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ABSTRACT According to maritime image histograms’ statistic and analysis, the histogram of pure mar-
itime image obeys Gaussian distribution approximately, thus Three Adaptive Sub-histograms Equalization
(TASHE) algorithm for maritime image enhancement is proposed in this paper. First, the characteristics of
pure maritime image’s histogram are studied, then the adaptive threshold’s optimal selection strategy for
the histogram’s division is discussed, finally the implement of three sub-histograms is described. This paper
employs visible gray maritime image, visible color maritime image and infrared maritime image to verify the
enhancement algorithm’s effectiveness and robustness, the experimental results show that TASHE algorithm
can not only keep the maritime image’s mean brightness and naturalness, but also improve the maritime
image’s contrast without the noise and artifacts. The objective image quality assessment also indicates that
TASHE algorithm can improve the original maritime image’s Enhancement Measure by Entropy (EME)
value, furthermore, when a maritime image is pre-processed by TASHE algorithm, the maritime target’s
Detection Rate (DR) can be improved.

INDEX TERMS Image enhancement, sub-histogram equalization, maritime image, Gaussian distribution.

I. INTRODUCTION
Histogram Equalization (HE) [1] is one of the most widely
used methods in image enhancement [2]–[5], which has the
advantages of easy computation and implementation [6].
Nevertheless, the result after histogram equalization brings
about some disadvantages [7] such as mean gray value’s fix-
ing, entropy’s declination, and the details’ missing. Aiming
at the disadvantages of HE, some representative improved
methods are proposed.

Some researchers study the sub-histogram equaliza-
tion methods, which can enhance the image and prevent
the over-enhancement, for example, Brightness Preserving
Bi-Histogram Equalization (BBHE) [8] first divides the
image histogram into two parts(sub-histograms), and then the
two sub-histograms are independently equalized, which can
preserve the original image’s mean brightness. Equal Area
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Dualistic Sub-Image Histogram Equalization (DSIHE) [9]
divides the histogram into two sub-histograms based on
its original probability density function, which can obtain
the maximum entropy. Minimum Mean-Brightness Error
Bi-Histogram Equalization (MMBEBHE) [10] is the exten-
sion of BBHE, which provides maximal brightness preser-
vation. In Jan. 2020, Khan et al. [7] proposed the method
of fuzzy bi-histogram equalization, the key technique of this
method is that the histogram’s dividing threshold can be
derived from the skewness of the histogram, which indi-
cates that the threshold of sub-histogram equalization can
be selected by the characteristic of the image’s histogram.
Some researchers have also studied the modified histogram
equalization methods named by weighted histogram tech-
nique, thresholded histogram technique, or clipped histogram
technique, finally histogram equalization operates the new
histogram, the enhancement result usually has a better per-
formance, this is because the pixel’s frequency of histogram
can control the image’s enhancement rate. For example,
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Weighted Thresholded HistogramEqualization (WTHE) [11]
limits and modifies the original image’s histogram by a trans-
formation function, the enhancement result can reduce the
over-enhancement. Bi-HistogramEqualization with a Plateau
Limit (BHEPL) [12] controls the enhancement’s degree by
limiting the gray value’s frequency, the enhancement result
can keep the original image’s brightness. In the reformed
process of HE technique, image’s characteristics can also
be used as the dividing threshold, for example, exposure
based Sub Image Histogram Equalization (ESIHE) [13]
combines the idea of BBHE and BHEPL, which takes
the image’s exposure as the threshold to divide the his-
togram into two sub-histograms, then the two sub-histograms
are clipped by the other threshold, finally the two novel
sub-histograms are equalized respectively, the ESIHE algo-
rithm is suitable for enhancing the low exposure gray image.
The Recursively Separated and Weighted Histogram Equal-
ization (RSWHE) [14] divides the entire histogram into
the sub-histogram recursively, and the High-speed Quantile-
based Histogram Equalization (HSQHE) [15] divides the
entire histogram by quantile values, both of two algorithm
may be not effective when enhancing the maritime image,
because the principle of two algorithms doesn’t consider
the characteristics of the histogram of maritime image.
To enhance the image’s local details, some researchers
improved the idea of HE in the histogram of an image’s
local area. For example, Partially Overlapped Sub-block His-
togram Equalization (POSHE) [16] and Local Histogram
Equalization (LHE) [17] use a small window that slides
through every image pixel sequentially, and only pixels
within the current position of the window are histogram
equalized, both of the two algorithms take local information
into consideration when enhancing the image, which can
enhance the image’s details obviously, but over-enhancement
are sometimes occurred. The idea of HE can also be used
in the Discrete Wavelet Domain (DWT) [18], when the
original image is decomposed into low-frequency and high-
frequency components by DWT, the low-frequency coeffi-
cients’ histograms are equalized, the high-frequency coef-
ficients are kept constant and the reconstructed image can
be obtained, finally weighting the original image and the
reconstructed image can get the better performance’s result.
Some researchers propose a new histogram’s definition and
concept which can better reflect the image’s variation infor-
mation, for example, Singh et al. [19] considered that the
rough region of the image can reflect the image’s feature
information more effectively, so a novel histogram can be
derived from the image’s rough region, then the entire image’s
mapping function can be calculated by the novel histogram
equalization, in his work, two algorithms named byDominant
Orientation-based Texture Histogram Equalization (DOTHE)
and Edge-based Texture Histogram Equalization (ETHE) are
proposed. However, if a maritime image appears some small
targets, in such case, the small target’s region cannot reflect
the image’s feature information effectively, so the enhance-
ment result often has some artifacts when DOTHE and ETHE

