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ABSTRACT Recently, electrical engineers are paying great attention to develop oceanic wave energy
conversion technologies based on the piezoelectric materials because of their excellent conveniences.
Piezoelectric oceanic wave energy converters (OWECs) have several benefits over the others such as its small
size, lightweight, no requirement of using intermediate device as well as having less negative impacts on the
oceanic environment. Various review and research papers focus on the piezoelectric devices, their operation
and application for oceanic energy conversion. But, to the best of the authors’ knowledge, none of the existing
research or review papers present detailed scheme of piezoelectric device based power generation covering
all the relevant topics as depicted in this review. This article focuses different aspects of piezoelectric device
based oceanic wave energy conversion technology including prospect, historical development, classification,
operating principle, configuration, arrangement, model, processing, post-processing, and their test setups.
In addition, technical challenges, future direction of research and critical review are also illustrated. It is
assumed that, this article would play a significant role for the future development of piezoelectric OWECs
and the researcher working in this field.

INDEX TERMS Energy conversion, oceanic wave energy, piezoelectric material, piezoelectric generator,
renewable energy, wave power.

I. INTRODUCTION
Electrical energy generation from renewable energy
sources (RESs) is becoming popular in recent decades tomeet
the increasing energy demand. RESs are good enough for
the environment comparing fossil fuel based energy sources.
Although, fossil fuel is the main source of electricity gener-
ation in the globe, but it is estimated in [1] that, by the year
2040, the use of energy sources based on fossil fuel would
be reduced to 4%. Then the rest of required energy would be
provided by the RESs [1]. As per the report of the Intergov-
ernmental Panel on Climate Change (IPCC) in 2014, the level
of sea water in 2010 will increase by 0.2 m approximately
by the year 2050 [2]. Consequently, both the land and the
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islands would be reduced significantly. While burning fossil
fuel, carbon di-oxide (CO2) gas is produced and it is highly
responsible for environmental pollution [3].

On the other hand, the demand of energy in 2040 would be
double compared to that of in 2016 [4]. For the generation
of clean and sustainable energy, RESs such as solar [5],
wind [6], oceanic wave energy (OWE) [7], and geothermal
energy [8] have already got significant attention. Among all
the RESs, OWE is conceived with the highest potentiality of
producing electrical energy [9]. For that reason, the devel-
opment of highly efficient wave energy converter (WEC)
technology has become one of the concerning issues.

Most of the oceanic wave energy conversion technologies
are based on the electrostatic, electromagnetic, or piezoelec-
tric properties [3]. In an electrostatic principle based sys-
tem, the kinetic energy is transferred which is produced by
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vibrational motion of devices overcoming the electrostatic
forces between the devices. The simulation work in [10]
presents an energy harvester which is designed and developed
based on the methodology of converting the vibration into
electricity. The frequency of input vibration was 120 Hz
and the power density was 116 µW/cm3. The concept of
electrical power generation by electromagnetic induction was
discovered by great scientist Michael Faraday in 1831. Sev-
eral WECs are presented in [11] in which rotational and lin-
ear electrical generators are described. The generator mostly
operates by the principle of electromagnetic induction. It was
semi-submerge type and oscillates following the oceanic
wave which in turn drives hydraulic motors to drive electrical
generators for the generation of electrical energy. The length
and weight of the harvester was 180 m and 1350 t respec-
tively. The output power was obtained about 750 kW [12].

A comprehensive review on wave-to-wire models for vari-
ous WECs is presented in [13]. Direct drive WEC (DDWEC)
offers high energy conversion efficiency because, the losses
in the intermediary parts, mechanical or hydraulic arrange-
ments are not used. Different types of linear generator and
magnetic coupling machine also known as snapper can be
included in the category of direct conversion technologies for
OWE. Piezoelectric and triboelectric transducers can also be
considered for direct drive system. Tubular and flat type linear
generators are also under research for the development of effi-
cient design of DDWECs [14]. The later class of converters
can produce shear stress up to 10 times more compared to
that of those in traditional electrical generators with very low
loss [15]. An optimized planar linear generator is proposed
in [16], which is capable of utilizing several modes of OWE
conversion. Optimal design of the generator is developed
based on parameters of the electrical equivalent circuit and
the properties of oceanic wave. A permanent magnet linear
generator is designed and proposed in [9] that considers split
translator secondary stator windings. The proposed generator
minimizes translator’s weight to improve dynamics of the
translator motion.

Piezoelectric materials are also used to generate electric-
ity [3], [17]. Piezoelectric materials are sustainable source
of electricity that can be extracted from different RESs such
as OWE [18]–[21], wind energy [22] etc. It is implemented
on various devices such as microphones, load cells, power
excavator etc. Excellent properties such as greater energy
density, ability of natural inverse energy conversion, and sim-
plicity in designing construction were found from that power
excavator [23]–[25]. It is easy to construct energy harvesting
devices from micro and nano-scaled malleable piezoelectric
materials [26]–[28]. To meet the global energy demand, sev-
eral technologies have been developed for converting OWE
into electrical energy in recent time [29]. Submersible tech-
nologies have been developed in [30] for OWE conversion.

Piezoelectric materials convert strain energy into electrical
energy without any intermediate operation [31], [32]. They
are already being used in wind power generation [33], [34]
and OWE extraction [18], [19], [35], [36]. A small power

WEC using flexible piezoelectric device was designed and
presented in [37], [38] considering the kinetic energy of
oceanic waves. The piezoelectric devices were placed near
the surface of the ocean water. These devices were carried
by a floating member to produce electricity from the energy
of oceanic waves. Another energy harvester was designed
with 28 µm polyvinyldifluoride (PVDF) piezoelectric mate-
rial and was experimentally verified. The operating fre-
quency was 10 Hz and maximum output electric voltage was
1.1 V [39]. A well-designed energy extractor was proposed
in [40] which produced electricity by compressing the piezo-
electric plate. It has better efficiency and the frequency of
resonance is lower. A Prototype was experimentally verified
which produced 300–400 µW output power with 200 and
250 Hz vibrational frequencies [40].

From the literature review it is found that, it is possible
to generate micro-watt power scale electricity from 0.5 m/s
wave velocity [41]. A newly developed piezoelectric material
based wave energy harvester (WEH) is proposed in [30]. It is
structurally connected to a floating buoy and experimentally
verified for maximum 169 V output voltage at no load con-
dition (100 M�). It is possible to harvest significant amount
of electrical energy with machines by vibration conversion
provided that shock absorbers, etc. are properly utilized [42].
A wind power plant was designed and developed based on
piezoelectric bimorph [43]. It was practically validated for
7.5 mW with wind velocity of 10 mi/h and a connected load
of 6.7 k�.

To improve the efficiency of piezoelectric material
based WECs, researchers are paying considerable attention.
An advanced WEC associated with piezoelectric sensor is
designed and experimentally tested in [2] for 12.35 mW
output power at 20 Hz operating frequency. It is observed
that, energy harvesters based on piezoelectric materials pro-
vide higher conversion efficiency. Large scale power gener-
ation (kW range) from wind power and OWE is under both
the research work and prototype implementation [32], [44].
Soundpower company has designed and commercialized
an electric power generator with a vibration motion pro-
ducer [45]. The piezoelectric material based WECs require
comparatively lower maintenance cost and offers versa-
tile applications [46]. Well-designed piezoelectric WECs
incorporate the piezoelectric floats [18] and cantilevered
beams [19], [35]. Theoretical and practical investigations
were carried out for the improvement of design and successful
implementations of piezoelectric [47], electromagnetic [48],
and electrostatic [49] energy conversion techniques. The
operation and performance of a piezoelectric device was ana-
lyzed for energy production in [50]. It was placed on highway
bridge including a movable load. The estimated consummate
power of oceanic wave can exceed 50 kW/m of the wave
front. The production of electricity from the kinetic energy
of oceanic wave is considered as a promising alternative to
meet the global energy demand [21]. It is investigated that,
piezoelectric devices even of nano scale size may contribute
to produce electricity from vibration and stress. They will
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play an important role to build future smart cities with good
health, clean environment, self-powered monitoring devices,
and resource administration for economic progress [51].

