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ABSTRACT A novel heterogeneous behavior representation for linear stochastic switched system is
proposed in the discrete-time domain. The switching modes of state evolution and measurement output
are described by two random sequences with known probability information. The more general and flexible
framework covers several classes of well-studiedmodels as special cases, and can be served tomanage differ-
ent complex systemswith random abrupt changes in structure and parameter, so that it has wider applicability
than existing models. By introducing an equivalent auxiliary system in virtue of the mode-dependent random
parameter matrices, the filter design schemes, including an optimal and a suboptimal recursive algorithms,
are performed for the establishedmodel in theminimummean square error sense tomeet different application
requirements. Illustrative numerical examples demonstrate the effectiveness of the proposed formulation and
the corresponding filters that enjoy a promising application prospect.

INDEX TERMS State estimation, minimum mean square error, heterogenous, switching modes, random
parameters matrices.

I. INTRODUCTION
Recent years have witnessed a constant research interest
on stochastic switched systems in light of their extensive
applications on target tracking, fault detection and identifica-
tion, signal processing, networked control and so on [1]–[4].
Referred to as a class of hybrid systems, stochastic switched
systems are characterized by switches among a finite number
of subsystems or modes in the control of a switching signal.
Such systems have the superior capacity of modeling the
systems subject to some abrupt variations on the underlying
structures and/or sudden environment disturbances. Owing
to the high practicability, stochastic switched systems have
been attached a great deal of attention and a number of results
have been published. Various issues have been investigated,
e.g., filter design [2], [5], stability analysis [6], [7], and model
reduction [8].

Usually, the states of stochastic switched systems are not
available and/or the measurement outputs are often subject
to random uncertainties. Tailored for specific applications of
interest, diverse modeling manners have emerged to describe
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the switches in the associated systems. For example, in [1],
a linear dynamic system, where the state switches among
a set of unknown number modes, is presented for model-
ing the complex dynamical phenomena. The study of net-
worked systems also calls for the framework of stochastic
switched systems. In the networked systems, switches in the
measurement output modes frequently take place whenever
the status in the communication networks changes [9], [10].
A finite state Markov chain governs the switching modes
of stochastic systems with random delays in [11], [12] and
missing measurements in [13]. It is common to use Bernoulli
binary switching sequences as an alternative approach
to describe the network-induced uncertainties [14], [15].
Besides, switched systems, which consist of a finite number
of subsystems and a switching mode signal that determines
the active subsystem, have been extensively studied in many
branches [16]–[20]. For other interesting schemes of stochas-
tic switched systems, the references [21]–[26] may provide a
boarder perspective.

While the aforementioned achievements do represent
major progress, to the best of our knowledge, they are still
limited in several aspects. For example, there has been little
research on the heterogeneous behavior representation for
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stochastic switched systems with the individual switching
characteristics of state evolution and measurement output.
A common switching signal is shared between the state and
measurement modes for many of the existing models (see,
e.g., [27]–[29]). This manner is powerless in the cases where
the state evolution and the measurement output inherently
have their own switching modes. The typical example of
maneuvering target tracking in a cluttered environment can
be employed to illustrate the mentioned point [30]–[32].
Besides, many researches are conducted on the study for the
modeled switched systems, but it appears that a systematic
regime that can expose their common attributes is still lack-
ing. As a consequence, we have to make a new and different
researchmechanism for each switched system.Now, there is a
growing awareness of the necessity to investigate a universal
formulation for describing complex random phenomena and
discovering simple underlying temporal structures of stochas-
tic switched systems.

Filtering is an important theme for stochastic systems.
It is necessary to consider the underlying uncertainties, such
as switching modes, unmodeled dynamics, incomplete mea-
surement information and so on, when a switched system
is investigated. Since the performance of the classical and
well-known Kalman filtering can deteriorate appreciably
when the system model under consideration is not exactly
known, considerable effort has been devoted to develop alter-
native filtering techniqueswith specific aims to accommodate
the system model uncertainties in the past decades (see, e.g.,
[2], [5], [20], [33]). Besides, considering the fact that inaccu-
racies or uncertainties do occur in filter implementation, the
filtering should be designed to be insensitive against certain
errors/variations with respect to its gain. For this purpose,
some results on non-fragile filtering could be found in the
recent references [34], [35]. In addition, it should be noted
that the filtering problem for systems with random parameter
matrices, due to their the powerful capacity of describing the
random variations, has become a focus of research attracting
an ever-increasing interest [36], [37]. For instance, linear
filter and quadratic filter are offered separately in [38] and
[39] for their respective concerned models where random
uncertainties can be depicted bymultiplicative noises in terms
of random parameter matrices. For the systems with some
random phenomena induced by networks, which can be fur-
ther transformed into ones with random parameter matrices,
the filer problems have been tackled in [40]–[44]. Besides,
as for the framework simultaneously involving random state
transition and measurement matrices, some filter results are
prepared in [45]–[47]. More recent works on the filtering
for systems with random parameter matrices are referred
to [48]–[51] and the references therein. Nonetheless, the filter
design of switched systems in virtue of random parameter
matrices has not been fully explored, which makes the further
study necessary and motivates our investigation.