algorithms are used to enhance the maritime image. In the
study of image enhancement of sea water, Song et al. [20]
established a variational model for enhancing the maritime
image without any maritime target, but as for a maritime
image including a maritime target, Song’s algorithm may
not be enough effective and has less help in the maritime
target’s tracking and recognition. In our work, we consider
the characteristics of maritime image’s histogram, optimize
and improve the idea of the sub-histogram equalization, the
design of our algorithm is equalizing the three sub-histograms
by two adaptive thresholds to enhance the maritime image,
and then TASHE algorithm is proposed in this paper.

The remainder of this paper is organized as follows:
Section II introduces the characteristics of the maritime
image’s histogram, Section III discusses the adaptive thresh-
old’s selection derived from the original image’s histogram
and the optimal strategy of threshold selection, Section IV
describes the implement of TASHE algorithm, Section V
shows the experimental results and assesses the enhancement
result’s objective quality of each algorithm, and Section VI
concludes the paper.

II. RESEARCH ON THE CHARACTERISTICS OF MARITIME
IMAGE’S HISTOGRAM
A. RESEARCH ON THE CURVE’S VARIATION OF MARITIME
IMAGE’S HISTOGRAM
In order to explain the characteristics of maritime image’s
histogram and make some investigations and demonstrations
sufficiently, four visible gray maritime images, four visible
color maritime images and four infrared maritime images
are shown as an illustration in Fig.1, and all of the maritime
images contain the pure sea background and include some
small maritime targets such as boat, yacht and surfer.

Mean filter with the size of 1 × 13 is used to denoise the
original histogram in order to make the histogram’s curve
smooth, which can be observed more clearly, the filtered his-
tograms of the above-mentioned maritime images are shown
in Fig.2, as for Fig.2(b), we show the V component’s his-
togram in HSV color space, from which, it can be summa-
rized that the histogram curve of each maritime image rises
firstly and then arrives at a peak value, finally the curve
declines near to zero. According to the curves’ variation
tendency, it can also be seen that the histogram of a maritime
image obeys the Gaussian distribution nearly.

On the study of image histogram’s fitting, Celik et al [21].
use the Gaussian Mixture Model (GMM) to model the
image’s histogram, if an image can be decomposed into the
background region and target region, two-order GMM can
fit the image’s histogram in the common case. According to
Celik’s work [21], as for amaritime imagewith pure sea back-
ground, the sea background is large, but the maritime target’s
region is small, which can be ignored, thus one-order Gaus-
sian distribution can fit a maritime image’s histogram instead
of GMM. In the following, Gaussian distribution is used to fit
themaritime image’s histogramwith estimated parameters by
Maximum Likelihood Estimate (MLE) law [22].
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FIGURE 1. Four visible maritime images, four gray maritime images and four infrared maritime images.

FIGURE 2. The filtered histograms’ curve of three kinds of maritime
images.

