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ABSTRACT Up to congestion (UTC) is a type of financial product available in the nodal electricity
markets of the United States, based on which a financial participant can earn profits by utilizing the
different congestion and loss components of the electricity prices in the day-ahead (DA) and real-time (RT)
markets. This paper proposes the UTC bidding strategy by using stochastic optimization technique, where the
uncertain electricity prices on the UTC transaction paths are represented via scenario sets. In the established
stochastic model, the total expected profit and the Conditional Value at Risk (CVaR) of the UTC bidding
strategy are maximized simultaneously considering risk management, where the risk preference of financial
participant is characterized by using a risk aversion parameter. By solving the proposed stochastic model,
non-increasing DA UTC bidding curves can be generated for all the time periods of the next operating
day, where the credit requirements for UTC transactions are taken into account in detail. Finally, to verify
the effectiveness of the proposed strategy, case studies are carried out based on the historical data and
trading policies of the Pennsylvania-New Jersey-Maryland (PJM) electricity market, and the UTC bidding
strategies generated by different models are analyzed. The numeral results indicate that, compared to the
deterministic UTC bidding strategy, the proposed stochastic strategy can bring much higher expected profit
and lower potential risks for the financial participant. Moreover, by adjusting the risk aversion parameter in
the proposed model, the risks can be managed efficiently according to the financial participant’s preference.

INDEX TERMS Electricity market, financial participant, risk management, stochastic optimization, up to
congestion.

NOTATIONS
INDEXES AND SETS
w Index of scenarios, w ∈ {1, . . . ,Nw.
d Index of the paths for up to conges-

tion (UTC) transactions, d ∈ {1, . . . ,Nd .
t Index of time periods, t ∈ {1, . . . ,Nt .
s Index of the pricing nodes in the electricity

market, s∈ {1, . . . ,Ns.
so(d) Source node of the path d for UTC transac-

tions.
si(d) Sink node of the path d for UTC transac-

tions.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ching-Ter Chang .

VARIABLES
PUd,t,w UTC bidding capacity on path d in time

period t for scenario w.
ζ Auxiliary variable used to compute the

CVaR.
ηw Auxiliary variable used to compute the

Conditional Value at Risk (CVaR) for
scenario w.

πUd,t,w Profit of the UTC bid used on path d in time
period t for scenario w.

ERd,t,w Risk exposure of the UTC bid used on path
d in time period t for scenario w.

ER,totw Total Risk exposure of the UTC bids on the
paths in the power network for scenario w.
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PARAMETERS
λDs,t,w Day-ahead (DA) electricity price at node s

in time period t for scenario w.
λRs,t,w Real-time (RT) electricity price at node s in

time period t for scenario w.
Cmax Maximum credit available for the financial

participant with UTC transactions.
Pmaxd,t Maximum UTC bidding capacity on path d

in time period t .
zrefd,t,w Binary parameter which is equal to 1 if the

risk exposure of the UTC bid on path d in
time period t for scenario w is positive, and
is equal to 0 otherwise.

λ
ref
d,t,w Actual reference price for the UTC bid on

path d in time period t for scenario w.
λ
ref
d,P Reference price for the UTC bid on path d

when it is in prevailing direction.
λ
ref
d,C Reference price for the UTC bid on path d

when it is in counter flow direction.
λ
AV ,DA
d Averaged historical hourly DA transmission

price on path d provided by the market oper-
ator.

r Risk aversion parameter
αs Confidence level of the CVaR.

I. INTRODUCTION
Most of the two-settlement electricity markets in the United
States adopt a nodal pricing framework to determine the elec-
tricity price at each node in the power network, in which case
the nodal electricity price consists of energy, congestion and
loss components [1]. Since the day-ahead (DA) and real-time
(RT) electricity markets are cleared on two days separately,
the DA and RT electricity prices at a node would not be the
same. From the perspective of the market operator, if the
differences between DA and RT electricity prices are too
large, the electricity market would be considered to be ineffi-
cient [2]. In this circumstance, virtual transactions are intro-
duced by the market operators to converge the DA and RT
electricity prices, based on which the financial participants
can trade power in the DA and RTmarkets without generating
or consuming it. Additionally, the financial participants using
virtual transactions can increase market liquidity and reduce
the market shares of the other participants with assets in the
grid, such as the power producers and electricity retailers [1].