Inspired by the aforementioned discussions, in this paper,
we are dedicated to investigating the filtering problem
for a class of linear stochastic switched systems with

heterogeneous behaviors in the discrete-time domain. The
heterogeneous behaviors of stochastic switched systems
result from the potential individual characteristics of state
evolution and measurement output in some practical appli-
cations. As far as we are aware, the simultaneous considera-
tion of state and measurement uncertainties, whose switching
modes are heterogenous, is still in its infancy in the frame-
work of random parameter matrices. Therefore, this situation
constitutes an interesting study challenge. The main contri-
butions of the current research are highlighted as follows:

(1) A novel and flexible model, which allows for capturing
the heterogeneity of state evolution and measurement
output modes, is introduced for discrete-time linear
stochastic switched systems. The proposed formulation
has an excellent capacity of depicting various systems
that are subject to random abrupt changes in structure
and/or parameter using a unified form.

(2) By introducing an equivalent auxiliary system in virtue
of the mode-dependent random parameter matrices,
the filtering schemes are conducted in the minimum
mean square error (MSE) sense for cases with complete
and incomplete prior mode information respectively.
The algorithms designed are of Kalman-type filters and
conveniently implementable in a recursive form.

(3) As significant applications of the proposed modeling
and filtering algorithms, the state estimation problems
are addressed in the context of networked systems with
uncertain measurements, multiple model systems, and
jump Markov linear systems with uncertain measure-
ments, respectively.

The remainder of this paper is organized as follows.
Section II formulates the novel model of discrete-time linear
stochastic switched system whose serviceability is revealed
by two practical problems notably. The random parameter
Kalman filtering (RPKF) algorithms, including an optimal
and a suboptimal algorithms in the minimumMSE sense, are
devised for the systems under consideration in Section III.
In Section IV, some illustrative numerical examples are intro-
duced to demonstrate the applicability and feasibility of the
presented model and filter algorithms. Finally, conclusions
are drawn and some future topics are discussed in Section V.

A. NOTATIONS
Throughout the paper, we use lightface letters to denote
scalars and functions, boldface lowercase letters to denote
vectors, and boldface uppercase letters to denote matrices.
The notation Rr denotes the r-dimensional Euclidean space.
For a matrix A, A′ and A† represent its transpose and
Moore–Penrose generalized inverse respectively. The sym-
bols I and 0 stand for the identity matrix and the matrix
having all zero entries with appropriate dimension respec-
tively. The operations P{·} and E[·] denote the probability of
some random event and mathematical expectation of random
variable respectively. Matrices, if their dimensions are not
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explicitly specified, are assumed to be compatible for alge-
braic operations.

II. PROBLEM FORMULATION
Consider the following discrete-time linear stochastic switch-
ing system:

xk = Fk−1(θk )xk−1 + Bk−1(θk )vk−1,

yk = Hk (γk )xk + Ck (γk )wk , (1)

where k is the time index, xk ∈ Rp is the state to be estimated,
yk ∈ RN is the measurement output, vk ∈ Rq and wk ∈ Rr

are the process noise and measurement noise respectively.
The random sequences {θk} and {γk}, taking values in the
finite sets M , {1, 2, . . . ,M} and N , {1, 2, . . . ,N },
respectively, govern the switches among M state modes and
N measurement modes. For θk = i ∈ M and γk = j ∈ N ,
the pairs of matrices of the ith state mode and the jth measure-
ment output mode, respectively denoted by (Fik−1,B

i
k−1) and

(H j
k ,C

j
k ), are known with appropriate dimensions.

Remark 1: Two switching signals, θk and γk , are
employed to indicate the state evolution and measurement
output modes, respectively. The potential individual switch-
ing characteristics of state evolution and measurement out-
put motivate the framework for stochastic switched system
with heterogeneous modes (1). Different from the conven-
tional switched models where common switching signals
are often shared (see, e.g., [16]–[20], [27]–[29]), our model
allows for capturing the heterogeneity of state evolution and
measurement output modes, which can accommodate the
dynamical complexity and environmental changes in many
real applications. Only scattered results are available on the
stochastic switched systems with heterogeneous modes in
the literatures. It is, therefore, of particular significance to
shorten such a gap by initiating a study on the corresponding
formulation. The formulation (1) also covers several classes
of well-studied models as special cases. Some evident exam-
ples are the systems with multiple models [28], [29], [52],
the networked systems with random measurement losses
[41], and the systems with state-dependent multiplicative
noise [38], [39].

Similar to [22], [53], a new overall mode set can be defined
by the product of the state and measurement mode sets
as {sk = (θk , γk ) : θk = 1, . . . ,M , γk = 1, . . . ,N }.
Specifically, if the structure (or environment) of the system
considered in the paper does not change in the time interval
[k, k + 1], then θk+1 = θk and γk+1 = γk ; otherwise,
θk+1 6= θk or/and γk+1 6= γk .

Furthermore, our proposed scheme has a simple structure,
offers more flexibility and is favorable to depict a broader
class of uncertain stochastic systems. Two specific applica-
tions will be demonstrated in the following.

Example 1 (Distributed networked systems with uncer-
tain measurements): Consider a class of discrete-time linear
systems with missing measurements coming from L sensors,
which is modeled as the following state and measurement

equations in [11]:

xk = Fk−1xk−1 + Bk−1vk−1,

ylk = γ
l
kH

l
kxk + C

l
kwk , l = 1, . . . ,L, (2)

where xk is the state and ylk is the measurement provided
by the l-th sensor at time k , Fk , Bk , H l

k and C l
k are known

time-varying matrices with compatible dimensions. For each
l = 1, . . . ,L, {γ lk : k ≥ 0} is a sequence of independent
Bernoulli random variables with known probabilities such
that γ lk = 1 indicates that the signal is present in the measure-
ment from the l-th sensor at time k , whereas γ lk = 0 means
that this measurement is only noise. At time k , let us construct
an entirety by stacking the measurement vectors in equation
(2) as y

1
k
...

yLk

 =
γ

1
k H

1
k

...