General mechanism of power generation by piezoelectric
devices are highlighted in [1] under different deformation
conditions. There is brief illustration of the mathemati-
cal modelling, limited information on experimental tests
of piezoelectric WECs, and lack of suggestions about the
post-processing of the generated electrical energy. Different
methodologies of ocean energy conversion using piezoelec-
tric devices with prototype tests are discussed in [3] where
only onemathematical model is includedwithout elaboration.
Besides, processing of materials for manufacturing piezo-
electric harvesters and strategies for conditioning the pro-
duced power are not depicted. Various WEC methodologies
are illustrated in [11] that includes linear generator along with
piezoelectric WECs. But no mathematical model, material
processing, and test setup are not presented.

One of the motivational aims of this review article is the
limitation of available publications on the promising piezo-
electric material-based wave energy conversion technologies.
In this context, authors’ contribution of this article includes
the finding of the advantages as well as shortcomings of
the existing review on piezoelectric WECs and recommen-
dation of possible solutions to the challenges. After studying
available literatures on piezoelectric energy converters for
oceanic waves, an elaborate presentation on the state of the
art of renewable energy, prospects of OWE, and piezoelectric
devices is outlined. In addition, the physics of piezoelectric
harvesters introducing the charge coefficients, strategies of
material processing, mathematical modeling, different con-
figurations for OWE conversion, post-processing of har-
vested energy, and experimental tests are included in this
article. Recommendations are provided for the development
of this wave energy conversion system through proper discus-
sion in most sections of the review. Finally, in the discussion
and conclusion section, critical review for different situations
are presented for piezoelectric WEC. All the topics as pre-
sented in this review are not found together in the existing
reviews including [1], [3], [7], [11], [17], [27], [47], and [48].

II. PROSPECT OF OCEANIC WAVE ENERGY AND
EXISTING WECs
At present, the generation of electrical power from renewable
and sustainable energy resources is one of the uppermost
primacies in many counties. The European Union (EU) and
the USA have established their policies regarding the incre-
ment of RES based power stations. The aim is to meet the
gradually increasing energy demand as well as to mitigate
the problematic issues associated with global warming and
environment pollution. Being one of the prominent sources
of renewable energy, the OWE is available almost all time
with highly predictability [52].

The estimated worldwide OWE potentiality is approx-
imately 2 TW [53]. Based on the available resources
nearby the UK shoreline, the expected OWE can provide

50 TWh/year that can fulfill approximately 14% of the
entire electrical energy demand in UK [54]. In China, the
projected extractable OWE is about 21.79 GW. The Euro-
pean World Energy Council and Commission reported the
exploitable OWE as 120–190 TWh/year for offshore and
34–46 TWh/year for near-shore sites [55], [56]. Considering
the geographical locations, the potentiality of OWE in Europe
can be summarized in Table 1.

TABLE 1. Owe potential in few countries in europe [55], [56].

According to the policies set by most nations in the world
in 2015, the projected range of electrical power production
from RES is 30% increased by 2030 [54]. China has a plan
to meet 15% of the total electrical energy demand of the
country from RES especially from the OWE. The world-
wide energy potentiality of OWE is approximately 8,000–
80,000 TWh/year [57]. The oceanic energy potentiality of
the USA mainland shelf edge is about 2,640 TWh/year.
It is equivalent to 64% of total electrical power production
in 2010 and it has been assessed by Electric Power Research
Institute (EPRI) in the USA. It is evaluated that there is 16%
of OWE of the world is obtainable in European countries.
It is reported that, oceanic power density averages up to
100 kW/m at offshore and 50 kW/m of wave front near
the shoreline [57]. The oceanic energy extraction has been
improving for 35 years [58].

The untapped oceanic energy can be harvested by imple-
menting some physical experiences such as salinity, tempera-
ture grade, natural tides, sea waves, and marine currents [59].
OWE is mainly converted to a systematic mechanical energy
in linear [9] or revolving form by using a WEC [60]. Most
of the mega-scale WECs include the electrical generators for
extracting the kinetic energy of the oceanic waves. In general,
the electromagnetic harvesters include the conducting coils
and magnets which make the system heavy. Based on the
location where the fixing is executed, WECs can be catego-
rized into off-shore [61], near-shore [62], and onshore [63].
Four vigorous types of the WECs are oscillating water
column (OWCs) [64], point absorber [65], surface atten-
uator [66], and overtopping device [67]. Advanced power
take-off devices for seizing OWE contain hydraulic rams
which is fundamentally a water pump, hydroelectric turbines,
air turbine, and linear electrical generator [68].

Among different types of WECs, the leading WECs are
Power Buoy [14]- developed by Ocean Power Technologies
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corporation, USA, Pelamis [69]- designed by Pelamis Wave
Power, UK, Oyster WEC- manufactured by Aquamarine
Power, UK, Wave Dragon [70]- by Erik Friis-Madsen, Den-
mark, and AWS-III- proposed and commercialized by AWS
Ocean Energy, UK. The direct drive WECs are incorporated
with linear generator [71] and thus it offers the convenience
of simplicity in design. The control techniques required for
converters to improve quality of the generated power, are
comparatively complicated than that of indirect drive sys-
tems [72]. The latest methodologies for OWE harvesting
associate the categories of WECs, electrical generators, con-
trol methods, sites of arranged controller, characteristics of
sea waves, power conversion techniques, and the pragmatic
validation [73]. Another new technology of harvesting OWE
is getting popularity because of its excellent performances for
the generation of electricity frommechanical energy. It avoids
the use of traditional electrical generators due to some short-
comings under low frequency conditions by implementing
the triboelectric generators. The concept of electricity pro-
duction using triboelectric generator was first introduced
in 2012 [74]. The important conveniences compared to the
traditional electromagnetic generator topologies that can be
offered by the triboelectric generators are improved power
density, reduced size and weight, less manufacturing costs,
as well as better efficiency (may reach 70%) [75], [76]. Due
to the lightweight characteristics, the triboelectric generators
aremore suitable to the rough and casual nature of the oceanic
waves. The electric current in a triboelectric generator is
produced by alternating polarization field generated by the
charge carriers created under surface polarization phenom-
ena. The operating principle of the triboelectric generation is
based on the combination of electrostatic induction and tri-
boelectrification effect. The triboelectric charges of opposite
polarity with equal quantity, are induced on the surface of
two dielectric elements when a physical interaction is made
between the elements. Under the application of mechanical
vibration, electrical potential difference is generated. To sta-
bilize the electric field, electrostatic induction is occurred.
The operation process is a comparative parting and/or gliding
between the two dielectric elements instigated by kinetic
energy of the oceanic waves, which produces electrical volt-
age difference between the electrodes attached to one of the
dielectric devices.

In spite of the availability of OWE, the energy harvesting
at very low frequencies (<5 Hz, e.g.) has become a crucial
issue (at present) to the power engineers. For such type of low
frequency electricity generation, triboelectric generators are
more efficient compared to the conventional electromagnetic
generators. In order to substantiate the concept of electricity
generation from kinetic energy of water by implementing
the triboelectrification methodology, numerous prototypes
have been tested [77]–[81]. An advanced system structure for
triboelectric generator based wave energy harvesting unit is
proposed in [82] which can be contributed to the improve-
ment of the output power quality. Primarily it is projected
that an electrical power of 1.15 MW can be harvested with

the proposed system covering an oceanic area of 1 km2.
A water resistant wave energy harvesting system is designed
incorporating non-interacting attractive dynamism between
the braces of magnetic devices to control the transportable
part of the triboelectric generator [82]. The design and man-
ufacturing processes of a floating buoy based wave energy
harvesting unit including cylindrical shaped triboelectric gen-
erators are presented in [83]. An OWE extractor composed of
single floating unit, liquid solid interaction based triboelectric
generator, and polytetrafluoroethylene tube (8× 10 cm), can
produce 1000 nC charge, current of 40 µA, and voltage up to
400 V [81]. High impedance and low service durability are
the disadvantages of triboelectric generator based WECs.

