IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received July 18, 2020, accepted August 3, 2020, date of publication August 10, 2020, date of current version August 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3015504

A Deformable 3D-3D Registration Framework
Using Discrete Periodic Spline Wavelet
and Edge Position Difference

ABDULLA AL SUMAN ', (Graduate Student Member, IEEE),

MD. ASIKUZZAMAN"“1, (Member, IEEE), ALEXANDRA LOUISE WEBB?2,
DIANA M. PERRIMAN?23, MURAT TAHTALI', (Member, IEEE),

AND MARK R. PICKERING "1, (Member, IEEE)

I'School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2600, Australia
2Medical School, Australian National University, Canberra, ACT 2601, Australia
3Trauma and Orthopaedic Research Unit, Canberra Hospital, Canberra, ACT 2605, Australia

Corresponding author: Abdulla Al Suman (abdulla.suman@student.unsw.edu.au)

ABSTRACT Neck pain is one of the most common symptoms of cervical spine disease, and segmenting neck
muscles to create volumetric measurements may assist clinical diagnosis. While image registration is used
to segment medical images, registration is highly challenging for neck muscles due to their tight proximity,
shape and size variations among subjects, and similar appearance. These challenges cause conventional
multi resolution-based registration methods to be trapped in local minima due to their low degree of
freedom geometrical transforms. This article presents a novel object-constrained hierarchical registration
framework for aligning inter-subject neck muscles. First, to handle large scale local minima, the proposed
framework uses a coarse registration technique, which optimizes the new edge position difference (EPD)
similarity measure, to align large mismatches. Also, a new transformation based on the discrete periodic
spline wavelet (DPSW), affine and free-form-deformation (FFD) transformations are exploited. Second,
to avoid monotonous nature of using transformations in multiple stages, a fine registration technique is
designed for aligning small mismatches. This technique uses a double-pushing system by changing edges
in the EPD and switching transformation resolutions. The EPD helps in both coarse and fine techniques to
implement object-constrained registration via controlling edges, which is not possible when using traditional
similarity measures. Experiments are performed on clinical 3D magnetic resonance imaging (MRI) scans of
the neck, with the results showing that the EPD is more effective than the mutual information (MI) and sum
of squared difference (SSD) measure in terms of volumetric dice similarity coefficient (DSC). Additionally,
the proposed method is compared with the diffeomorphic Demons and SyN state-of-the-art approaches with
ablation studies in inter-subject deformable registration. The proposed method achieves better accuracy,
robustness and consistency than the reference methods, with an average volumetric DSC of 0.7029 compared
to 0.6654 and 0.6606 for the Demons and SyN methods, respectively.

INDEX TERMS Neck muscles, edge position difference (EPD), discrete periodic spline wavelet (DPSW),
magnetic resonance imaging (MRI), deformable registration.

I. INTRODUCTION

Neck pain is a common musculoskeletal condition affect-
ing the cervical spine. The estimated prevalence of signif-
icant episodes of neck pain is 40 to 70 per cent of an
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affected person’s lifetime [1]. Further, neck pain results
in significant socio-economic costs related to health care
expenses, work absences, reduced productivity and insurance
claims [2]-[4]. Patients may present with either acute pain,
particularly as a result of trauma such as that experienced
in a motor vehicle accident, or more chronic pain. In some
instances of neck pain, the cervical muscles, in magnetic
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resonance (MR) images, appear to undergo pseudo hyper-
trophy due to fat infiltration or atrophy. However, these
changes are inconsistent between the muscles and vertebral
levels [5]-[7]. These inconsistencies may be caused by the
measurement method rather than the marker [5]. First, quan-
tification of the sizes of muscle and fat infiltrations using
cross-sectional measures from two-dimensional (2D) images
at selected vertebral levels is not representative of 3D muscle
measurements [8]. Second, when using 2D quantification
methods, the data may suffer from errors associated with
the effects of a partial volume or alignment of the axial
slice relative to the cervical spine [9]. Therefore, volumetric
studies of neck muscles are required before the use of their
sizes and fat infiltrations as reliable markers can be verified
or refuted.

3D-3D cervical MRI registration can provide volumetric
muscle segmentation for neck pain treatments. However, reg-
istration between the neck images of two individuals is dif-
ficult due to the potential of large anatomical variability (see
Figure 1). Within the small and narrow region of the neck,
the 27 muscles that control the movements of the cervical
spine are compactly arranged (see Figures 1, 5, 6 and 8)
with approximately similar composition resulting in similar
intensity. This intricate relationships make them difficult to
identify accurately. Further, the variable quantities of fat
present within (see Figure 1) and between the muscles make
their boundaries challenging to demarcate. This may be fur-
ther complicated by unconscious movements of the patient
(e.g., swallowing and breathing) during the MR scanning
process, which can deteriorate the image quality. Since, to the
best of our knowledge, there is no registration algorithm that
has been developed for 3D-3D registration between neck
volumes, it is essential to develop such an algorithm.