B. PARAMETER ESTIMATION AND SIMILARITY
ASSESSMENT
Now, we use Fig.3(a) (enlarged by Fig.1(b)) as a illustration
to explain how to use Gaussian distribution to fit a maritime
image’s histogram, the experimental maritime image’s actual
histogram and Gaussian distribution’s fitting curve are shown
in Fig.3(b).

FIGURE 3. Experimental image’s actual histogram and Gaussian
distribution’s fitting curve.

According to MLE law, µ̂ and σ̂ in Gaussian distribution
can be estimated respectively according to (1).

µ̂ = x̄, σ̂ =

√√√√ 1
N − 1

N∑
i=1

(xi − x̄)2 (1)

In the above formula, N is the total number of the image’s
pixels, x denotes the mean gray value of the image, and
xi denotes the ith pixel’s gray value in the image.
According to (1), µ̂ = 132 and σ̂ = 11 are calculated as

two estimated parameters of Gaussian distribution for fitting
the Fig.3(a)’s actual histogram.

In order to better explain that maritime image’s his-
togram obeys Gaussian distribution approximately, the PSNR
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(Peak Signal Noise Ratio) between the actual histogram and
the fitting Gaussian distribution is proposed in (2), where
MSE denotes the Mean Square Error between h(i) and ĥ(i),
h(i) denotes the actual histogram’s pixel frequency, and ĥ(i)
represents the fitting distribution’s pixel frequency, the max-
imum value of (h(i) − ĥ(i))2 is equal to 1, which is put
as the numerator of the mathematic expression, the larger
PSNR value has, the better the fitting Gaussian distribution
approaches to the true histogram.

PSNR=10 · lg
12

MSE
= 10 · lg

12

1
256

255∑
i=0

[h(i)− ĥ(i)]2
(2)

From Tab. 1, each histogram’s PSNR value is more
than 40dB, which can reflect that the actual maritime
image’s histogram is quite similar with the fitting Gaussian
distribution.

TABLE 1. The PSNR between the actual histogram and the fitting result
(unit:dB).

III. THE DISCUSSION OF OPTIMAL THRESHOLD
SELECTION’S STRATEGY
As we mentioned above, the middle gray-value range occu-
pies the dominated part in the total histogram, thus the total
of the frequency in the middle range should be preserved in
the process of sub-histogram equalization in order to keep
the original image’s mean brightness, otherwise it can cause
some distortion and artifacts, such as another algorithm’s
result in the Section V. Three sub-histograms equalization by
two thresholds is reasonably designed for enhancing the mar-
itime image, and in this section, the optimal threshold selec-
tion’s strategy is proposed after the comparison of different
enhancement performances caused by different thresholds’
selection methods.

A. THE DISCUSSION OF TWO THRESHOLDS’ LOCATION
SELECTION
Without loss of generality, three different methods on thresh-
old’s location selection are discussed as the three following
cases (t1 and t2 denote the two thresholds respectively):

Case 1: Both of the two thresholds locate on the left side
of µ̂, the values of t1 = 40 and t2 = 80 are set as an example
for illustration.

Case 2: One threshold locates on the left side of µ̂, and
the other threshold locates on the right side of µ̂, the values
of t1 = 100 and t2 = 170 are set as an example for
illustration.

Case 3: Both of the two thresholds locate on the right side
of µ̂, the values of t1 = 160 and t2 = 200 are set as an
example for illustration.

We use the image’s Mean Brightness (MB) to select the
reasonable threshold’s direction, in addition, the MB value
can be denoted as (3).

MB =
1
N

H∑
i=1

W∑
j=1

I (i, j) (3)

where N is the total pixel numbers of an image, I (i, j) is the
gray value at the ith row and the jth column of the image’s
matrix, H is the height of the image’s matrix, and W is the
width of the image’s matrix.

The enhancement result by three sub-histograms equal-
ization under three above-mentioned threshold selection’s
method is shown in Fig.4, and the MB of the enhancement
result with three different cases is shown in Tab. 2. It can be
seen that the MB value of Fig.3(a) is 132, if one threshold
locates on the left side of µ̂, and the other threshold locates on
the right side of µ̂, the MB value after the enhancement result
is 135, which can preserve the original image’s brightness and
produce less noise.

TABLE 2. The MB value of three sub-histograms equalization with two
thresholds from three different directions.