γ Lk H
L
k

 xk +
C

1
k
...

CL
k

wk .
Consequently, the system model (2) can be casted within the
proposed framework (1) just by setting N = 2L ,

yk = [(y1k )
′, . . . , (yLk )

′]′,

Hk (γk ) =


[(H1

k )
′,0, . . . ,0]′, γk = 1,

[0, (H2
k )
′, . . . ,0]′, γk = 2,

. . .

[0,0, . . . ,0]′, γk = N ,

Ck (γk ) = [(C1
k )
′, . . . , (CL

k )
′]′, γk = 1, . . . ,N .

This mechanism allows us to deal with the focused problem
for single and multi-sensor systems in a unified way.

Example 2 (Tracking multiple targets in a cluttered
environment):Assume that there are T targets andDmeasure-
ments but no knowledge on each measurement being noise or
associating with which target. In [51], the multiple individual
target tracking system is modeled as

xtk = Ftk−1x
t
k−1 + B

t
k−1vk−1, t = 1, . . . ,T ,

yk,d =


Hkx1k + Ck,dwk , with probability q1k,d ,
· · ·

HkxTk + Ck,dwk , with probability qTk,d ,
Ck,dwk , with probability q0k,d ,

(3)

where d = 1, . . . ,D, xtk is the system state of the t-th target,
yk,d is the d-th measurement at time k , qtk,d denotes the
probability that the measurement yk,d is associated with the
t-th target at time k and q0k,d denotes the probability that the
measurement yk,d belongs to the set of false measurements
at time k . Representing the above multiple individual target
tracking system (3) in a compact form by an augmented state
vector, we have

xk = Fk−1xk−1 + Bk−1vk−1,yk,1...
yk,D

 =
Hk,1

...

Hk,D

 xk +
Ck,1

...

Ck,D

wk , (4)
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where,

xk = [(x1k )
′, . . . , (xTk )

′]′,

Fk = diag(F1
k , . . . ,F

T
k ),

Bk = [(B1
k )
′, . . . , (BTk )

′]′,

Hk,d =


[Hk ,0, . . . ,0], with probability q1k,d ,
· · ·

[0, . . . ,0,Hk ], with probability qTk,d ,
0, with probability q0k,d .

With the feasible development implemented in Example 1,
the measurement equation (4) has the same form as that in
(1) where γk ∈ {1, . . . , (T + 1)D}. As a result, we integrate
the multiple individual target tracking system (3) into the
proposed model (1).

Since we have elaborated the serviceability of the estab-
lished model, the main objective is to design filter algorithms
for system (1). Some prerequisites should be claimed before
performing any operation. So, assume that the dynamical
system (1) satisfies the following statistical properties:
1) The initial state x0 is a random vector with knownmean
Sx0 and covariance matrix P0.

2) The noise sequences {vk} and {wk} are independent
and mutually independent with zero means and known
covariance matrices

E[vkv′k ] = Rvk , E[wkw′k ] = Rwk .

3) The mode switching sequence {(θk , γk )} is independent
of the noise sequences {vk} and {wk}, and all of them
are independent of the initial state x0.

III. RANDOM PARAMETER KALMAN FILTERING
In this section, the RPKF algorithms designed for the system
(1) in the minimum MSE sense will be presented. To be
more specific, depending on what information is available,
the RPKF algorithms are composed of two parts: an optimal
and a suboptimal algorithms.

A. OPTIMAL LINEAR RECURSIVE FILTERING
The optimal linear recursive filter algorithm will be obtained
under the assumption that the evolution modes of the focused
system are unknown and only information about their mode
probabilities is available. This message is specified in the
following assumption.

Assumption 1: The random sequences {θk} and {γk} are
independent and mutually independent with known probabil-
ities

pik = P{θk = i}, i = 1, . . . ,M ,

qjk = P{γk = j}, j = 1, . . . ,N . (5)

The following is naturally satisfied

M∑
i=1

pik = 1,
N∑
j=1

qjk = 1.

Remark 2: Assumption 1 is made to account for the
statistical properties of system modes, which is applicable
for some of the most investigated stochastic models, such as
the systems with uncertain measurements, random delays or
packet dropouts [41], [42]. The derivation of the algorithms
does not require the knowledge of the exact system modes,
but only the probabilities of modes involved. We make use of
the known mode probability information at each time instant
for the desired filter so as to possess the optimality.

Defining the random matrices Fk ,Hk ,Bk and Ck that are
satisfied by

P{Fk−1 = Fik−1} = P{Bk−1 = Bik−1}

= pik , i = 1, . . . ,M ,

P{Hk = H j
k} = P{Ck = C j

k}

= qjk , j = 1, . . . ,N , (6)

the compact form is obtained from (1) as follows:

xk = Fk−1xk−1 + Bk−1vk−1,

yk = Hkxk + Ckwk . (7)

Therefore, the problem is reformulated as that of attaining the
minimum MSE estimator of xk , based on the measurements
y1, . . . , yk for the system (7).