Intra-muscular fat

FIGURE 1. Neck magnetic resonance imaging. (a) Composite form
exhibiting anatomical variability between two individuals overlaid in
green and magenta color bands. The gray regions exhibit where both
images have the same intensities. The intensities are different in the
green and magenta regions. (b) Zoomed in form showing false boundary
due to intra-muscular fat.

Registration methods generally attempt to find a global
minimum and avoid local ones, but cannot avoid all local
minimums due to the many that are classified as small-scale
dips and large-scale basins [10]. Escaping from basins
is vital as they yield large mis-registrations and usually
occur in large initial mismatch scenarios. Conversely, dips
yield small mis-registrations occurring in small mismatch
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scenarios and occur more often. Neck medical data con-
tain both scenarios discussed above. Conventional multi
resolution-based registration methods [11]-[14] cannot avoid
basins and dips completely due to the lower available
degree of freedom of geometrical transformation and the
monotonous types of transformations in multiple stages.
Information theoretic-based methods have been widely used
for 3D-3D medical image registration [15]-[17]. How-
ever, global information theoretic-based methods are less
sensitive to local deformation and often encounter the
mis-correspondences problem due to the lack of dis-
tinctiveness of the similarity measure (SM). Due to the
compactness and similar appearance of neck muscles,
the problem of mis-correspondences is more acute in neck
data. Further, local information theoretic-based methods
are computationally expensive and face statistical insta-
bility problems. In addition, information theoretic-based
methods ignore anatomical information, which is crucial
for guiding correspondence detection and registration. The
feature-based registration methods establish correspondence
through high-order anatomical information [18]. However,
some features are often partially invariant in images with a
different appearance, which is common in clinical applica-
tions. Some descriptor-type features show distinctive char-
acteristics; nevertheless, its performance faces challenges in
scenarios involving large anatomical variation.

Our proposed work develops a coarse-to-fine 3D-3D reg-
istration approach for dealing with the neck’s high level of
variability. It uses a hybrid registration framework divided
into coarse and fine mismatch correction sections to handle
the basins and dips, respectively, and exploits the diffeomor-
phic Demons algorithm in its last stage to boost alignment.
The coarse and fine sections reduce the chances of becoming
stuck in basins and dips, respectively, the latter through its
double-pushing system. This method makes the following
four key contributions:

o In our multistage framework, multiple 3D transforma-
tions at the coarse level are used in multiple stages
for large mismatches, which are usually of different
types. Therefore, they can push basins from different
directions with greater angle differences, as opposed to
similar transformations in conventional multi resolution
methods, thereby reducing the chance of becoming stuck
in basins.

« A novel discrete periodic spline wavelet (DPSW)-based
3D transformation, which requires fewer parameters
than the free-form-deformation (FFD) one but has simi-
lar benefits, is developed in the coarse section. It reduces
the burden of optimization and provides variations at the
global level with no stretching or shrinking effect, unlike
adiscrete cosine (DC), which is popular in video coding.

o The framework incorporates a new SM called edge
position difference (EPD), which uses our modified 3D
Chamfer distance transform algorithm. Since it uses the
edges of an object, it provides an opportunity to tune
through multiple stages using different sets of edges.
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It aligns the neck’s trunk using the same set of strong
edges in the multistage coarse section and, gradually,
incorporates the weaker ones for the muscles and other
small objects in the fine section. It can do object-wise
alignment through multiple transformations, whereas
traditional multi resolution methods use SM methods
that are incapable of object-wise alignment.

o A double-pushing system is designed for the fine
section to reduce the chance of becoming stuck in
dips, which occur more often than basins, whereas a
single-pushing system is used in most multi resolution
methods. The double-pushing system yields small defor-
mations formed through changing the number of edges
of the EPD and the resolution levels of the transforma-
tion, rather than changing only the latter, as in traditional
multi resolution techniques.

The EPD, mutual information (MI) and sum of squared
difference (SSD) SMs are compared using the affine transfor-
mation and the EPD achieves good accuracy for our clinical
dataset. Additionally, our proposed method is compared with
the diffeomorphic Demons [19] and SyN [20] algorithms,
which are state-of-the-art registration approaches, and out-
performs various other non-rigid registration algorithms [21].
We compute the volumetric dice similarity coefficient (DSC)
in our real clinical 3D MRI dataset using the proposed, dif-
feomorphic Demons and SyN methods, with the proposed
method achieving a substantial improvement in accuracy.