III. POWER DENSITY OF PIEZOELECTRIC MATERIALS
In this section, different types of piezoelectric materials are
compared in terms of their structural properties and per-
formances in OWE applications. Piezoelectric materials can
be used for electricity generation because of its structural
properties. The structural configuration of the piezoelec-
tric crystal such as crystal film, is associated with single
crystals and exhibits the inherent transduction characteris-
tics. In case of ceramic type piezoelectric devices such as
barium titanate (BaTiO3) and AlN, plethora of small scale
quartzes are arbitrarily oriented and under the application of
electric potential exhibit piezoelectric properties [47], [84].
The lead-free piezoelectric composite ceramic (K,Na)NbO3–
KTiNbO5 is developed and its characteristics are discussed
in [85] along with the microstructure. Alkaline niobate
ceramics (K,Na)NbO3 offer mainly improved microstruc-
ture piezoelectric properties and a comparatively high Curie
temperature. The existence of too much voids in a sin-
tered piezoelectric composite reduces its chemical constancy,
robustness, and exhibits insulation damage throughout polar-
ization. Because, electric field is generated at the voids.
Dielectric materials can be used to fill in the voids which in
turn mitigate the drawbacks of the lead-free composites.

The idea of soft and hard lead-free piezoelectric mate-
rial is explained in [86] according to donor and acceptor
customized PZTs, respectively. Similar to PZT, improved
characteristics are observed for the (Na,Bi)TiO3-BaTiO3 and
ternary system with (K,Bi)TiO3 piezoelectric composites.
The results of a lead-based piezoelectric to anti-ferroelectric
conversion under less than Curie temperature restrict their
applications. The polymers of piezoelectric materials are
being attracted significant interest because of the conve-
niences as intrinsic elasticity, simplicity of processing, excel-
lent mechanical strength, as well as proper suited for energy
excavation [87], [88]. Figure 1 illustrates the experimental
results of piezoelectric device based oceanic energy har-
vester [89].

The testing was performed including sheet and knit
type flexible piezoelectric devices (FPEDs) made of
polyvinylidene fluoride (PVDF) material. Different types of
configuration were selected for the arrangement of the energy
harvesting units. It is reported that, a maximum electrical
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FIGURE 1. Comparison of electric power density between different types
of coastal and sea configurations.

power density of 6 mW/m2 was obtained by knit type FPED
with a flat type structure. The knit type incorporates different
evacuations inside the internal structure of the PVDFs to pro-
duce low oscillation created by cross drizzle towards them.
Sheet type piezoelectric device produces the highest power
density of 4 mW/m2 during vertical breakwater conditions.
The lowest available power per square-meter of the oceanic
area was approximately 2 mW produced by sheet type har-
vester. Properties of several piezoelectric devices are enlisted
in Table 2. The comparison of generated electric power
density by five different FPEDs at offshore and nearshore
locations, are graphically represented in Figure 2 [31].

TABLE 2. Properties of different painted piezoelectric devices.

FIGURE 2. Comparison of electric power extracted by several FPED at
nearshore and offshore locations.

The first two devices FPED1 and FPED2 are made of
silicon material and have stiffness of 0.096 and 0.309 Nm2,
respectively. They can generate comparatively more elec-
trical power at offshore location than that of at the

nearshore [1]. The maximum produced electrical power den-
sity for nearshore location is approximately 0.65 µW/cm3.
It is decreasing exponentially to the minimum power density
(around 0.05 µW/cm3), obtained by the fifth device FPED5,
which is made of polyvinyl chloride (PVC) material and has
stiffness of 6.36 Nm2. The generated power by the device at
offshore location is approximately zero.

IV. CONFIGURATIONS OF PIEZOELECTRIC DEVICES AS
ENERGY CONVERTERS
The effectiveness of piezoelectric energy harvesters depends
on the degree of freedom of the deformation, which in
turn influences the coefficient of piezoelectric materials as
enlisted in Table 3. Because of simplicity in design infras-
tructure of piezoelectric devices, most of the cases the effect
of d31 is implemented. Design of piezoelectric devices con-
sidering d14 and d15, is complex despite having large value
of coefficients. Figure 3 illustrates the process of generat-
ing electricity using the coefficient, d15 of the piezoelectric
material.

TABLE 3. Different charge constants of piezoelectric materials.

FIGURE 3. Graphical representation of the configuration of piezoelectric
material and applied force: (a) 3D and (b) cross-sectional view.

The typical effect of d15 is greater compared to the effect of
d31 and d33 in case of PZT material. It is analyzed that piezo-
electric device performs well as an energy harvester during
the application of cutoff stress to it [90]. The energy produc-
tion of piezoelectric device in a two-stage operation process
is depicted in Figure 4 [3], [21]. The energy harvesting device
is mounted on the metal plate and supported by a vertically
placed structure. In this configuration, the vibratory sections
are excited by the force exerted by low-velocity water waves.
The positive outcome of this structure is the increasing resul-
tant vibration frequency. That is done by the two separated
piezoelectric devices with low frequency highly changing
oscillation of the floating buoy. It is analyzed that, a floating
buoy of 7.62 cm diameter can contribute to produce 0.06 mW
to 0.18 W electric power [21]. The deformation process of
piezoelectric energy harvester due to the applied force exerted
by fluid is illustrated in Figure 5 [91]. In order to increase the
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FIGURE 4. Schematic arrangement of 2-stage energy harvester.

electrical power generation, several segments of piezoelectric
layer can be used as shown in Figure 5 (a).

In this case, PVDF is used as the piezoelectric material
and adjacent energy harvesting units are separated by silicon
layer. This configuration is called dual core type flexible
piezoelectric device and it generates electric field when stress
is applied that causes the deformation. A single core type
piezoelectric transducer is also depicted in Figure 5 (b). The
transducer is made of one PVDF layer and two silicon layers.
The generated electric field lines in both cases (dual core and
single core) are indicated by arrows in the piezoelectric layer.
The deformation process of piezoelectric diaphragm due to
force exerted by fluid flow is illustrated in Figure 6 [1], [92].
In the figure, the maximum pressure is denoted by Pmax .
The flexible diaphragm is vibrated by the pressure generated
from the liquid flow. The complete scenario is like a wave
carpet swimming on the oceanic waves. In this system, if a
layer of piezoelectric material is merged with the diaphragm,
electrical voltage is produced between the terminals of the
electrodes connected to the diaphragm.

FIGURE 5. Depiction of inner stress field in FPED caused by a liquid force:
(a) Single core type and (b) dual core type.

It is possible to generate electrical power in watt scale
using the most prominent PVDF material-based harvesters.
Most of the application areas include the power supply to the
sea monitoring appliances such as robots, different sensing
devices as well as floating harbors. Use of multiple piezo-
electric material basedWECs can improve the relative energy
conversion efficiency of the harvesting systems. Thismethod-
ology is verified by an experimental set up with electric
potential of 2.2 V and power of 0.2 µW by applying a stress-
ing pressure of 1.196 kPa with 20 Hz vibrational frequency.
A piezoelectric WEC with floating and sinking configuration
is depicted in [93]. The energy harvester is made of a semi-
submerged type structure which can vibrate according to the

FIGURE 6. Illustration of the deformation process of piezoelectric devices.

dynamic oscillation of the oceanic wave. The cantilever plates
are attached to the semi-submerged member for continuously
forming and deforming of the piezoelectric device due to the
exerted force of water flow.

The electric voltage is generated by converting the stress
provided to the piezoelectric transducer by utilizing the char-
acteristics of the device material. A low cost piezoelectric
WEC is developed in [94] including disk type piezoelectric
strips. The oscillating motion of the sea water rotates the
cylinder that incorporates the piezoelectric disks. The whole
cylinder is connected to the seabed through a flexible cord.
A pendulum, subjected to the cylinder rotation, is placed
inside the cylinder in such a way that it can contribute to the
deformation of the piezoelectric strips. The kinetic energy
of the wave motion is converted into electrical power by
piezoelectric disks.