Remark 3: The filter design in this paper is for the
switched system with the simultaneous uncertainties of state
and measurement modes. The different modes correspond
to the changing dynamics as well as the uncertain measure-
ments. The main difficulty is how to deal with these random
uncertainties reflected by the behaviors of two switching
signals θk and γk . A reasonable way ofmodeling such random
effects is to formulate the system parameters as randommatri-
ces [36]–[44].With the definition of randommatricesFk ,Hk ,
Bk and Ck , which are associated with the mode probabilities
(5), we construct an auxiliary system (7) as an equivalent
version of the original model (1). The represented form (7)
is concise and convenient for us to devise the recursive filter
algorithms.

Dividing a random matrix into the deterministic and ran-
dom parts, we can get

Fk−1 = SFk−1 + F̃k−1, Hk = SHk + H̃k , (8)

where

SFk−1 = E[Fk−1] =
M∑
m=1

pmk F
m
k−1,

F̃k−1 = Fik−1 −
M∑
m=1

pmk F
m
k−1 with probability pik ,

and

SHk = E[Hk ] =
N∑
n=1

qnkH
n
k ,

H̃k = H j
k −

N∑
n=1

qnkH
n
k with probability qjk ,
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then E[F̃k ] = 0 and E[H̃k ] = 0. Substituting (8) into (7),
it is obvious that the system (7) can be rewritten as

xk = SFk−1xk−1 + ṽk−1,

yk = SHkxk + w̃k , (9)

where

ṽk−1 = F̃k−1xk−1 + Bk−1vk−1,

w̃k = H̃kxk + Ckwk . (10)

To facilitate the subsequent developments, the following
lemma is introduced.

Lemma 2: If the random matrix F and random vector x
are independent, then

E[Fxx′F′] = E[FE[xx′]F′].

Theorem 3: Under Assumption 1, the dynamical system
(9) has the following properties:

1) The pseudo-noises ṽk and w̃k are uncorrelated
zero-mean white sequences, and have respective
covariance matrices

R̃vk−1 =
M∑
i=1

pik
(
(Fik−1 −SFk−1)E[xk−1x

′

k−1]

· (Fik−1 −SFk−1)
′
+ Bik−1Rvk−1 (B

i
k−1)

′
)
,

Rw̃k =
N∑
j=1

qjk
(
(H j

k −
SHk )E[xkx′k ](H

j
k −
SHk )′

+C j
kRwk (C

j
k )
′
)
;

2) The initial state x0 is uncorrelated with ṽk and w̃k .
Proof: It can be seen from Equation (7) that the state

xl linearly depends on Fl−1Fl−2 · · ·F1F0x0, Bl−1vl−1 and
Fl−1 · · ·Fl−i+1Bl−ivl−i for i = 2, . . . , l. With Assumption 1
and the independence of x0, {vk}, {wk}, {θk} and {γk}, we have
that xl is independent of Ft , H t , vt and wt for any l ≤ t .
Therefore,

E[̃vk−1] = E[F̃k−1xk−1 + Bk−1vk−1]
= E[F̃k−1]E[xk−1]+ E[Bk−1]E[vk−1]
= 0,

E[w̃k ] = 0,

and then

R̃vk−1 = E[̃vk−1̃v′k−1]
= E[F̃k−1E[xk−1x′k−1]F̃

′

k−1

+Bk−1E[vk−1v′k−1]B
′

k−1]

=

M∑
i=1

pik
(
(Fik−1 −SFk−1)E[xk−1x

′

k−1]

· (Fik−1 −SFk−1)
′
+ Bik−1Rvk−1 (B

i
k−1)

′
)
,

Rw̃k = E[w̃k w̃′k ]
= E[H̃kE[xkx′k ]H̃

′

k + CkE[wkw′k ]C
′
k ]

=

N∑
j=1

qjk
(
(H j

k −
SHk )E[xkx′k ](H

j
k −
SHk )′

+C j
kRwk (C

j
k )
′
)
.

Without loss of generality, assume k > l. Noting (10) and
using the independence of random variables aforementioned,
we arrive at

Cov(̃vk , ṽl) = E[̃vk ṽ′l]
= E[F̃kxkx′lF̃

′

l]+ E[F̃kxkv′lB
′
l]

+E[Bkvkx′lF̃
′

l]+ E[Bkvkv′lB
′
l]

= 0,

Cov(w̃k , w̃l) = E[w̃k w̃′l]
= E[H̃kxkx′lH̃

′

l]+ E[H̃kxkw′lC
′
l]

+E[Ckwkx′lH̃
′

l]+ E[Ckwkw′lC
′
l]

= 0,

and

Cov(̃vk , w̃l) = E[̃vk w̃′l]
= E[F̃kxkx′lH̃

′

l]+ E[F̃kxkw′lC
′
l]

+E[Bkvkx′lH̃
′

l]+ E[Bkvkw′lC
′
l]

= 0.

Similarly, it is clear that

Cov(x0, ṽk ) = E[x0̃v′k ]
= E[x0x′k F̃

′

k ]+ E[x0v′kB
′
k ]

= 0,

Cov(x0, w̃k ) = E[x0w̃′k ]
= E[x0x′kH̃

′

k ]+ E[x0w′kC
′
k ]

= 0.

This theorem thus holds. �
So far, we have provided the statistical properties for the

quantities in system (9) besides E[xkx′k ] whose recursive
expression also needs to be figured out.