In the current US electricity markets, there are three types
of virtual transactions available for the pure financial partici-
pants, including the increment (INC) offer, decrement (DEC)
bid and up to congestion (UTC) transaction [3]. A profitable
INC offer or DEC bid can help reduce the energy component
differences between the DA and RT markets at each node
in the power network, and a profitable UTC transaction can
help reduce the congestion or loss component differences
between DA and RTmarkets on each path. Currently, the INC

offers and DEC bids can be used in most of the major US
electricity markets, and the UTC transactions are available
in the markets operated by the Pennsylvania-New Jersey-
Maryland (PJM) Interconnection and the Electric Reliability
Council of Texas (ERCOT) [3].
Since virtual transaction was first introduced to the US

electricity markets in the year 2000, it has been studied by
many researchers from the industry and academia, and its
main benefits and risks were addressed in [4]. In [5], the
virtual bidders with perfect forecast results were studied in
several electricity market clearing models, and it was con-
cluded that virtual transactions could improve themarket effi-
ciency. In [6] and [7], the impacts of virtual transactions on
the market outcomes was studied by analyzing the historical
electricity price data in the two-settlement markets operated
by the California Independent System Operator (CAISO)
and the New York Independent System Operator (NYISO),
and it was shown that the price differences between DA and
RT markets were reduced after the introduction of virtual
transactions. However, the authors of [8] found out that if
a virtual bidder cannot forecast market outcomes accurately,
its virtual transactions might decrease the total social welfare
of the electricity market. In [9], it was addressed that virtual
transactions can be used by FTR holders to manipulate the
electricity prices and increase the value of their FTRs. The
authors of [10] established an equilibrium model to inves-
tigate the characteristics of the FTR holders with virtual
transactions. In [11] and [12], an analytical framework and
a bi-level optimization model were developed for the cyber
attacker with virtual transactions, respectively, and it was
shown that the associated virtual bids might bring risks to the
power system.
Virtual transaction has both advantages and disadvantages,

while the author of [3] addressed that it is indispensable
for the efficient electricity market design considering the
risks face by the participants. Therefore, it is necessary to
develop the optimal virtual bidding strategy used by the
market participants considering the potential risks. In [13],
risk-based stochastic virtual bidding strategy in California
electricity market was generated based on hidden Markov
models. In [14] and [15], stochastic virtual transactionmodels
were developed for a financial participant and a solar power
producer, respectively, where the electricity prices were char-
acterized using autoregressive integrated moving average
(ARIMA)models. In [16], the authors proposed a data-driven
virtual bidding strategy by using an online learning algorithm,
where the Sharpe ratio was used to measure its performance.
The literature on virtual bidding were summarized in

Table 1, and it is shownmost of the existing researchwork just
focus on the INC offers and DECs used at the nodes, while
the UTC transactions used on the paths have not been studied
in detail. However, as shown in Table 2, the actual trading
volume of the UTC transactions could be much larger than
those of the INC offers and DEC bids in certain electricity
market. In the year 2017, 2018 and 2019, the total cleared
quantities of DA UTC transactions are 306.3%, 215.7% and
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TABLE 1. A summary of the literature on virtual transactions.

TABLE 2. The average hourly cleared DA INC offers, DEC bids and UTC
transactions from 2017 to 2019 in the PJM market [17]–[19].

216.4% higher than the those of the DA INC offers and
DEC bids, respectively [17]–[19]. As shown in Table 1, the
literature on UTC transactions in nodal electricity markets are
quite limited. In [2], the typical UTC transactions occurred in
the PJM electricity markets were illustrated, and its potential
risks and benefits were discussed. The author of [3] analyzed
the function of UTC transactions considering the uncertain-
ties and risks faced by market participants. However, the
models of UTC transactions in [2] and [3] are deterministic
ones without considering the uncertainties and risks in the
market, and the credit requirements were not formulated in
detail.

In the electricity market, the participants needs to face var-
ious uncertainties, such as the electricity prices [21], renew-
able power productions [22], [23], and the electric demands of
electricity consumers, such as [24]–[27]. To develop the bid-
ding strategy considering these uncertainties in the market,
stochastic optimization, robust optimization and information
gap decision theory (IGDT) techniques were utilized by the
participants [21]–[26]. In the IGDT and robust optimization-
based models, the uncertain parameters are represented by
using their upper and lower bounds [21]–[24]; in contrast, the
uncertain parameters in a stochastic optimization model are
represented using a large number of scenarios, which should
be generated based on the full probability distributions [25],
[26]. In this circumstance, the computational cost of solving
a stochastic optimization model tends to be larger than that
of solving a robust optimization-based or an IGDT-based
model. However, robust optimization and IGDT techniques
might lead to conservative solutions due to their simplified
uncertainty characterization methods.