A floating type oceanic WEC incorporating piezoelec-
tric bar made of lead zirconatetitanate material is illustrated
in Figure 7 [36]. A vertical lever is attached to the bar.
It contributes to magnify the force exerted by oceanic wave.
In order to convert the oscillation of the waves into vibrations,
a mass-spring configuration is utilized. In this system, two
piezoelectric members connected to the mass, produce elec-
trical power by converting and magnifying the kinetic energy
of the waves. Displacement of the oceanic waves on the sea
surface is denoted by v which is a function of the position,
x and time, t . The peak amplitude and the wavelength of the
wave are denoted by A, W , respectively and l, w denote the
length and width of the energy extractor, respectively.

At the time when the whole energy transducer is limited
by the anchor or other type of fixing to keep the dynamics
of the waves, the position becomes approximately equal to
the x1 as presented in Figure 7. The system associates the
floating buoy connected to the seabed by connecting rod [30].
Figure 8 and 9 show the process of energy extraction mecha-
nism fromOWE using piezoelectric materials by utilizing the
heaving and pitch motion.
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FIGURE 7. Schematic depiction of the flexible energy harvester on sea
waves.

FIGURE 8. Illustration of heaving motion type oceanic energy extraction
system.

FIGURE 9. Illustration of pitching motion type oceanic energy extraction
system.

The converter shown in Figure 8 includes piezoelectric
device which is fixed to the connecting rod. Due to the
heaving motion of the buoy, rolling motion is produced in the
piezoelectric device by dragging either sides of the chassis.
Therefore, electrical energy is produced by transferring the
mechanical motion of the pendulum to the disks. For the
energy harvester shown in Figure 9, the buoy hosts the com-
plete chassis including the piezoelectric units. The pitching
motion of the float contributes to the generation of electrical
energy. An ocean energy harvesting device is designed using
PZT piezoelectric material and the operation process of the
converter is figuratively explained in Figure 10 [30]. The

FIGURE 10. Methodology of balance-like physical pendulum harvester.

whole system mainly has four piezoelectric disks and one
balance type pendulum.

The separation distance between two vertically placed
piezoelectric plates is denoted by xp. All the components are
enclosed inside a rectangular boxmade of brass material.w(t)
and wp(t) are the velocity of the rectangular chassis and the
pendulum, respectively. The water enters inside the box and
hits the left part of the pendulum. The balls of the pendulum
start oscillating and touch the PZT disks and thus vibrate the
disks. Finally, electricity is produced due to the deformation
of the energy harvesting disks. An advanced methodology
of WEC using piezoelectric material is designed in [37] as
illustrated in Figure 11.

FIGURE 11. Schematically design of EFHAS.

The complete system mainly consists of one floating
unit and one hanging structure. Hence it is known as elas-
tic floating unit with hanging structure (EFHAS). All the
floating sub-sections are interconnected by flexible piezo-
electric devices. The hanging structure consists of three verti-
cally placed FPEDs and three horizontally arranged FPEDs.
In general, the kinetic energy caused by the surface wave
can be extracted by the floating unit. The horizontal unit
of the hanging structure has the capability of generating
electricity from the OWE by utilizing the effect of heaving
motion. On the contrary, the vertically hanging unit produces
electricity from both vortex and current energy. The impor-
tant advantage of this process for harvesting ocean energy,
is the feasibility of producing electrical energy from very low
wave forces. The generated unbalanced electrical power is
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made stable using intermediate rectifier circuits. A scheme
of hybrid wind-ocean farm is presented in Figure 12. Wind
turbines contribute to extract wind energy and the OWE is
harvested by the EFHAS [37] type piezoelectric WEC. It is
evaluated that, the EFHAS helps the offshore wind power
plant to be protected from the dynamic power of the oceanic
waves. The floating section is further carried out under test-
ing process in a water tank environment as illustrated in
Figure 13 and 14 [37].

FIGURE 12. Ocean energy farm including offshore wind turbines [37].

FIGURE 13. Submerged type segregated floating structure of EFHAS.

FIGURE 14. Floating type segregated structure of EFHAS.

The applied oceanic wave has the wavelength of 1 m
and the amplitude is 0.077 m. The electric performance of
two floating units including floats of 115 mm height and
85 mm width, are evaluated. The submerged type harvester
has piezoelectric device mounted on the body of floaters.
In both cases (floating and submerged units) the floaters are
fixed to the bottom of the tank through connecting rods. The
FPED is made of PVDF material and it is dual core type in
structure. To get satisfactory electricity production, the length
of the PVDF layer is chosen from 0.1 mm to 0.5 mm and it
is suggested not to choose greater than 0.5 mm for obtaining
better deformation of the device.

An OWE extraction system was discussed in [95] using
sheet of piezoelectric material as the energy harvester which
is presented in Figure 15. The system is studied considering

FIGURE 15. Hydrodynamic-piezoelectric harvester configuration.

an oceanic environment, a vertically placed piezoelectric thin
plate, and an external circuitry. When oceanic wave passes
through the sheet, it causes the stress of the harvester and due
to the characteristics of the piezoelecric transducer, electri-
cal voltage is generated which is further transferred to the
external circuit. The most important conveniences that can
be obtained by this kind of energy conversion schemes are:
(1) harvesting the applicable electrical energy and (2) the
oscillations caused by overflowing loads.

V. MATHEMATICAL MODELLING OF PIEZOELECTRIC
WAVE ENERGY CONVERTERS
The methodologies of wave energy extraction using piezo-
electric devices are mathematically modeled in this section
to characterize the performance factors. The wave dynam-
ics, deformation of the harvesting devices, generated electric
charge, voltage, and power are expressed by mathematical
equations. The geometric depiction of FPED with supporting
beams, is represented in Figure 16 [31], where x1 and x3
denote the length of the paint of piezoelectric layer from the
edges of the beams to the edges of piezoelectric area.

FIGURE 16. Modeling a painted FPED.

The length of the active FPED is represented by x2. The
purpose of this kind of footstep is to mathematically analyze
the performance of the FPED for electricity generation. There
is a coating of electrode material on the painted piezoelectric
area and this type of coating has small thickness which is pro-
vided to the adjacent layer. The vibration at neutral position
of the under dammed beam can be expressed as:

∂2M (x, t)
∂x2

+ m(x)
∂2w(x, t)
∂t2

= Fe (1)

w(x, t) = wr (x, t)+ wb(x, t) (2)
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whereM (x, t) is the internal moment of the supporting beam
at the cross-sectional point, m(x) denotes the mass of the
piezoelectric device for per unit length, w(x, t) represents
the diagonal strain, and the force exerted by the flow of
fluid, is denoted by Fe. The transverse strain, w(x, t), is a
combination of the displacement of the beam relative to the
base, wr (x, t) and the displacement of the base, wb(x, t) as
expressed by (2). The effect of wr (x, t) is greater than that of
wb(x, t) and hence w(x, t) can be regarded as wr (x, t). The
internal moment of the beam can be expressed as:

M (x, t) = EI (x)
∂2wr (x, t)
∂x2

+ εV (x, t) (3)

where the stiffness of the piezoelectric material is denoted
by EI (x), V (x, t) is the generated voltage across the elec-
trodes connected to the piezoelectric device, and ε is the
permittivity of the particular deformation of the device. The
governing equation for evaluating the mechanical properties
of the piezoelectric device can be obtained by substituting (3)
into (1) as:

∂2

∂x2

[
EI (x)

∂2wr (x, t)
∂x2

+ εV (x, t)
]
+m(x)

∂2wr (x, t)
∂t2

=Fe

(4)

The transient generated voltage in differential form can be
represented as follows:

Cp
∂V (t)
∂t
+
V (t)
Rl
=

∞∑
q=1

Epd31tpbp

[
∂Wq(x)
∂x

]x1+x2
x1

(
dηq
dt

)

(5)

where the internal capacitance of the piezoelectric device
is denoted by Cp, Rl is the resistance of the resistive load
connected across the external terminal of the device, Ep, d31,
tp, and bp are the constant of Young’s modulus of elastic-
ity, coefficient, separation distance between the middle of
the piezoelectric layer and the neutral level, and width for
particular piezoelectric device, respectively. Wq(x) and ηq
denote the normalized eigenvectors and the coordinates in
time domain, respectively. Equation (5) describes that, the
output voltage is subjected to the mechanical behavior of the
piezoelectric device, Cp, Rl , and modal effect of the beam.
The generation of electricity by applying mechanical stress
in different directions to the piezoelectric device, is shown
in Figure 17 [3].