Lemma 4: Under Assumption 1, the state of system (9)
satisfies the following recursion:

E[xkx′k ] = SFk−1E[xk−1x
′

k−1]SF
′

k−1

+

M∑
i=1

pik
(
(Fik−1 −SFk−1)E[xk−1x

′

k−1]

·(Fik−1 −SFk−1)
′
+ Bik−1Rvk−1 (B

i
k−1)

′
)

(11)

with the initial value

E[x0x′0] =Sx0Sx
′

0 + P0.

Proof: From Theorem 3, we obtain

E[xk−1̃v′k−1] = 0, E[̃vk−1x′k−1] = 0.

Therefore, for the system (9), we have

E[xkx′k ] = SFk−1E[xk−1x
′

k−1]SF
′

k−1 +
SFk−1E[xk−1̃v′k−1]
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+E[̃vk−1x′k−1]SF
′

k−1 + E[̃vk−1̃v′k−1],

and then (11) can be obtained by simple derivation. �
Up to now, all the preparations for deriving the optimal

recursive estimator for the dynamical system (1) have been
completed. We are in the position to present the following
theorem.

Theorem 5: For the dynamic system (1) with Assump-
tion 1, the minimum MSE estimate of the state xk can be
computed recursively as follows:

xk|k = xk|k−1 + Kk (yk − SHkxk|k−1), (12)

xk|k−1 = SFk−1xk−1|k−1, (13)

Pk|k−1 = SFk−1Pk−1|k−1SF
′

k−1 + R̃vk−1 , (14)

Kk = Pk|k−1SH
′

k (SHkPk|k−1SH
′

k + Rw̃k )
†, (15)

Pk|k = (I − KkSHk )Pk|k−1, (16)

where

SFk−1 =
M∑
i=1

pikF
i
k−1,

SHk =

N∑
j=1

qjkH
j
k ,

R̃vk−1 =
M∑
i=1

pik
(
(Fik−1 −SFk−1)E[xk−1x

′

k−1]

· (Fik−1 −SFk−1)
′
+ Bik−1Rvk−1 (B

i
k−1)

′
)
,

Rw̃k =
N∑
j=1

qjk
(
(H j

k −
SHk )E[xkx′k ](H

j
k −
SHk )′

+C j
kRwk (C

j
k )
′
)
,

with E[xkx′k ] recursively given by (11) and the initial values

x0|0 =Sx0, P0|0 = P0, E[x0x′0] =Sx0Sx
′

0 + P0.

Remark 4: The way to straightforwardly derive Theo-
rem 5 is based on the existing results of Kalman filtering
(see, e.g., [54]) since Theorem 3 guarantees the optimality
of proposed algorithm in the sense of linear minimum MSE.
Such a derivation seems simple without requiring redundant
deductions, because Kalman filtering can be served as a tool
for obtaining the optimal estimator once some preconditions
verified in Theorem 3 have been met, and the optimality of
proposed algorithm is thereby in the sense of linear minimum
MSE as Kalman filtering.

Remark 5: In Theorem 5, all the system parameters
as well as the statistical information of considered model
are included. To be specific, the terms SFk and SHk capture
the system parameter matrices. The covariance matrices of
pseudo-noises R̃vk and Rw̃k capture the characteristics of
noises and random disturbances. Remarkably, the notations
in Theorem 5 and in standard Kalman filtering represent very
distinct meanings respectively, so we prefer to regard Theo-
rem 5 as a Kalman-type filter. Moreover, compared with the

standard Kalman filtering, the optimal linear recursive state
estimation formulae for the system (1) given by Theorem 5
has one more recursion of E[xkx′k ] as (11).

B. SUBOPTIMAL LINEAR FILTERING
If the real-world random phenomena are not always in agree-
ment with the Assumption 1, it would be difficult to purse the
optimality of the filter. A commonworkaround is the addition
of limited information on the switching modes. Among them,
Markov switching behavior has attracted a great deal of atten-
tion since it is very appropriate to model random variations
verified by numerous report research findings. A suboptimal
algorithm for the system (1) will be presented in this section.

Assumption 6: The sequences {θk} and {γk} are mutu-
ally independent finite state first orderMarkov chains accord-
ing to the transition probability matrices 8 = [φim]M×M
with φim = P{θk = m|θk−1 = i} and 9 = [ψjn]N×N with
ψjn = P{γk = n|γk−1 = j} respectively.

Recall that Theorem 5 states the optimal recursive state
estimate under the minimum MSE sense with the condition
of known mode probabilities (5). For the case that the mode
probabilities are unknown, it is natural to replace them with
posterior mode probabilities. In the following, we will give
the calculation of the posterior mode probabilities under
Assumption 6 and the relevant state estimation formulae for
the system (1).

Assume that the initial prior mode probabilities are known
as

pi0 = P{θ0 = i}, i = 1, . . . ,M ,

qj0 = P{γ0 = j}, j = 1, . . . ,N .

Given the cumulative set of measurements up to time k − 1,
y1:k−1 , {y1, . . . , yk−1}, the posterior probability distribu-
tions of the state mode and measurement mode at time k − 1
are

p̂ik−1 , P{θk−1 = i|y1:k−1}, i = 1, . . . ,M ,

q̂jk−1 , P{γk−1 = j|y1:k−1}, j = 1, . . . ,N .