In this paper, we adopted the stochastic optimization tech-
nique to generate the UTC bidding strategy, which can utilize
the full probability distributions of the electricity prices and
help the financial participant seek higher expected profits.
Additionally, since the financial participant does not have
any physical assets, its stochastic optimization model does
not include complicated physical constraints and is easy to
be solved even with a large number of scenarios. Therefore,

this paper proposes the stochastic UTC bidding strategy in the
nodal electricity market, which can maximize the expected
profits and manage the risks for the financial participant. The
contributions of this paper are as follows:

1) A stochastic DA UTC bidding strategy is proposed
for a financial participant in nodal electricity markets. Com-
pared to the existing deterministic UTC transaction models,
the proposed stochastic model includes the details on credit
requirements, and the uncertainties of the electricity prices on
the UTC paths. By adjusting the risk aversion parameter, the
financial participant can generate non-increasing DA UTC
bidding curves considering its own risk preference.

2) Comparative studies are carried out for the deterministic
and stochastic UTC bidding strategies with different risk
aversion parameters in detail. The profitability and potential
risks of the different UTC bidding strategies are analyzed
based on the price data and trading policies in the PJM
electricity market.

The remaining parts of this paper are organized as follows:
Section III addresses the mechanism and market frame of
the UTC transaction used by a financial participant, and the
proposed stochastic UTC bidding strategy is presented in
Section IV. In Section V, case studies are conducted to verify
the proposed strategy. Finally, conclusions are obtained in
Section VI.

II. MARKET FRAME OF UTC TRANSACTION
A. MECHANISM OF UTC TRANSACTION
The basic mechanism of virtual transaction is submitting
generating offers or demand bids to the DA market without
actually producing and consuming power in the gird, and
in the RT market all the deviations caused by the DA com-
mitments of virtual transactions are settled at the RT prices.
Therefore, the profit of the virtual transaction depends on
the price differences between DA and RT electricity markets.
In the current nodal electricity markets in the United States,
there are three types of virtual transactions, including the
INC offer, DEC bid and UTC transaction. Specially, the INC
offer is offering virtual power in the DA market at a pricing
node and buying it back in the RT market; in contrast, the
DEC bid is buying virtual power at a pricing node in the DA
market and selling it back in the RTmarket. Different from the
INC offer or DEC bid used at one node, the UTC transaction
is selling and buying power at two pricing nodes of a path
simultaneously. As shown in Fig. 1, a path in the power
network consists of a source node and a sink node, where a
DAvirtual power injection and a virtual powerwithdrawal are
used, respectively. Therefore, a cleared DA UTC transaction
can be regarded as a virtual power flow on a path, and to settle
the deviations caused by this DA power flow, a RT power flow
in the opposite direction needs to be cleared at RT prices on
the operating day.

When a financial participant wants to submit a DA UTC
bid on a path, a virtual power generation offer and a virtual
demand bid are submitted to the source and sink nodes of
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FIGURE 1. The illustration of the UTC transaction in DA and RT electricity
markets.

a path, respectively. If UTC bidding price is lower than the
actual DA price differences between the sink and source
nodes, the generation offer and demand would be cleared at
DA prices of these two nodes simultaneously; then, in the RT
market the deviations of the two nodes would be settled at RT
prices. If the cleared UTC bid for path d in time period t is
PUd,t , the profit of this UTC bid πUd,t is calculated as follows:

πUd,t =
[(
λRsi(d),t−λ

R
so(d),t

)
−

(
λDsi(d),t − λ

D
so(d),t

)]
PUd,t (1)

As shown in (1), the profitability of the UTC bid PUd,t
depends on the difference between (λRsi(d),t − λ

R
so(d),t ) and

(λDsi(d),t − λ
D
so(d),t ), where the term (λDsi(d),t − λ

D
so(d),t ) can be

regarded as the transmission price of delivering power from
the source node to the sink node on path d in the DA market.
When

[(
λRsi(d),t − λ

R
so(d),t

)
−

(
λDsi(d),t − λ

D
so(d),t

)]
is posi-

tive and negative, the values of PUd,t tend to be positive
and negative, respectively. It should be noted that the power
deviations between DA and RT markets caused by the UTC
transactions are not charged with penalties in the current US
electricity markets, and details on this policy were addressed
in [28].

B. MARKET REQUIREMENTS FOR UTC TRANSACTION
As shown in Fig. 2, even though UTC transactions in the
electricity market are not related to any generation or demand
sources in the grid, the maximum UTC bidding capacity
should still be limited by the credit available in trading
account of the financial participant; otherwise, if the UTC bid
is not profitable on the next day, the financial participant may
fail to cover the losses due to its insufficient deposit, which
may lead to default risks for electricity market. Therefore,
the financial participant using UTC transactions should keep
its credit higher than its total risk exposure, which should be
formulated as a credit constraint in the optimization problem
for generating the UTC bidding strategy.