In conclusion, the optimal threshold location selection’s
strategy is that one threshold locates on the left side of µ̂,
and the other threshold locates on the right side of µ̂. Since
Gaussian distribution is symmetrical with respect to µ̂, the
two thresholds can be set with the same distance towards µ̂,
how to select the optimal length is mainly discussed in the
following.

B. THE DISCUSSION OF TWO THRESHOLDS’ DISTANCE
SELECTION
In this section, µ̂ is set as the center, two thresholds with dif-
ferent length centered by µ̂ are discussed, since the maritime
image’s histogram obeys the Gaussian distribution approx-
imately, 1σ̂ law makes the second sub-histogram have the
pixel’s proportion of 68.3% approximately, 2σ̂ law makes the
second sub-histogram have the pixel’s proportion of 95.2%
approximately, and 3σ̂ law makes the second sub-histogram
have the pixel’s proportion of 99.7% approximately, enhance-
ment results under three different laws are shown as Fig.5.

In Fig.5(a) and Fig.5(b), the results under 1σ̂ and 2σ̂ law
exist some noise and artifacts in the sea region, thus the
performance of 3σ̂ law is more suitable for the maritime
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FIGURE 4. Enhancement results by two thresholds from three different directions towards µ̄.

FIGURE 5. Enhancement results by two thresholds from three different distances towards µ̄.

image enhancement. The result’s histogram after three dif-
ferent laws is shown as Fig.6, from which, it can be seen that
1σ̂ and 2σ̂ law make a certain number of pixels distribute

FIGURE 6. Comparison of result’s histogram under three different laws.

on the first sub-histogram (low gray intensity’s range) or the
third sub-histogram (high gray intensity’s range), by con-
trast, 3σ̂ law makes only less pixels distribute on the first
sub-histogram and the third sub-histogram, a large number
of pixels distribute on the second sub-histogram (middle gray
intensity’s range), thus the enhancement result can suppress
the noise and artifacts.

IV. THE IMPLEMENT OF TASHE ALGORITHM
The proposed algorithm named by TASHE in this paper can
be chiefly described in Tab. 3.

TABLE 3. The chief description of TASHE.

On the adaptive thresholds selection of Step2, according
to 3σ law in the statistics, the calculation method proposed
for t1 and t2 is shown as (4), where k can be chosen under
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FIGURE 7. Diagram of the histogram’s change after TASHE algorithm.

FIGURE 8. Comparison of each algorithm’s result for Fig.1(a-1).

the range of [3,5], in this paper, we chose k = 3 for the
threshold’s selection. In some peer researchers’ work, LCM
(Local Contrast Method) [25] detects the suspected target by
the saliency of local contrast, the threshold is also put by
the average of local contrast under 3σ law. In the automatic
infrared target segmentation’s algorithm based on the struc-
ture tensor [26], the adaptive threshold for the eigenvalue is
selected by the mean value and the standard deviation derived
from the statistics of eigenvalue, the main principle is similar
with (4).

t1 = µ̂− kσ̂ , t2 = µ̂+ kσ̂ (4)

Since t1 and t2 are derived from the original image’s his-
togram, our proposed algorithm is adaptive from different
image. In the following, the two thresholds divide the image’s
total gray range into three sub-intervals, which is shown
in (5), correspondingly, three sub-images after sub-histogram
equalization can be written as (6) according to the gray range
of three sub-intervals.

[0, 255] = [0, t1] ∪ (t1, t2] ∪ (t2, 255] (5)

X1 = {I(i, j); 0 ≤ I(i, j) ≤ t1, ∀I(i, j) ∈ I}

X2 = {I(i, j); t1 < I(i, j) ≤ t2, ∀I(i, j) ∈ I}

X3 = {I(i, j); t2 < I(i, j) ≤ 255, ∀I(i, j) ∈ I} (6)
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FIGURE 9. Comparison of each algorithm’s result for Fig.1(a-2).

where I denotes the original image, I(i, j) represents the gray
value whose pixel is in the ith row and the jth column of the
image, X1, X2 and X3 denote the first sub-image, the second
sub-image, and the last sub-image respectively.