FIGURE 17. Illustrations of piezoelectric coefficients.

The relation among the displacement of electric field,
the strength of the field, and the mechanical strain can be

expressed as [35]:

Sp = Epσp + dpkEk
Di = dipσp + εTikEk (6)

where the subscripts, i = 1, 2, and 3, denote the coordi-
nate axes and dpk denotes the piezoelectric material constant
which can be derived from the stress matrix as [96]:

D1
D2
D3

 =
 d11 d12 d13 d14 d15 d16
d21 d22 d23 d24 d25 d26
d31 d32 d33 d34 d35 d36



σ1
σ2
σ3
σ4
σ5
σ6


+

 εT′11 εT
′12 εT

′13
εT
′21 εT

′22 εT23
εT31 εT32 εT33

 E1E2
E3

 (7)

Sp defines the inputted strain in the p direction, σp is the
applied mechanical stress, Di is the displacement of the elec-
tric field along i axis, Ek is the produced electric field along
k axis, Ep presents the Young’s modulus constant inside a
static electric field, εTik is the coefficient of dielectric material
for certain deformation. A dynamic model of a piezoelectric
energy harvester is developed in [97] considering the system
depicted in Figure 18. In the configuration, the vibration of
the endmass caused by some othermechanicalmeans, creates
the deformation of the piezoelectric bimorph which in turn
produces alternating electrical power.

FIGURE 18. (a) Piezoelectric energy harvesting system,
(b) Spring-mass-damper model.

The harvester as shown in Figure 18 (a), can be presented
by the model interpreted in Figure 18 (b) in which m denotes
the mass and b, k are the damping coefficient and stiffness
of the bimorph, respectively. The displacement of the end
mass and the piezoelectric beam are presented by x and y,
respectively. The dynamics of the piezoelectric device can be
expressed as:

F = m
d2δ
dt2
+ b

dδ
dt
+ kδ (8)

where F is the applied force to the dynamic structure and δ
denotes the relative displacement of the endmass with respect
to the piezoelectric bimorph. If the impedance of the mechan-
ical load becomes equal to b + j((k/ω) − ωm), maximum
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electrical power can be achieved using the harvester [97].
The natural frequency of resonance of the mechanical system
is ω =

√
k/m at which the amplitude of the mechanical

input impedance is the minimum. The possible largest pro-
duced electrical power due to the application of a sinusoidal
mechanical excitation of amplitude, Fm can be derived as:

Pm =
F2
m

8b
(9)

From (9), the maximum generated power does not depend
on the vibrational frequency of the mechanical system
and is solely subjected to the peak value of applied force
and the damping of the bimorph. Experimental configura-
tion of a piezoelectric WEC is schematically sketched in
Figure 19 [19].

FIGURE 19. Arrangement of a piezoelectric energy harvester.

The horizontally arranged piezoelectric cantilever plates
are mounted on the vertically placed static structure under
the water. The oceanic wave hits the piezoelectric device
and the kinetic energy produced from the transverse motion
of the waves is converted into electricity. H , c are the height
and velocity of the oceanic wave flowing in the x direction,
respectively, L is the total length of the energy converter, Hw
is the distance from the bottom of the sea to the middle point
of the wave amplitude. The deformation of the piezoelectric
device due to the exerted force of the waves is denoted byw(x,
t), hh is the height of the host plate and h1 is the difference
between the lower edges of the plate and the patch unit.
The complete piezoelectric plate is a combination of several
piezoelectric segments each of having length a and width b.
The generated electric charge, Q and voltage, V by the each
of the piezoelectric segments can be expressed by

Q =
−e31b(h+ h1)

2
∞∑
n−1

(
dWn(x)
dx

∣∣∣∣
(x−ia)

−
dWn(x)
dx

∣∣∣∣
(x−(i−1)a)

)
qn(t)

V =
−e31(h+ h1)

2Cp
∞∑
n−1

(
dWn(x)
dx

∣∣∣∣
(x−ia)

−
dWn(x)
dx

∣∣∣∣
(x−(i−1)a)

)
qn(t)

(10)

whereCp is the capacitance per unit width of the piezoelectric
device, W is the eigenvector, and qn is for the generalized
coordinates. Another model of wave energy harvesting sys-
tem is proposed in [18] by using piezoelectric cantilever
plates attached to a floating buoy. The buoy is flexible to
keep track of the dynamics of oceanic wave in medium and
deep sea environment. The size of the buoy is optimized
considering the impacts of the shapes on the produced elec-
trical power. The electrical output performance of the energy
harvester can be modeled in terms of the electric charge and
voltage as (19) where ωn is the oscillating frequency of the
piezoelectric plates and τ is the simulation time. Simulation
results bring to light that it is possible to produce a maximum
power of 24 W by utilizing the energy harvesting process.
Figure 20 represents the hydro-mechanical modeling of the
piezoelectric material based oceanic WEC [46].

FIGURE 20. Modeling of a piezoelectric oceanic energy harvesting unit.

During the modeling bimorph type piezoelectric plate is
considered and placed under the sea water. The global refer-
ence frame for the system is denoted by (x, y, z) and coor-
dinate system for the bimorph is defined by (X , Y , Z ). The
length of the plate is 2L and it is located at hz distance from
vertical neutral point of the wave. The depth of the seabed
from the water surface is chosen as Hw. The vibrational
motion of the bimorph plate due to the kinetic energy of the
waves, can be mathematically modeled as:

∂2MXX

∂X2 − Ib
∂2W
∂t2
= q (11)

whereMXX is themoment of internal deformation of the plate,
W (X , t) is the displacement in vertical direction, Ib refers the
density of the surface of the plate, and q is for surface load
active in vertical direction.MXX and Ib can be expressed as:

MXX =

db/2∫
−db/2

σXXZdZ (12)

Ib =

db/2∫
−db/2

ρ(Z )dZ = ρoho + 2ρphp (13)

where hb = ho + 2hp � L, overall height of the plate, σXX
is the applied stress to the bimorph, ρp and ρo denote the
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FIGURE 21. Illustration of the piezoelectric bimorph.

density of the bimorphmaterial and the substrate between two
piezoelectric layers, respectively as shown in Figure 21.
h0 and hp are the height of the piezoelectric layer and inter-

mediate substrate layer, respectively. The generated electric
charge, Q can be expressed relating the electric potential, V ,
and the capacitance of the piezoelectric bimorph, Cp as:

Q = −θ
∂2W
∂X2 − CpV (14)

where θ is the coupling factor of piezoelectric bimorph plate.
The essential boundary condition that must be satisfied to get
satisfactory performance of the piezoelectric energy harvester
is stated as:

W (±L, t) =
∂W (X , t)
∂X

∣∣∣∣
X=±L

= 0 (15)

When the bimorph plate is plunged into oceanic water,
the waves exert the surface load, q, as the exciting force
to the plate which causes the vibration and finally electric-
ity is produced. The electromechanical representation of a
piezoelectric transducer for generating electrical energy from
mechanical vibration, is demonstrated in Figure 22 [98]. The
applied stress is represented by, σin and Rb is the damping of
the device, Lm is the mass of the transducer, and the stiffness
is denoted by 1/Ck .
By applying mesh analysis to the mechanical part of the

circuit, the stress can be expressed as:

σin = Rb
dS
dt
+ nV (16)

where S denotes the strain, n is transformer’s turns ratio, and
V denotes the generated voltage. FromOhm’s law, the voltage
can be expressed as:

V = iRl (17)

FIGURE 22. Electrical equivalent circuit of piezoelectric energy harvester.

where Rl is the external load connected to the harvester and i
denotes the load current which can be defined as:

i = awled31Ep
dS
dt

(18)

where a, w, le, d31, and Ep are the constant which vary from
1 to 2 according to the wiring of the transducer, width of the
harvester, length of the electrodes connected to the harvester,
piezoelectric material coefficient, and coefficient of Young’s
modulus for the harvester, respectively. Now, the strain can
be expressed relating Rl and i as:

σin = Rb
dS
dt
+ niRl (20)

By substituting (19), as shown at the bottom of the page,
into (20), the external load can be related to the mechanical
part of the circuit as:

σin = Rb
dS
dt
+nRl(awled31Ep

dS
dt

)=Rb
dS
dt
+nαpRl

dS
dt

(21)

σin = (Rb + nαpRl)
dS
dt

(22)

where αp = awled31Ep is the modulus of the piezoelectric
harvester. Equation (20) explains that Rl must be adjusted by
the mechanical energy scaling by a multiplier of nα and this
result is one of the most essential benefactions for the energy
conversion process.