According to the credit requirements for UTC transactions,
the risk exposure of a UTC bid represents the potential loss
that may occur in the electricity market, which is calculated
based on the bidding capacity of the financial participant and
the reference price of the path [20]. If the reference price of
path d is λRefd , and the DA UTC bidding capacity and price

FIGURE 2. Market frame of UTC transactions.

of the financial participant in time period t are PUd,t and λ
D
d,t ,

respectively, the risk exposure of the UTC transaction should
be calculated as follows:

ERd,t = PUd,t
(
λDd,t − λ

Ref
d,t

)
(2)

where the reference price λRefd is related to the UTC direction
on the path, which is determined the sign of DA transmission
price of path d .

Additionally, in order to have enough margin for alleviat-
ing the potential risks of UTC transactions, the time periods
with negative risk exposures are not taken into account in the
credit constraints, which indicates the total risk exposure of
the financial participant with UTC transactions is the sum
of all the positive hourly risk exposures on the paths for the
next day. The detailed procedures of calculating the total risk
exposure in the proposed stochastic UTC bidding strategy
would be addressed in Section IV-B.

III. PROPOSED STOCHASTIC UTC BIDDING STRATEGY
A. OVERALL FRAMEWORK
The proposed stochastic UTC bidding strategy is described
in this section and its overall framework is shown in Fig. 3.
The model parameters related to the uncertain electricity
prices and credit constraints are first calculated according
to the market requirements specified by the market operator.
Then, the DA UTC bidding curves are generated by solving
a scenario-based stochastic optimization model. The detailed
procedures of these two parts are addressed in Section IV-B
and IV-C, respectively.

B. MODEL PARAMETER CALCULATION
In this paper, the financial participant is assumed to have
limited credit andmodelled as price-takers in both DA and RT
markets, because the UTC bidding capacity of the financial
participant is much smaller than the total DA and RT power
trading volumes. Therefore, the uncertain DA and RT elec-
tricity price scenarios are represented using scenarios, which
are generated without considering the financial participants’
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FIGURE 3. Overall framework of the proposed stochastic UTC bidding
strategy.

UTC bidding strategy [29]. Otherwise, if the financial par-
ticipant is a price-maker, its bidding strategy may affect the
electricity market outcomes, and the dependency between the
electricity prices and the UTC bidding strategy needs to be
further modelled by using additional methods, such as the
bilevel programming approach used in [5].

The scenarios of uncertain parameters can be generated
by using probabilistic models [30] or historical data [31].
In this paper, the scenarios of uncertain DA and RT electricity
prices at the nodes are both generated by using the Seasonal
Autoregressive Integrated Moving Average with Explanatory
Variable (SARIMAX)-based method, where the forecasted
RT wind power and demand are used as the explanatory
variables. Specifically, a stochastic process Y characterized
by using the SARIMAX model is expressed as follows:(
1−
∑L

l=1
φlL l

)(
1−
∑N

n=1
8nLnS

)
(1−L)d

(
1−LS

)D
yt

=

(
1−
∑U

u=1
θuLu

)(
1−
∑V

v=1
2vLvS

)
εt +

∑K

k=1
ρkxkt

(3)

where φp,8n, θu,2v, and ρk are the coefficients of autore-
gressive, moving average, seasonal autoregressive, seasonal
moving average, and explanatory variable terms, respectively.
εt is the forecast error in time period t that follows normal
distribution, and Ld is the lag operator, and its function is
expressed as follows:

Ldyt = yt−d (4)

In the US electricity markets, the historical data of DA
and RT electricity prices of all the nodes are public available
on the official websites. Additionally, the electricity market
operators usually provide the market participants with the
forecasted RT wind power and demand of the system. In this
circumstance, the parameters of the SARIMAXmodel can be
estimated by using the historical data of electricity price and

the forecasted RT wind power and demand [32]. The depen-
dency between DA and RT electricity prices are characterized
by using the variance-covariance matrix, which is addressed
in [30]. The details on the estimation procedures for the
SARIMAX model are provided in [33]. In the proposed
UTC bidding strategy, the scenarios of DA price differences
between the sink and source nodes of the paths are used as
the prices of the UTC bidding curves, and the optimal UTC
bidding capacities need to be calculated by the solving the
optimization model provided in Section IV-C.

