error-correcting codeword
with 10 bits and transmitted each bit via a separate learning
process using the SVM algorithm, which could be able to
recover the potential prediction errors likely introduced by
a set of finite training instances and poor choice of input
features.

IV. CONCLUSION
This paper proposed a novel apple bruise grading method
based on the hyperspectral imaging technique. The main
conclusions are as follows:

(1) Compared to SNV and SGS-FD, a more diverse dis-
tribution of the resultant spectra among different bruised
apple patterns could be obtained by either PA or MSC during
spectral data preprocessing, which would bring significant
benefits to successive bruised apple grading.

(2) The presented PWCF was more appropriate for the
spectral feature representation of both sound and bruised
apples than the conventional algorithms, such as SPA, GA,
PCA and KPCA, and obtained the best overall grading accu-
racy of 97.33% when the tuple configuration of the two
parameters (i.e., the number of spectral intervals and the order
of the fitting equation) involved in the PWCF was {6, 3},
especially using the spectra preprocessed by PA.

(3) ECOC-SVM was more suitable to solve the mul-
ticlass classification problem than the conventional indi-
rect application of the binary SVM concepts. Based on
the spectral features generated using the PA and PWCF,
an improvement of approximately 16.33% in the overall grad-
ing accuracy was obtained by the ECOC-SVM compared to
the C-SVM.
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