VI. PROCESSING OF PIEZOELECTRIC DEVICES
The properties of piezoelectric materials were first invented
by great physicists Pierre Curie and Jacques Curie
in 1880 [99]. Most available types of piezoelectric materials
are PVDF and PZT which are required to be processed to
make the energy harvesters. The processing of piezoelectric

Q =
−e31b(h+ h1)

2

∞∑
n−1

(
dWn(x)
dx

∣∣∣∣
(x−ia)

−
dWn(x)
dx

∣∣∣∣
{x−(i−1)a}

) i∫
0
wn(x)dx

ρbhωnBn

t∫
0

p(τ ) sinωn(t − τ )dτ

V =
−e31(h+ h1)

2Cp

∞∑
n−1

(
dWn(x)
dx

∣∣∣∣
(x−ia)

−
dWn(x)
dx

∣∣∣∣
{x−(i−1)a}

) i∫
0
wn(x)dx

ρbhωnBn

t∫
0

p(τ ) sinωn(t − τ )dτ (19)
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material such as PVDF incorporating elastic materials such
as silicon, resin, rubber as well as textile is described in
Figure 23 [31]. Flexible PZT based energy extractors can
produce up to 200 V at open circuit and 35 µA current at
short circuit condition by providing biomechanical flexing
and relaxing movement [99].

FIGURE 23. Processing of FPED.

The PZT materials are combined with appropriate pro-
portions in order to make multi-layer piezoelectric device.
The adjacent layers of piezoelectric material and the elastic
material are attached together by using very thin lamination
layer. A certain separation, δ is kept between the two adjacent
piezoelectric layers to make a bimorph structure. The final
stage of the device is obtained through different processing
operations. The usable piezoelectric device may be of panel
type, roll type, and compressed type depending on the design
requirement [100]. Figure 24 describes the process of paint-
ing a piezoelectric device by using spray through a nozzle.

FIGURE 24. Processing painting type of FPED.

The design of a piezoelectric device can be optimized
by considering the number of piezoelectric layer and the
separation, δ including proper selection of elastic material.
The efficiency of the piezoelectric device in terms of electric
power harvesting may be improved by employing elastic
material which has high elasticity property [101]. The inter-
facing layer between the piezoelectric layer and the elastic
layermay cause the reduction of output voltage because of the
cutoff stress during the deformation of the device. Between
the piezoelectric material and the elastic material, a layer of
substrate and an electrode are placed. The produced elec-
tricity is received through the copper electrode. The coating

process is done on the layer of piezoelectric material through
direct spraying of electric charge.

Depending on the grade of deformation andweather-beaten
conditions caused by the oceanic waves, the flexible piezo-
electric device including the painted layers can be used as
the electrical energy producer from the OWE. The top and
side views of the unimorph stage of the flexible piezoelectric
device associated with the painted layer and proper lamina-
tion are shown in Figure 25 [31].

FIGURE 25. Laminated configuration of a painted FPED.

The lower electrode made of copper painting on the poly
phenylene sulfide, is coated with piezoelectric paint. The
upper lower electrodes are separated by the painting layer
of piezoelectric material. The elastic material and the lower
copper electrode are separated by proper layer of resin sub-
strate. For the safety purpose, the covering layer is placed on
the upper electrode to overcome the unpredictable forces that
may be caused by oceanic wave. The piezoelectric layer is
denoted by D2 which is 80 µm in this case and D1 of 10 mm,
denotes the complete section from the bottom of elastic
layer to the top of the covering layer. The length of whole
painted piezoelectric device L1 is 500 mm and the width B1
is 100 mm, while the piezoelectric paint layer covers the area
of 24,500 mm2 (length L2 is 350 mm and width B2 is 70 mm).

The generated electricity by the piezoelectric device is
provided to the external circuits through coaxial cables. The
3-D geometric view of a piezoelectric energy harvester is
shown in Figure 26 [3], [41]. The device is mainly consisted
of two layers of piezoelectric material PVDF and a layer
of foam material. The piezoelectric device is subjected to
deformation because of the mechanical stress caused by the
flow of water.

FIGURE 26. Piezoelectric harvester: green PVDF, yellow foam core.
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The possible electrical power generation by a piezoelectric
device under deformation process can be expressed as:

P =
V 2

2Rl

[
1+

(
CRl
ω

)2] (23)

where V is the output electric voltage, C , Rl , and ω are the
internal capacitance of the piezoelectric device, the externally
connected resistive load, and the operating frequency of the
generator, respectively. The model is simulated and 1 mW
electrical power is obtained by the device operating at 10 Hz
frequency [41].

VII. POST-PROCESSING OF GENERATED
ELECTRICAL ENERGY
The generated electrical power from a piezoelectric trans-
ducer is alternating in nature with low amplitude and fre-
quency. Post-processing must be performed to make it usable
for electrical load. Several researchers suggested to employ
multistage power conversion techniques to store the harvested
power using energy storage devices as elucidated in this
section. The general process of producing electricity using
piezoelectric transducer is given in Figure 27 including an
electrical equivalent circuit of the energy harvester [102].

FIGURE 27. Piezoelectric harvester: (a) circuit with energy storage and
(b) electrical equivalent model.

The applied kinetic energy, EKE causes the deforma-
tion of the transducer and electricity, V is produced due
to the piezoelectric effect of the device, as shown in
Figure 27 (a). An intermediate electrical systemmade of tran-
sistors, transfer the produced electrical energy to a capacitor
or battery. The whole piezoelectric material based energy
converter can be represented by an electrical circuit as shown
in Figure 27 (b), considering an ac current source, IPZ and a
parallel impedance of piezoelectric capacitance, CP, and the
leakage resistance of the device, Rlek . The output voltage,
V is further rectified to get pure dc voltage to charge an
energy storage device. A typical implementation of piezo-
electric transducer to charge an energy storage device by the
generated electrical energy, is shown in Figure 28 [91].

At the first stage, mechanical vibrations are created in the
piezoelectric device by kinetic energy and due to the char-
acteristics of the material, alternating electric voltage is gen-
erated across the device. To transfer the generated electrical

FIGURE 28. Design of energy storage system including FPED.

energy to an energy storage, an intermediate stage of energy
conversion (ac-dc) is employed. In this case, a full wave
bridge rectifier is used to perform ac to dc power conversion
in the system. An energy harvesting technique using piezo-
electric generator is designed and the comparison between
the proposed and traditional harvester is shown by block
diagram as shown in Figure 29 [98]. When mechanical stress
is applied to the harvester, alternating electricity is produced
and due to the low generated voltage, it is amplified by the
dc-dc converter circuit. The biasing of the converter circuit by
external power source reduces the conversion effectiveness of
the system illustrated in Figure 29.

FIGURE 29. Energy harvester design piezoelectric oscillator.