After the electricity price scenarios are generated, the
parameters of the credit constraints need to be calculated
based on the UTC bidding prices and reference prices.
As mentioned in Section III, the UTC reference price of a
path is related to the direction of the UTC bid. The UTC bid
is in the prevalent direction if either the UTC bidding price
or the averaged historical DA transmission price of the path
is negative; otherwise, the UTC bid is considered to be in the
counter flow direction. Therefore, the actual reference price
on path d in time period t for scenario w can be expressed as
follows:

λ
ref
d,t,w =

{
λ
ref
d,P, λDso(d),t,w−λ

D
si(d),t,w<0 or λAV ,DAd < 0

λ
ref
d,C , otherwise

(5)

As is shown in (5), when the UTC bid is in the prevalent
and counter flow directions, λrefd,t is equal to λ

ref
d,P and λrefd,C

respectively, and λAV ,RTd,t is the averaged historical hourly DA
transmission price of path d provided by the market operator.

When calculating the total risk exposure of the UTC
bids on all the paths during one day, only the positive
hourly risk exposures are taken into account according to the
credit requirements. In this circumstance, an ancillary binary
parameter zrefd,t,w is used to mark the sign of the UTC bid’s risk
exposure on path d in time period t for scenario w, which is
expressed as follows:

zrefd,t,w =

{
0, λDsi(d),t,w − λ

D
so(d),t,w − λ

ref
d,t ≤ 0

1, λDsi(d),t,w − λ
D
so(d),t,w − λ

ref
d,t > 0

(6)

After the above parameters regarding the credit constraints
of the UTC transactions are calculated, the total risk exposure
of the DA UTC bids for scenario w can be formulated as
follows:

ER,totw =

Nt∑
t=1

Nd∑
d=1

zrefd,t,wP
U
d,t,w(λ

D
si(d),t,w−λ

D
so(d),t,w−λ

ref
d,t,w)

(7)

C. STOCHASTIC OPTIMIZATION MODEL FOR GENERATING
UTC BIDDING CURVES
The stochastic optimization model for generating the DA
UTC bidding curves is established to optimize the total
expected profits and the risks of the UTC bidding strategies
in the nodal electricity market for the financial participant.
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The formulations of the proposed model include (8)-(14),
which are given as follows:

max
4

(1− r)
Nw∑
w=1

Nt∑
t=1

Nd∑
d=1

PUd,t,w[
(
λRsi(d),t,w − λ

R
so(d),t,w

)
−

(
λDsi(d),t,w − λ

D
so(d),t,w

)
]

+r

(
ζ −

1
1− α

Nw∑
w=1

prwηw

)
(8)

Subject to :
Nt∑
t=1

Nd∑
d=1

zrefd,t,wP
U
d,t,w(λ

D
si(d),t,w − λ

D
so(d),t,w

− λ
ref
d,t,w) ≤ C

max
∀ω (9)

0 ≤ PUd,t,w ≤ P
max
d,t ∀d, t, ω (10)

PUd,t,w = PUd,t,w′ ∀d, t, ω, ω
′
:

λDsi(d),t,w − λ
D
so(d),t,w = λ

D
si(d),t,w′−λ

D
so(d),t,w′

(11)(
λDsi(d),t,w − λ

D
so(d),t,w

) (
PUd,t,w − P

U
d,t,w′

)
−

(
λDsi(d),t,w′−λ

D
so(d),t,w′

) (
PUd,t,w − P

U
d,t,w′

)
≤ 0, ∀d, t, ω (12)

ηw ≥ 0, ∀ω (13)

ζ − (
Nt∑
t=1

Nd∑
d=1

PUd,t,w[
(
λRsi(d),t,w − λ

R
so(d),t,w

)
−

(
λDsi(d),t,w − λ

D
so(d),t,w

)
])≤ηw, ∀ω (14)

where 4 = {PUd,t,w, ζ, ηw, and it is the set of the decision
variables in the proposed optimization model.
The objective function (8) is the weighted sum of the total

expected profits and the CVaR, which is the riskmeasure used
in the stochastic model. In the CVaR, a confidence level αs
is required to be specified by the financial participant using
UTC transactions, which is positive and smaller than 1. The
CVaR with confidence level αs is denoted as CVaRαs , and its
value is the expected profit of the UTC bidding strategy in the
(1− αs) × 100% least profitable scenarios [34]. In practice,
the confidence level αs is usually set to be 0.9 or 0.95, because
using a large αs cannot help the UTC bidder manage the tail
risks in the worst scenarios effectively. The weight assigned
to the CVaR is the risk aversion parameter, which should be
set based on the financial participant’s risk preference, and
a large risk averse parameter indicates the participant is risk
averse and cares about the potential low profits or losses in
the worst scenarios. The λRsi(d),t,w, λ

R
so(d),t,w, λ

D
si(d),t,w and

λDso(d),t,w in the objective function are the scenarios of the
electricity prices on the paths, and their values are deter-
mined by the SARIMAX-based scenario generation process
in Section IV-B.