Under the assumption that the random variables x0, vk and
wk are of Gaussian distribution, for i = 1, . . . ,M and j =
1, . . . ,N , the mode likelihood is

λ
(i,j)
k , f (yk |θk = i, γk = j, y1:k−1), (17)

where f is the probability density function of Gaussian dis-
tribution N (µ(i,j)

k ,S(i,j)k ) with

µ
(i,j)
k = H j

kF
i
k−1xk−1|k−1,

S(i,j)k = H j
k

(
Fik−1Pk−1|k−1(F

i
k−1)

′
+ Bik−1Rvk−1 (B

i
k−1)

′
)

· (H j
k )
′
+ C j

kRwk (C
j
k )
′,

and the process and measurement mode likelihoods respec-
tively are

λ
(i,:)
k , f (yk |θk = i, y1:k−1) =

N∑
j=1

λ
(i,j)
k q̂jk|k−1,
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λ
(:,j)
k , f (yk |γk = j, y1:k−1) =

M∑
i=1

λ
(i,j)
k p̂ik|k−1,

where

p̂ik|k−1 , P{θk = i|y1:k−1} =
M∑
m=1

φmip̂mk−1,

q̂jk|k−1 , P{γk = j|y1:k−1} =
N∑
n=1

ψnjq̂nk−1.

According to the law of total probability and Bayes for-
mula, the posterior mode probabilities at time k can be
obtained as

p̂ik =
p̂ik|k−1λ

(i,:)
k∑M

m=1 p̂
m
k|k−1λ

(m,:)
k

, i = 1, . . . ,M ,

q̂jk =
q̂jk|k−1λ

(:,j)
k∑N

n=1 q̂
n
k|k−1λ

(:,n)
k

, j = 1, . . . ,N . (18)

An analogous derivation procedure as in Section III-A
leads us, after some manipulations, to the following theorem.

Theorem 7: Replacing the mode probabilities pik and q
j
k

in Theorem 5 with p̂ik and q̂
j
k respectively, the recursive state

estimate of the system (1) can be modified as the same form
as Theorem 5.

Remark 6: For the suboptimal filter algorithm given in
Theorem 7, we can make a comparative analysis with the
result in [22]. A robust state estimation algorithm for jump
Markov linear systems with missing measurements, where
the behavior of missing measurements is described by a
two-state Markov chain, is presented in [22]. The considered
model is casted into the framework of the interacting multiple
model (IMM), and several sub-filters operate in parallel and
cooperate with each other through an interacting strategy.
Since we construct an auxiliary system (7) as the equiva-
lent version of the original model (1), only a single filter is
carried out at each time instant. This reorganization makes
the provided algorithms consider all information of the mode
variations without increasing the number of parallel filters,
and thus our scheme is more appealing during execution.
More importantly, the obtained results are not simple gener-
alization of the existing ones. Some attempts would be made
in Section IV to demonstrate that the RPKF algorithms may
be promising in applications.

Remark 7: In contrast with Theorem 5, the mode prob-
abilities in Theorem 7 is determined by (18), which is a
compromise to the ones in (5). Thismajor difference results in
the sub-optimality of Theorem 7, although two theorems have
the same recursive form. Comparing with the existing results,
our designed filter algorithms in Theorems 5 and 7 exhibit
the following distinct features: 1) Some random matrices are
introduced in the filter design to cover the effects from the
random switching behaviors of state and measurement modes
in the established model; 2) All the information on the system
parameters, the switching laws and the mode probabilities

has been fully considered and reflected in the algorithms;
3) Only a single filter is carried out at each time instant;
4) The designed filters are of a simple structure and easy to
be implemented.

IV. EXAMPLES
In this section, three example scenarios are introduced to
evaluate the proposed model and RPKF algorithms. Firstly,
in Section IV-A, an example of networked systemwith uncer-
tain measurements is utilized to examine the effectiveness
of the proposed optimal algorithm. Secondly, in Section IV-
B, a maneuvering target tracking is adopted to test the per-
formance of the proposed suboptimal algorithm which is
also compared with IMM [27], the information theoretic
IMM (ITIMM) [29] and the scalar-weight IMM (SIMM) [28]
algorithms in terms of error performance. The significance
of our work is embodied not only by casting the classical
problems within our framework but also by investigating new
serviceability. Therefore, thirdly, a promising application of
the proposed algorithms compared with the H∞ filter IMM
(HFIMM) [22] algorithm is illustrated in Section IV-C.

To compare the performance of the algorithms, the root
mean square error (RMSE) of the state estimate is evaluated
by averaging Monte Carlo simulation results as

RMSEk =

√√√√ 1
R

R∑
i=1

‖xik|k − x
i
k‖

2
2,

where R is the Monte Carlo runs, and xik|k and x
i
k denote the

estimated and true states at the i-th Monte Carlo run at time
k respectively. In next, we set R = 100 for all simulations.

A. NETWORKED SYSTEMS WITH UNCERTAIN
MEASUREMENTS
Consider a discrete-time linear stochastic system with the
same parameters in [41]:

xk = Fk−1xk−1 + Bk−1vk−1,

yk = γkHkxk + ckwk , (19)

where

Fk =
[
1.7240 −0.7788

1 0

]
,

Bk =
[
1
0

]
,

Hk = [0.0286, 0.0264],

ck = 0.2,

and vk and wk are mutually independent white noises with
zero means and unit variances. The random parameter γk
characters the uncertainty in measurement and is modeled as
a Bernoulli distributed white sequence taking values 0 and 1
with P{γk = 1} = α. Set the initial values x0 = [2,−2]′ and
P0 = 0.1I .
According to Theorem 5, the optimal linear filter of sys-

tem (19) can be solved by means of the designed filter
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FIGURE 1. The optimal state estimates of first component for α = 0.2,0.5
and 0.9.