To improve the efficiency of the harvesting scheme,
the external biasing is avoided, and an oscillator is employed.
This oscillator produces sinusoidal signal of required voltage
and frequency for the dc-dc converter. An experiment is
carried out and approximately 90% efficiency is offered with
300 µW electrical power for 1.2 M� external resistive load.
The verification system of the proposed recycling concept
is schematically depicted in Figure 30. A new energy recy-
cling technique is proposed to increase the overall electrical
energy production capacity of a piezoelectric based energy
harvester [103].

The purpose of energy recycling is to avoid the loss of the
stored charge by grounding. The experiment is carried out
considering forces exerted by traveling waves. In general,
the regulator includes rectifier circuits which converts the
alternating output voltage of the piezoelectric device into
smooth dc. The rectified voltage is given to the variable delay
circuit. Clock pulses are generated from the output wave-
forms of the harvester. Energy reusing concepts are imple-
mented in the digital delay circuit to recover the energy in the
form of pulse train having frequency equal to that of shaking
the transducer. Before applying the pulses to the piezoelectric
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FIGURE 30. Block diagram of energy recycling system.

device again, an intermediate phase shift circuitry is used to
analyze the phase difference of different signals from differ-
ent electrodes. In this methodology, no external power supply
is required for the delay circuit. The proposed energy reusing
concept can capture 10% more electrical energy compared to
that includes no energy recycling system.

VIII. EXPERIMENTAL TESTS OF PIEZOELECTRIC WAVE
ENERGY CONVERTERS
The transduction characteristics of piezoelectric energy har-
vesters were verified by experiments in several research
articles. Some of these conducted tests for analyzing the
deformation of devices under certain strain or vibration and
some also includes the employment of the harvesters as
WECs. an experimental set up is performed in [30] to evaluate
the deformation of piezoelectric device for applying certain
amount of stress which is drawn in Figure 31.

FIGURE 31. Experimental set-up for piezoelectric device.

The crucial purpose of this test is to govern and estimate the
maximum amount of kinetic energy that can be applied to the
piezoelectric energy harvester at a time. The testing system
includes a fixed structure which hosts the piezoelectric disk
on its base and the disk is assisted by the horizontal beams.
Ametal ball of specific mass is allowed to fall from the height

directing the disk from the movable stand which can shift in
vertical direction along the chassis. When the ball hits the
disk, mechanical vibration is created in it. A linear variable
differential transformer probe (Mahr 1300) which needs the
estimating force of 0.75 N at the neutral, is used to estimate
the deformation.

The actual deformation of the device can be estimated by
Mahr Millitron which is coupled to the deformation sensor.
Figure 32 shows the schematic diagram of experimentation
based on laboratory of piezoelectric cantilever [37]. The
purpose of this test is to characterize the effectiveness of
electrical energy production of the energy harvester after
applying certain amount of stress. The comparable density of
the 100 mm long rectangular shaped bluff body ranges from
0.8 –1.2 mm. The maximum magnitude of the vibration is
77 mm and duration of the oscillation period is 0.8 s.

FIGURE 32. Test platform for vibration test of cantilever with a bluff body.

The volume of the cantilever plate is 17×103 mm3 having
length of 340 mm, width of 100 mm, and thickness of 5 mm.
It is found that, the lower density of the bluff body can
increase the rate of electrical power generation up to 50 %
more compared to that of its unit density. An experiment
was done in a laboratory to find deformation of piezoelectric
device due to applied vibration. It is schematically shown
in Figure 33 [91], [101]. The whole set up includes an arti-
ficial vibration producer on which the oscillation frequency
depends. A small thick plate of flexible piezoelectric device
and laser displacement meter are also available to observe
the deformation in a personal computer with an intermediate

FIGURE 33. Experimental setup of vibration test.
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FIGURE 34. Experimental platform in towing tank test.

signal conversion by analog to digital converter. The gener-
ated electricity can also be measured by connecting external
cables between the energy harvester and signal converter.

Figure 34 shows the practical implementation of the FPED
for testing electrical performance of the device in an environ-
ment which is done in a laboratory [31]. The dimensions of
the towing tank are considered as the length of 100 m, width
of 8 m, and the depth of 3.5 m. The energy harvesters were
being braced in both the vertical and horizontal directions by
the strong frames and the jigs attached to the tank. To estimate
the speed and height of the waves, the dynamic velocity meter
and the wave gauge are used.

As for recording the scenario of the strain of FPEDs,
a video camera is used directing to the device. A computer
set up is established including an analog-to-digital signal
converter with a preset 1 kHz sampling frequency to check
and save the generated voltage. Most importantly, the arti-
ficial wave is created by the wave generator placed upper
portion of the tank. The external terminals of the electrodes
were connected to a data logger (model: NR-HV04, made by
KEYENCE corporation) and the voltage is analyzed under
open circuit condition. The maximum output voltage is found
about 2.16 V by applying water waves having wave height
of 0.15 m and velocity of 0.30 m/s in this experiment.

Figure 35 illustrates experimental platform for generating
electricity by utilizing the effects of piezoelectric materials.
In this test system, artificial water waves are produced by
the wave maker and energy harvesting device is placed at
the center of the water tank [91]. The wave gauge estimated
90 mm wave height and maximum output voltage is close to
9 V. Wave gauge is used to measure the wave height. When
the waves hit the piezoelectric device, mechanical vibration is
created inside it which in turn causes its deformation. Electric
field is created across the piezoelectric device due to this kind
of deformation. The length of the wave tank is about 8 m and
there is a wave suppressor having length of 1.7 m.

FIGURE 35. Experimental arrangement of wave energy harvesting using
piezoelectric device.

The generated electric field in the experiment is illus-
trated in Figure 36. After analyzing the result is obtained
by a method based on particle which is known as smoothed
particle hydrodynamics (SPH) method. The analysis is car-
ried out considering the regular water wave. The maximum
generated electric potential is found at the bottom side of
the piezoelectric device and it is 0.002 V. It implies that,
more stress is provided by the waves to the lower part of
the device compared to upper portion. Figure 37 presents the
experimental set up view of the Eel structured piezoelectric
WEC.

FIGURE 36. Evaluation of numerical result of deformation and internal
strain field of the FPED caused by regular oceanic wave [91].

FIGURE 37. Eel structure piezoelectric energy harvester [3], [20].

This kind of WEH include Eel type generator to produce
electricity from the kinetic energy available in the oceanic
wave. The produced power can be utilized for the appli-
cation of sea monitoring device without wire connections.
In general, Eel generators cause the deformation of piezo-
electric device by using the continuous downward motion of
the flowing waves and thus creating an artificial Eel waves
pattern. The output electrical power produced from such Eel
swimming can be expressed as:

Pe =
η1η2η3Aρv3

2
(24)
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where η1, η2, and η3 are the efficiencies of the hydrodynamic
conversion, piezoelectric device, and the production of elec-
trical energy, respectively. The cross-sectional area of the Eel
structure is denoted by A, ρ is the specific mass density of
water, and v is the speed of the flowing water. Batteries are
used during the experiment to store the produced energy.

The advantages of Eel generators are the low cost con-
sumer, flexible to scale in shape which significantly influence
the power generation capability of the device. In addition, this
type of energy harvester has the capability to recharge the
energy storage devices used as distributed sources and greatly
contributes to improve the life quality of water surrounded
areas. A prototype of piezoelectric material based WEC is
developed as shown in Figure 38. The model was designed
to improve the energy conversion efficiency of the device
(considering the effect of d13 coefficient) in which the piezo-
electric plates are arranged in both the horizontal and vertical
directions. It is practically come out that, if the number of
piezoelectric plate is increased, more electrical power would
be harvested.

FIGURE 38. Configuration of a floating and hanging structure FPED in
water [3], [38].

The experimental configuration includes both floating
structure (top portion) and hanging structure (middle por-
tion). Figure 39 presents the investigation of floating type
piezoelectric oceanic WEC [38]. The complete set up
includes a triangular shaped floating structure in which the
floats are interconnected by flexible piezoelectric device,
cameras for capturing the operation, and wave gauge to mea-
sure the wave properties such as height and wavelength.