Constraint (9) provides the credit constraints for the UTC
bidding capacities, which guarantees that the total positive
risk exposure of all the time periods and paths does not exceed

the total credit available of the financial participant for any
scenario w. The zrefd,t,w and λrefd,t,w in constraint (9) are the
parameters related to the credit constraints that are calculated
by using (5) and (6), respectively.

Constraint (10) provides the lower and upper bounds of
the UTC bidding capacity on each path, which are specified
to avoid the potential unbounded solutions when solving the
optimization problem. The properties of the non-increasing
UTC bidding curve are taken into account in constraints (11)
and (12). Constraint (11) means that the values of PUd,t,w and
PUd,t,w′ should be equal if the UTC bidding prices in scenario
w and w′ are the same. Constraint (12) ensures that UTC
bidding curve is non-increasing, which indicates the UTC
bidding capacity decreases with the DA transmission price
of the path, and in this circumstance, if the expected DA
transmission price on the path is too high, the corresponding
UTC bidding capacity might be zero.

Constraints (13) and (14) are used for calculating the CVaR

when the term ζ− 1
1−α

Nw∑
w=1

prwηw is included in the objective

function, and the details on the formulations of incorporating
the CVaR in a stochastic optimization problem are addressed
in [34].

IV. CASE STUDIES
A. SIMULATION SETUP
To verify the effectiveness of the proposed stochastic UTC
bidding strategy of the financial participant, case studies are
carried out based on the historical data in the PJM wholesale
electricity market. The pricing nodes that can be used as
the source or sink nodes of the UTC transaction paths are
specified by the market operator, and the historical electricity
price data and the UTC reference price data are both public
available on the PJM’s official website [35]. As mentioned
in Section IV-B, the reference prices for the UTC bid in
the prevailing and counter flow directions are not the same,
and they are the 30th and 20th percentiles of the historical
RT transmission price data, respectively [20]. The proposed
model (8)-(14) is a linear programming problem, which is
solved efficiently by using Yalmip toolbox [36] and Gurobi
7.0 in MATLAB [37] in this paper.

B. RESULTS OF RISK-NEUTRAL STOCHASTIC UTC
BIDDING STRATEGY
In this section, the financial participant is assumed to submit
its UTC bids on 12 paths associated with four pricing nodes
in the PJM electricity market, and the names of Node 1-4
are WESTERN HUB, NEW JERSEY HUB, NYIS and IMO,
respectively. In the proposed stochastic optimization model
(8)-(14), the maximum credit in the financial participant’s
trading account is assumed to be $600 and the maximum
DA UTC bidding capacity on each path is set to be 40 MW.
The risk aversion parameter and the confidence level are
set to be 0 and 0.9, respectively. Afterwards, 100 scenarios
are generated by using the SARIMAX-based method and
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the historical electricity price data in the latest 3 months.
Specifically, the historical DA and RT electricity price data
from June 1,2019 to August 31, 2019 are used to fit the
SARIMAXmodel and generate the DAUTC bidding strategy
on September 1, 2019.

FIGURE 4. Expected DA electricity prices at four pricing nodes of one day.

FIGURE 5. Expected RT electricity prices at four pricing nodes of one day.

FIGURE 6. Expected transmission price differences between RT and DA
markets for all the paths in the power network for one day.

Afterwards, the risk neutral stochastic UTC bidding strate-
gies of the financial participant are generated by solving the
stochastic model. Fig. 4 and 5 show the expected DA and
RT electricity prices of one day, respectively. The electricity
prices at Node 1-4 are not the same during most of time
periods, which indicates the transmission prices of the paths
are nonzero due to the power congestions and transmission
losses in the power network. Moreover, as shown in Fig. 6,

the transmission price differences between RT and DA mar-
kets are also different in during most of time periods, which
indicates the congestion or power loss components of the
electricity prices are also different in DA and RT markets due
to the separate clearing processes.

FIGURE 7. Expected DA UTC bidding capacities on all the paths in the
power network for one day.

FIGURE 8. Expected profits of the UTC bids on all the paths in the power
network for one day.