FIGURE 2. The optimal state estimates of second component for
α = 0.2,0.5 and 0.9.

structure (12)–(16). Figures 1 and 2 respectively show the
true state components and their estimates for α = 0.2, 0.5 and
0.9. The simulation results illustrate that the presented filter
scheme can performwell to estimate the system state. Beyond
that, we can find that the estimation performance for α = 0.9
is better than that for α = 0.5 and α = 0.2, and this discovery
can be further verified from Figure 3 since the RMSEs of the
estimators become smaller as α increases. Furthermore, the
estimator reduces to Kalman estimator for the system with
deterministic parameter matrices when α = 1.
To further investigate the relationship between the perfor-

mance of the proposed algorithm and the probability of mea-
surement occurrence α, we assess the estimation performance
by the average RMSE (ARMSE) over the whole simulation
run time K = 100:

ARMSE =
1
K

K∑
k=1

RMSEk .

FIGURE 3. The RMSEs for α = 0.2,0.5 and 0.9.

FIGURE 4. The ARMSEs versus the probability α.

Figure 4 depicts the ARMSE for different α. It can be
seen that, as α increasing, the ARMSE of the proposed
algorithm becomes smaller which implies the performance
improvement.

By comparing the state estimates with the true state com-
ponents, we can see that the proposed formulation (1) and
the RPKF algorithm are valid for networked systems with
uncertain measurements. This is due to the fact the we have
made specific efforts to investigate amore feasible framework
of stochastic switched systems and design an efficient novel
filtering algorithm for the proposed. It is without doubt that
the state estimation problem for networked systems with
uncertain measurements belongs to the focused scope.

B. MANEUVERING TARGET TRACKING
Consider the scenario of tracking a maneuvering target
in two-dimensional plane described in [29], [55]. The
target starts a slow 90◦ turn with acceleration inputs
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ẍ1k = ẍ2k = 0.075m/s2, occurring for 40 ≤ k ≤ 60.
The second maneuver, a faster 90◦ turn, starts at k = 61
with acceleration inputs ẍ1k = −0.3m/s2 and ẍ2k = 0.3m/s2

and completes at k = 66. Before and after the turn, the
target moves in plane with constant velocity (CV) until k =
100. The target position is sampled every T = 10s and
the initial position and velocity are [2000m, 10000m] and
[0m/s,−15m/s] respectively.
The target state vector is denoted by

xk , [x1k , ẋ
1
k , ẍ

1
k , x

2
k , ẋ

2
k , ẍ

2
k ]
′,

and the system parameter matrices are given by

F1
k =


1 T 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 T 0
0 0 0 0 1 0
0 0 0 0 0 0

 ,

F2
k =


1 T T 2/2 0 0 0
0 1 T 0 0 0
0 0 1 0 0 0
0 0 0 1 T T 2/2
0 0 0 0 1 T
0 0 0 0 0 1

 ,

H1
k = H2

k =

[
1 0 0 0 0 0
0 0 0 1 0 0

]
,

BikRvk (B
i
k )
′
= bik

[
T 0
0 T

]
,

T =

T 5/20 T 4/8 T 3/6
T 4/8 T 3/3 T 2/2
T 3/6 T 2/2 T

 ,
C1
kRwk (C

1
k )
′
= C2

kRwk (C
2
k )
′
=

[
1002 0
0 1002

]
,

where i = 1, 2, and b1k = 0.01 and b2k = 0.25.
The initial state estimate is set as a sum of the actual state

and a bias [100m, 15m/s, 0m/s2, 100m, 15m/s, 0m/s2]′. The
initial mode probabilities for two modes are identical with
p10 = p20 = 0.5. The transition probability matrix between
two state modes is taken as

8 =

[
0.95 0.05
0.05 0.95

]
.

The performance is compared with respect to the RMSEs
in position and velocity, illustrated in Figures 5 and 6 respec-
tively. It can be seen that all algorithms achieve higher track-
ing accuracy when the target moves with CV, and perform
a bit of worse when the target is maneuvering. The pro-
posed RPKF algorithm does not manifest the superiority
when the target moves with CV compared with the IMM
and ITIMM algorithms, but it seems better for the maneuver
motion. To illustrate this point, two other tracking scenarios
are conducted:
• One is the scenario where the target always moves with
accelerations ẍ1k = ẍ2k = 0.075m/s2 from k = 1 to

FIGURE 5. Example in Section IV-B: RMSE of position versus time.

FIGURE 6. Example in Section IV-B: RMSE of velocity versus time.

k = 100. The RMSEs in position and velocity are
presented in Figures 7 and 8 respectively. The result
indicates that the proposedRPKF algorithm outperforms
the IMM, the ITIMM and the SIMM algorithms when
the target moves with maneuver;

• The other scenario is where the target always moves
with CV all the time, and the performance are shown by
the Figures 9 and 10. When the target moves with CV
all the time, the RPKF algorithm does not show much
superiority, although it has a higher accuracy compared
with the SIMM algorithm.