In Step3, we firstly compute each pixel’s frequency of
the total image and summarize the three sub-histograms’
frequency, then the normalized pixel’s frequency of each
sub-histogram is obtained, finally we need to compute the
accumulated normalized frequency of each of three sub-
histograms. When x is denoted as the image’s gray value,
obviously x has three different value’s ranges according to
eq.(6), when x ∈ X1, we accumulate the gray level’s fre-
quency in the first sub-histogram from 0 to x, the result can
be written as CDF1(x), when x ∈ X2, we accumulate the gray
level’s frequency in the second sub-histogram from t1 to x,
the result can be denoted as CDF2(x), when x ∈ X3, we accu-
mulate the gray level’s frequency in the last sub-histogram
from t2 to x, the result can be denoted as CDF3(x).
In Step4, we need to compute the transformed gray value

after three sub-histograms equalization according to the
normalized pixel’s frequency of each sub-histogram. First,
we use the gray transformation function of traditional HE
as a reference to get the sub-histogram equalization’s func-
tion. The function [23] of gray value’s transformation after

conventional histogram equalization is described as (7).

f (x) = a+ (b− a) CDF(x) (7)

where a represents the minimum of output’s gray value,
b represents themaximum of output’s gray value, x represents
the gray value of the input, CDF(x) represents the cumulative
density function with respect to x. If a = 0, b = 255, f (x)
is the global gray transformation function of conventional
HE algorithm. As for three sub-histograms equalization, a,
b, and CDF(x) should be replaced by the reasonable variable
of the corresponding sub-interval, thus three sub-histograms
equalization can be described as (8).

y =


t1CDF1(x) if x ∈ [0, t1]
t1+1+(t2 − t1 − 1)CDF2(x) if x ∈ (t1, t2]
t2+1+(255−t2−1)CDF3(x) if x ∈ (t2, 255]

(8)

where y can denote the gray value transformation function
in the TASHE algorithm, we can easily get the enhancement
result Y by y.
In addition, Fig.7 also shows the histogram’s change after

TASHE algorithm, it can be indicated that TASHE algorithm
equalizes and flattens the three sub-histograms in the three
corresponding sub-intervals’ gray range.
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FIGURE 10. Comparison of each algorithm’s result for Fig.1(b-1).

V. EXPERIMENTAL RESULTS
In this section, visible gray maritime image, visible color
maritime image, and infrared maritime image are chosen
to verify the enhancement algorithm’s validity. Fig.8(a) and
Fig.9(a) are the visible gray maritime images, Fig.10(a)
and Fig.11(a) are the visible color maritime images, and
Fig.12(a) and Fig.13(a) are the infrared maritime images,
which are acquired by a infrared camera in the helicopter
above the sea. Meanwhile, we select seven representative
modified algorithms based on HE for comparison, the com-
pared algorithms are conventional or novel, the enhancement
results are shown in Fig.8, Fig.9, Fig.10, Fig.11, Fig.12 and
Fig.13. As for Fig.10(a) and Fig.11(a), we use HSV color
space to produce the enhancement result, H component and
S component among the HSV color space are kept con-
stant, only V component is processed by each compared
algorithm, at last, we transfer the new HSV color space
to new RGB color space for displaying the algorithm’s
result.

The EnhancementMeasure by Entropy [24] (EME) and the
MB value are used to assess the image’s objective quality in
Tab. 4, Tab. 5 and Tab. 6. The enhancement result with higher
EME value and nearer MB value to the original image has the
better enhancement performance.

A. EACH ENHANCEMENT ALGORITHM’S RESULT OF
VISIBLE GRAY MARITIME IMAGE
In Fig.8 and Fig.9, HE, MMBEBHE, BHEPL, LHE, DOTHE
and ETHE algorithms cause obvious over-enhancement.
BBHE algorithm causes some artifacts in Fig.8(c), which is
suppressed in Fig.9(c), and the maritime target is enhanced
effectively in Fig.9(c), so the performance of BBHE algo-
rithm is not robust. From Tab. 4, it can be seen that the
proposed algorithm has the largest EME value, and the MB
value of the proposed algorithm is the nearest to the original
image’s among the compared algorithms, it can be concluded
that our proposed algorithm can not only keep the original
maritime image’s brightness, but also enhance the maritime
target. As for some newest algorithms of enhancement for
Fig.8(a), the EME values of DOTHE and ETHE algorithm is
1.87 and 1.98 which are lower than the proposed algorithm,
and the MB values of these enhancement results are 148 and
140, which have some changes from the original image’s.