The expected UTC bidding capacities and profits of one
day are provided in Fig. 7 and 8, respectively. It is shown that
the expected UTC bidding capacity and profit are both related
to the transmission price differences between RT and DA
markets. For instance, the transmission price differences on
path 2-4 are very small during most hours of the day and there
is little incentive to earn profits for the financial participant,
whichmakes the expectedUTC bidding capacities and profits
very small on this path in the electricity market; in contrast,
the expected transmission price difference between RT and
DA markets on path 1-2 are pretty large during some hours,
thus making the financial participant trade power actively on
this path and earn high expected profits from the associated
UTC transactions.

C. IMPACTS OF MODEL PARAMETERS
In the proposed model, there are several parameters on that
can affect the results of the proposed stochastic UTC bidding
strategy significantly, which are analyzed in this section.
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FIGURE 9. The impacts of different risk aversion parameters on the
expected profits of the stochastic UTC bidding strategy.

First, the risk aversion parameter r is changed from 0 to 1
with an increment of 0.1, and the other model parameters are
set to be the same as those in Section V-B. The total expected
profits, the CVaR and the potential lowest profit are generated
and provided in Fig. 9. It is shown that the total expected
profit is decreased with the risk aversion parameter, while
the CVaR and the potential lowest profit are both increased
with the risk aversion parameter. Additionally, the DA UTC
bidding curves based on different risk averse degrees in the
3rd hour for path 3-4 are provided in Fig. 10. When r is 0,
0.4 and 0.9, 40 MW UTC bid would be cleared in the DA
market when the transmission prices are below−0.5$/MWh,
−0.81$/MWh and −0.98$/MWh, respectively, which indi-
cates a risk-averse financial participant tends to trade less
power in DA markets.

FIGURE 10. The DA UTC bidding curves based on different risk aversion.

Next, when the risk aversion parameter is set to be 0.1
and the confidence level αs is increased from 0.1 to 0.9 with
an increment of 0.1, the expected profits are calculated and
provided in Fig. 11. Since the CVaR is expected profit of the
worst (1−αs)% scenarios, the correlation between the CVaR
and potential lowest profit is increased with αs. As shown
in Fig. 11, the potential lowest profit is increased with αs,
which indicates optimizing the CVaR with a larger αs can
minimize the risks the in the worst scenarios more effectively.
Therefore, the confidence level is usually set to be 0.9 or 0.95
in the CVaR-constrained stochastic optimization models for
managing the tail risks effectively.

FIGURE 11. The impacts of different confidence levels on the expected
profits of the stochastic UTC bidding strategy.

FIGURE 12. Impacts of different maximum credits and UTC bidding
capacities on each path on the total expected profit.

In additional to the model parameters related to the risk
management, the maximum credit of the financial participant
and the maximum bidding on each path can also affect the
results of the UTC bidding strategy. As shown in Fig. 12,
when the other model parameters are set to be the same as
Section V-B, increasing the maximum credit and the bidding
capacity on each path can both improve the total expected
profit, because larger total credit and bidding capacity on
each path lead to larger trading flexibility for the financial
participant using UTC transactions.

D. COMPARISON OF DIFFERENT UTC BIDDING
STRATEGIES
In this section, in order to demonstrate the advantages of
stochastic UTC bidding strategy over the deterministic one,
and study the impacts of the risk aversion parameter on
the simulation results, four cases are designed based on
different UTC bidding strategies. In case 1, a deterministic
UTC bidding strategy is generated by solving a deterministic
model, and each uncertain parameter is represented by just
one deterministic value, which is obtained by averaging the
100 scenarios used in the stochastic model of Section V-B.
In Case 2-4, three different stochastic UTC bidding strategies
are generated by solving three stochastic models, where the
risk-aversion parameters are set to be 0, 0.1 and 1, respec-
tively. In this circumstance, the uncertain parameter forecast
accuracies in Case 1-4 are the same from the perspective of
the average value; however, since the deterministic strategy in
Case 1 only use one deterministic forecast value instead of a
set of scenarios, it does not consider the complete probability
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FIGURE 13. Cumulative distribution functions of the expected profits for four different UTC bidding strategies on (a) March
1, 2019, (b) June 1, 2019, (c) September 1, 2019 and (d) December 1, 2019.

distribution of the uncertain electricity prices like stochastic
strategies in Case 2-4. Additionally, since the risk-averse
parameters in Case 3 and 4 are both positive, the generated
stochastic UTC bidding strategy in these two cases would be
risk-averse, which would be more conservative than the risk
neutral one generated in Case 2.