Connecting rods were used to fix the floating unit to the
bottom of water tank. In the experiment, two waves having
time period of 0.8 and 1.0 s were considered as the excitation
forces. About nine cases were analyzed with wave height,
H/W ranging from 0.013 to 0.12. The height of the float
located at the center of the floating structure and wavelength
of water waves are denoted by H and W , respectively.
The deformation process having six degrees of freedom is

observed from the video recording and it was analyzed using
3-D particle tracking velocimetry method. After evaluating
the electrical performance of the energy harvester, it is sug-
gested that power generation can be increased by govern-
ing the draft of the water flow for various wave properties.
Figure 40 presents the geographical area of the field test of

FIGURE 39. Experimental platform of a floating WEC.

FIGURE 40. Field test of FPED at nearshore and offshore sites in the
northern part of Okinawa Island in Japan [31].

TABLE 4. Experimental results of several piezoelectric WEH.

piezoelectric devices as WECs, which was organized in the
northern site of Okinawa Island in Japan [31].

The experiment is performed at two locations, (i) the
first and second test were conducted in the nearshore fish-
ing port area (on 19th to 20th January in 2016) and (ii)
the third test is done on 21st January in 2016 in offshore
which is (20 km away from shoreline) location. The FPEDs
are arranged close to the water surface on an aquaculture
raft in the first and second setup. For the third experiment,
the FPEDs were resolutely placed to a fish aggregating
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TABLE 5. Survey of existing piezoelectric owe converters.

TABLE 6. Output statistics of several piezoelectric energy converters.

device. Several experimental results of piezoelectric material
based WEHs are summarized in Table 4.

It is connected to synthetic sea constructions making an
environment approachable network that helps fishes to be
protected and nourishing locations. The fish aggregating
device lifts on the sea surface and it is connected to the
seabed by 1000 m chain and fiber rope. The generated volt-
ages produced by the FPEDs are measured and saved by a
remotely placed data logger. The deformation of the FPED is
sensed by using accelerometers which are capable to move in
three directions. In the field experiment, maximum 1.55 V is
obtained.

IX. DISCUSSION
In this review, the advancement of piezoelectric material-
based OWE conversion technologies is explained in an expli-
cable way. The prospects of highly promising OWE and
the historical development of different energy conversion
technologies are highlighted in section II. Besides the elec-
tromagnetic principle, piezoelectric effect is getting count-
able attention for developing WECs. The technical survey
of existing piezoelectric OWE conversion technologies are
summarized in Table 5. Table 6 represents the output volt-
age, power statistics of piezoelectric energy converters. For
harvesting the oceanic energy using piezoelectric devices,
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TABLE 7. Different technologies of oceanic energy harvesting using piezoelectric materials.

several methodologies have been developed as summarized
in Table 7. The challenges and possible solutions to the
respective problems have also been included in the table.

The flexible piezoelectric plate or beam are subjected
to deformation which can contribute to generate electri-
cal energy. After studying the physics of piezoelectric phe-
nomenon, several charge coefficients of focused materials
have been found which can play important role for designing
effective energy harvesters. The power density of available
piezoelectric materials has been explained in section III. The
knit type piezoelectric devices have higher energy generation
capacity compared to the sheet type. Based on geographical
location the offshore area is favorable for producing more
electrical power compared to nearshore installations. Dif-
ferent configurations of piezoelectric material-based OWE
conversion strategies are included in section IV.

The methodology of heaving and pitch motion can cause
reasonable deformation of piezoelectric beams due to the
sinusoidal nature of oceanic waves. The elastic floating unit
with hanging structure is also convenient for the flexible
configuration. To design an effective piezoelectric WEC, the
mathematical models with electrical equivalent circuit are
integrated in sectionV. Piezoelectric coefficients and constant
of Young’s modulus of elasticity are considered for develop-
ing the expressions of electrical charge, voltage, and power.

Post-processing strategies of the generated low frequency
electrical power with piezoelectric WECs include the ac-
dc-ac conversion stages. EFHAS and Eel structures were
observed with good results in sea environment.

Durability of piezoelectric device depends on tensile
strength of the materials and the level of stress provided by
oceanic waves. In comparison to PVDF, PZT offers lower
tensile strength and because of which the later materials
unable to withstand very high stress [1]. Because of high ten-
sile strength, reduced stiffness, and high ductility properties,
PVDFmaterials are becoming feasible for applications where
elasticity is required. PZTmaterials are conceivedwith higher
piezoelectric coefficients, low flexibility and fragility which
restrict their usage to few designs in the oceanic environment.
Piezoelectric materials, particularly PZT was experimented
in [104] for their maximum efficiency, life span and stability
in diverse circumstances.

X. CONCLUSION
Piezoelectric materials are conceived with the characteristics
of producing electrical potential under an applied deforming
force and vice versa. In this article, the prospects along
with the developments of the highly promising oceanic wave
energy conversion systems using piezoelectric materials,
are focused. Different types of electrical energy conversion
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methodologies such as electromagnetic, electrostatic, piezo-
electric as well as triboelectric concepts are discussed, and
the relative comparisons are outlined. In addition, various
piezoelectric devices are introduced with their characteristic
effects, processing techniques, and arrangement methodolo-
gies for the harvesting of OWE.

For designing highly effective oceanic energy harvester
using piezoelectric devices, several significant mathematical
models are included and analyzed. It is found that, the piezo-
electric effect for using d13 is possible to implement by simple
design concepts, but the power production level is low. On the
contrary, it is expected to obtain improved power by employ-
ing the d33 and d15 effects and hence it is advised to develop
the converters based on piezoelectric material by utilizing its
effects. Among the available structures, the combination of
hanging and floating arrangement of piezoelectric devices,
is more promising to produce electrical power from oceanic
wave energy than that of using any other arrangements. Mul-
tiple units of Eel constructions can be cascaded to achieve
higher electrical power compared to the traditional concepts.
The harvested low frequency ac power must be converted
before feeding it to the electrical appliances. Further, storage
battery or devices can be used to store the energy and ac loads
can be powered through an inverter circuit.

APPENDIX
Nomenclature

A Wave amplitude
b Damping of piezoelectric harvester
Cp Capacitance of piezoelectric device
c Wave velocity
cm3 Cubic centimeter
D Electric field displacement
d Piezoelectric coupling coefficient
ho Height of piezoelectric plate
hz Distance from vertical neutral point of the wave
Ep Young’s modulus
Fe Fluid force
H Wave height
Hw Depth of the seabed from the water surface
Hz Hertz
hmp Height between mobile platform
i Load current
kg Kilo-gram
kPa Kilo-pascal
kW Kilo-watt
Lm Mass of the piezoelectric transducer
l Length of piezoelectric harvester
M Internal moment of piezoelectric beam
MPa Mega-pascal
MW Mega-watt
W Mili-watt
M� Mega-ohm
n Turn ratio of transformer

nC Nano-coulomb
Pm Maximum electrical power
Pmax Maximum pressure on piezoelectric diaphragm
Q Electric charge
Rl Load resistance
S Mechanical strain
t Time
TWh Tera-watt hour
V Electric voltage
W Wavelength of wave
w Width of piezoelectric harvester
x Displacement
xp Distance between piezoelectric plates
µA Micro-ampere
µW Micro-watt
% Percentage
δ Relative displacement
σp Applied mechanical stress on piezoelectric device
θ Coupling factor of piezoelectric bimorph plate
ω Frequency of piezoelectric generator
η Efficiency of energy conversion

Acronym

AWS Archimedes wave swing
BaTiO3 Barium titanate
DDWEC Direct drive wave energy converter
EFHAS Elastic floating unit with hanging structure
EPRI Electric power research institute
FPED Flexible piezoelectric device
IPCC Intergovernmental panel on climate change
OWEC Oceanic wave energy converter
OWE Oceanic wave energy
OWC Oscillating water column
PVDF Polyvinylidene fluoride
PZT Lead zirconate titanate
PVC Polyvinyl chloride
SPH Smoothed particle hydrodynamics
WEC Wave energy converter
WEH Wave energy harvester
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