B. EACH ENHANCEMENT ALGORITHM’S RESULT OF
VISIBLE COLOR MARITIME IMAGE
From Fig.10 and Fig.11, it can be seen that HE, BBHE,
BHEPL, LHE, DOTHE and ETHE algorithms cause
obvious over-enhancement. MMBEBHE algorithm enhances
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FIGURE 11. Comparison of each algorithm’s result for Fig.1(b-3).

TABLE 4. The objective image quality assessment of sub-image in Fig.8 and Fig.9.

the Fig.11(a) effectively, the MB in V component in HSV
space of this algorithm’s result is 187, which is near to
the original image’s, and improves the original images to
more than 2 times, but it fails to enhance the original mar-
itime image of Fig.10(a), in a word, the performance of
MMBEBHE algorithm is not robust, by contrast, the pro-
posed algorithm is more effectively. Tab. 5 is the EME value
and theMB value of V component, from Tab. 5, it can be seen
that the proposed algorithm’s EME value is the largest, and
MB value of V component is near to the original image’s.
In conclusion, the proposed algorithm can also enhance the
visible color maritime image effectively.

C. EACH ENHANCEMENT ALGORITHM’S RESULT OF
INFRARED MARITIME IMAGE
In Fig.12 and Fig.13, all of the compared algorithms produce
heavy distortion in such case, the proposed algorithm keeps
the original image’s mean brightness and naturalness, and
enhances the image’s contrast effectively. From Tab. 6, it can
be seen that most of the compared algorithms cause serious
changes in the original image’sMB, by contrast, the proposed
algorithm’s MB value approaches to the original image’s and
the EME value is the largest. In a word, the proposed algo-
rithm can also have the enough effectiveness in the infrared
maritime image enhancement.
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FIGURE 12. Comparison of each algorithm’s result for Fig.1(c-1).

TABLE 5. The objective image quality assessment of sub-image in Fig.10 and Fig.11.

TABLE 6. The objective image quality assessment of sub-image in Fig.12 and Fig.13.

In the field of small infrared target’s detection, LCM algo-
rithm [25] detects the small or dim target in an infrared

image by the saliency of local contrast between the local
target’s region and local background’s region. When the
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FIGURE 13. Comparison of each algorithm’s result for Fig.1(c-2).

maritime image’s contrast is increased by enhancing algo-
rithm with less noise and artifacts, the maritime target’s
Detection Rate (DR) can be increased correspondingly, and
the False Alarm Rate (FAR) can be kept in the low level (the
calculation for DR and FAR can be referred by [25]), thus our
proposed algorithm can be considered as the pre-processing
algorithm for the maritime target’s detection and track-
ing. Moreover, in the filed of infrared target’s segmenta-
tion [26], [27], this proposed algorithm can also improve the
segmented target area’s accuracy.

VI. CONCLUSION
This paper analyzes the characteristics of maritime image’s
histogram, and conclude that the histograms of visible gray
maritime image, visible color maritime image and infrared
image obey the Gaussian distribution nearly, the PSNR
between the factual histogram and the fitting curve is more
than 40 dB, so Gaussian distribution can be used to fit the
histogram of the maritime image. According to the character-
istics of Gaussian distribution, three adaptive sub-histograms
equalization is designed for maritime image enhancement,
the optimal threshold’s selection strategy is discussed and the
implement of three sub-histograms equalization is described
in this paper, the thresholds are derived from the image’s
histogram, thus the algorithm can be adaptive to different

maritime images. From the experimental results, it can be
seen that the proposed algorithm keeps the original image’s
mean brightness, enhances the target effectively, suppresses
the sea background’s over-enhancement and avoids noise
effectively. The objective image quality assessment can
also indicate that the proposed algorithm can improve the
EME value of the original maritime image, furthermore,
the proposed algorithm can also be used as the effective
pre-processed algorithm for maritime target’s detection and
tracking.

In future, we can study the valid algorithm to enhance the
sea & sky image, when the image includes sea and sky back-
ground, the histogram can be divided by two sub-Gaussian
distributions, correspondingly, the effective algorithm based
on reformed histogram equalization can also be studied.
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