To show the effectiveness of the proposed UTC bidding
strategy in different time periods of a year, the case studies
in this section are carried out for 4 typical days during
spring, summer, autumn and winter in 2019, which are
March 1, June 1, September 1 and December 1, respec-
tively. Fig. 13 provides the cumulative probability distri-
butions of the expected profits obtained by four different
UTC bidding strategies, and Table 3 shows some typical
results in four cases. The probability distributions in Case 1
is much more heavy-tailed than those in Case 2-4 on the left
side, which indicates the deterministic UTC bidding strat-
egy has obvious tail risks from a probabilistic perspective.
As shown in Table 3, the total expected profits and the
CVaR of the stochastic UTC bidding strategies in Case 2-4
are higher than those of the deterministic one in Case 1.
Therefore, compared to the deterministic UTC bidding strat-
egy, the stochastic UTC bidding strategy can help the
financial participant increase the total expected profits and
decrease the potential risks that might occur in the worst
scenarios.

For the stochastic UTC bidding strategies in Case 2-4, the
expected UTC bidding capacity and profit are both decreased
with the risk aversion parameter, while the CVaR is increased
with risk-aversion parameter. For instance, when the risk
aversion parameter is increased from 0 to 0.1, the CVaR and
potential lowest expected profit on September 1, 2019 are
increased by $1498.86 and $308.6, respectively, while the
total expected profit is just decreased by $30.27. However,
when the risk aversion parameter is increased from 0.1 to 1,
even though the CVaR and expected lowest profit on Septem-
ber 1, 2019 are increased by $1093.49 and $1901.7, respec-
tively, the total expected profit is decreased by $1080.64,
which indicates the risk-averse bidding strategy in Case 4
became conservative due to the large risk-aversion parameter.
Actually, when r is set to be 1 in the objective function
in Case 4, the weight assigned to the total expected profit
is zero and only the CVaR is maximized in the stochastic
optimization model.

Therefore, the stochastic UTC bidding strategy in Case 3
might be good for a risk-averse financial participant with
UTC transactions, because it can lower the potential risks
in the worst scenarios significantly without decreasing the
total expected profit too much. However, for a risk-neutral
financial participant who does not care about the risks in the
market, it might still adopt the stochastic strategy in Case 2
due to its high total expected profit.
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TABLE 3. Comparison of the simulation results obtained by using the UTC bidding strategies in four cases.

TABLE 4. Computational cost of solving the proposed stochastic model.

E. COMPUTATIONAL ISSUE
The computer used in this paper has a 2.40-Ghz, 2-core
CPU and a 16-GB RAM. To verify the applicability of the
proposed stochastic UTC bidding strategy in larger systems,
simulations are carried out consideringmoreUTC transaction
paths, where the model parameters are set to be same as
those used in Section V-B. The computational cost of solving
the proposed stochastic optimizationmodel consideringmore
UTC transaction paths are provided in Table 4, which are
acceptable for the financial participants in practice.

V. CONCLUSION
This paper proposed the stochastic UTC bidding strategy for a
financial participant in the nodal electricity markets. By solv-
ing the stochastic optimization models, optimal DA UTC
bidding curves have been generated for the next operating day
considering the credit constraints and risk preference of the
financial participant, where the CVaRwas used to manage the
potential risks in the worst scenarios.

To prove the effectiveness of the proposed stochastic UTC
bidding strategies, case studies have been carried out based on
the historical data and policies in the PJM electricity market.
Different types of UTC bidding strategies based on deter-
ministic and stochastic models were studied. The numeral
results indicate that, compared to the deterministic UTC
bidding strategy, the proposed stochastic strategy can bring
much higher expected profit and lower potential risks for

the financial participant. Additionally, the risk-averse UTC
bidding strategy might lower the risks in the worst scenario
significantly without decreasing the total expected profits too
much. However, when the risk averse parameter in the model
was too large, the risk averse UTC bidding strategy would
be too conservative and its total expected profit could be
much lower than that of the risk-neutral one. Therefore, to
maximize the economic benefits of the financial participant’s
UTC transactions considering its risk preference, it would be
necessary to carry out detailed simulations for selecting the
proper risk averse parameter of stochastic model.

In the future research, the financial participant using UTC
transactions can also be modelled as a price-maker in the
electricity market if its UTC bidding capacity is large enough
to affect the market outcomes. In this case, the correlation
between the electricity prices and the financial participant’s
UTC bids can be modelled by using the bilevel programming
technique adopted in [31]. Moreover, to ensure the profitabil-
ity of financial participant’s UTC transactions, other uncer-
tainties, such as the other participants’ bidding strategies and
the transmission line outages, need to be characterized accu-
rately using suitable scenario generation methodologies and
explanatory variables. Moreover, the UTC transactions used
by FTR holders or cyber data attackers can also be studied
in the future research, and the proposed UTC transaction
model can be utilized in the associated case studies without
significant modifications.
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