All these facts evidence that the proposed RPKF algorithm is
favorable for the tracking scenarios with maneuver modes.

To further verify the conclusions drawn above,
Tables 1 and 2 give the ARMSEs in position and velocity of
the algorithms in the three scenarios. By numerical compar-
ison, it is not hard to see that the proposed RPKF algorithm
has better performance than the others both in position and
velocity when the target is maneuvering. As shown in [29],
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TABLE 1. The ARMSEs in position.

FIGURE 7. Example in Section IV-B having maneuver all the time: RMSE
of position versus time.

FIGURE 8. Example in Section IV-B having maneuver all the time: RMSE
of velocity versus time.

the ITIMM algorithm performs good when the target moves
with CV, but has worse performance than the RPKF and the
IMM algorithms when the target is maneuvering. Since the
target in the first scenario spends 70% of the simulation time
moving with CV, the ARMSE of the ITIMM algorithm is
the lowest. Besides, compared with the others, the SIMM
algorithm has theworst performance nomatter what the target
motion mode is.

The elapsed time of the four algorithms versus sample
size from 100 to 1000 is illustrated in Figure 11. The RPKF
algorithm is computationally more costly than the SIMM
algorithm in which the scalar weights are determined by the

FIGURE 9. Example in Section IV-B having CV all the time: RMSE of
position versus time.

FIGURE 10. Example in Section IV-B having CV all the time: RMSE of
velocity versus time.

TABLE 2. The ARMSEs in velocity.

multiple model fusion criteria. Due to the computation of the
matrix inversion in the weight calculations, the ITIMM algo-
rithm is the most expensive one. More details, please refer to
[29] and [28]. The simulation results suggest that the RPKF
algorithm makes a tradeoff between the estimation accuracy
and computation complexity and has superior performance
for maneuver motion.

C. JUMP MARKOV LINEAR SYSTEMS WITH UNCERTAIN
MEASUREMENTS
Consider a similar maneuvering target tracking example with
five modes used in [56].
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FIGURE 11. The elapsed time versus sample size.

Target motion model: The target dynamics are modeled by
the following jump Markov linear system

xk =
[
1 T
0 1

]
xk−1 +

[
T 2/2
T

]
a0θk +

[
10
2

]
vk−1,

where xk = [xk , ẋk ]′ denotes the target state, a0 is a quantity
of acceleration, T is the sampling time and θk is a five-state
Markov chain taking values in the set {−2,−1, 0, 1, 2}.
Adopt the simulation parameters in [56] as follows. Take

the initial target state x0 = [500m, 10m/s]′, the initial state
covariance P0 = diag(1, 0.1), a0 = 1 and T = 1s. The total
simulation time is 200s. For 1 ≤ k ≤ 50, 81 ≤ k ≤ 145 and
161 ≤ k ≤ 200, the target moves with CV; for 51 ≤ k ≤ 80,
the target accelerates with 1m/s2; for 146 ≤ k ≤ 160,
the target decelerates with −1m/s2. The initial target state
estimate x0|0 is combination of the target state and a bias
vector [20m, 3m/s]′. The initial state mode probabilities for
five modes are identical with p10 = p20 = p30 = p40 = p50 =
0.2. The transition probability matrix of the five state modes
is taken as

8 =


0.6 0.1 0.1 0.1 0.1
0.1 0.6 0.1 0.1 0.1
0.1 0.1 0.6 0.1 0.1
0.1 0.1 0.1 0.6 0.1
0.1 0.1 0.1 0.1 0.6

 .
Target measurement model: The available measurement is

only the x-coordinate location of the target with possibility of
missing data [22]

yk = γk
[
1 0

]
xk + vk ,

where γk is a two-state Markov chain taking values in the set
N = {0, 1} with transition probability matrix

9 =

[
0.9 0.1
0.1 0.9

]
.

FIGURE 12. Example in Section IV-C: RMSE of position versus time.

FIGURE 13. Example in Section IV-C: RMSE of velocity versus time.

The initial distribution of γk is P{γk = 0} = P{γk =
1} = 0.5, and the measurement noise vk follows a zero-mean
Gaussian random variable with standard deviation 50m.

The estimation performance with respect to RMSEs in
position and velocity is shown in Figures 12 and 13. The
results reveal that the target state can be accurately estimated
in the presence of motion uncertainty and measurement
uncertainty, which implies that the designed RPKF algorithm
is robust with respect to the model uncertainties. Compared
with the HFIMM algorithm, our proposed algorithm shows
the better performance, thus it is more appealing in practical
applications.

V. CONCLUSION
The paper presents a general formulation for discrete-time
linear stochastic switched systems, where the switching char-
acteristics of the state transition and measurement output are
reflected by two random sequences respectively. Such mod-
eling reveals a more flexible feature in describing stochas-
tic switched systems and can be served to illustrate several
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practical applications, such as distributed networked sys-
tems with uncertain measurements, multiple individual target
tracking systems. An optimal and a suboptimal recursive
filtering algorithms in the sense ofminimumMSE are devised
to solve the state estimation problem of the studied systems.
The applicability of the novel modeling and the developed
filtering algorithms are illustrated by several examples. Valu-
able directions for future work include developing efficient
algorithms for the nonlinear systems with correlated hetero-
geneous modes and designing controller for unmanned aerial
vehicles having complex maneuvering behaviors.
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