The rest of this article is organized as follows. Related
work is discussed in Section II, we describe details of
our deformable 3D-3D registration method in Section III,
Section IV presents the experimental procedure and results,
and Section V and Section VI provide a discussion and con-
clusion, respectively.

Il. RELATED WORK

Image registration [22]-[24] is a basic image-processing
technique whereby two or more images are aligned by keep-
ing one stationary (called a fixed image) and moving another
(called a moving image) towards it [18]. It comprises a geo-
metrical transformation, similarity measure and optimization,
with 3D-2D registration currently being developed commer-
cially and rigid registration [25] practically available [26].
Inter-subject registration (ISR) in 3D, a kind of deformable
image registration [27], is a key challenge due to anatom-
ical variability [26] preventing uniformity. Although much
work on 3D-3D ISR has been conducted in the last two
decades, mainly on brain images, its accuracy is not clinically
acceptable, with specialists considering that further research
must yet be undertaken [26], [28]. Moreover, 3D-3D ISR
often faces some problems compared to 2D-2D registration.
First, the optimization becomes difficult as more parameters
are required for geometrical transformation. Second, more
dips and basins are required to handle higher-dimensional
space. Third, the computational cost becomes expensive.
Finally, the SM faces discontinuity in intensity problems
along out of plane, since most medical imaging modalities
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keep spacing between the slices. Most studies on 3D-3D ISR
have focused on optimization [13], [21], [29], local regular-
ization [30], [31], multi resolution FFD [11], [12] and the
application of the diffeomorphic log-demons algorithm [32],
[33] to 3D-3D ISR. The most recently developed compet-
itive registration algorithms are the multi resolution FFD
and diffeomorphic log-demons approaches. Hua et al. [11]
proposed a 3D-3D deformable registration for handling dis-
continuities by adding extra degrees of freedom to a multi
resolution framework using a parameter up-sampling method
that required segmenting a target image to determine dis-
continuities and allowing more time to optimize additional
parameters. Sun ef al. [34] proposed a random perturbation
technique for a multi resolution nonlinear registration frame-
work for 3D-3D and 2D-2D applications using a lower-order
B-spline, retaining the same smoothness as a higher-order
spline to reduce the execution time. However, in terms of
accuracy, it could not perform well in other clinical applica-
tions. Sun et al. [35] proposed another 3D-3D simultaneous
multi resolution strategy in which different resolutions of the
spline and data were used together to improve performance,
but their method was dependent on a parameter whose value
varies for different applications.

Overall, conventional multi resolution methods use only
the coarse resolution levels of a transformation to resolve
large mismatches. These are not sufficient to achieve proper
correction, since, when the optimization process is stuck in a
basin, to escape easily, it must be pushed in a specific direc-
tion depending on the particular basin. However, consecutive
resolution levels in multiple stages of multi resolution meth-
ods have almost the same characteristics with different direc-
tions and small variations in angle but are considered different
transformations. Therefore, consecutive coarse levels may
not thrust in the required direction for some basins because
of their small angle variations. Large angle variations among
multiple transformations in multiple stages may be required
so that a transformation can push basins in the appropriate
directions. The optimization process will not face any diffi-
culty to determine the optimal direction because the multiple
transformations are not applied simultaneously rather they
are applied consecutively as each stage of the algorithm is
performed. Therefore, as traditional multi resolution methods
cannot push in the required direction for some basins, they are
unable to avoid all the basins. Further, these methods try to
tackle small mismatches, which cause dips more frequently,
by changing only the fine resolution levels of a transformation
in multiple stages with the same SM and optimization, and are
thus incapable of eliminating all of them.

Feature-based registration methods have great effects
in 3D-3D ISR due to their use of anatomical information,
which helps to find correspondence detection effectively.
There are many types of features in the registration liter-
ature, such as histogram of oriented gradient (HOG) [36],
gradient location and orientation histograms (GLOH) [37],
scale-invariant feature transform (SIFT) [38] and speeded up
robust features (SURF) [39]. The gradient information-based
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FIGURE 2. Proposed hybrid registration framework in which gradient descent (GD) and Gauss-Newton gradient descent (GNGD) optimization techniques
are used. The same set of edges is used in the coarse section by the different registration stages. Different sets of edges are used in the fine section by
the different stages. The geometrical transformations are separable (not composite), since each stage takes input from the previous stage. The labels
Affine-EPD, DPSW-EPD, Coarse-EPD and Fine-EPD are used to describe the experimental results in Section IV.

features are partially invariant [18], which causes mis-
registration. The SIFT and SURF methods require the same
features to be detectable in both fixed and moving images,
which is not possible in neck MRI data as the muscles are
very compact and images are obtained with different acqui-
sition protocols. In fact, SIFT and SURF are more suitable
for natural image analysis than medical image analysis. The
RANdom SAmple Consensus (RANSAC) algorithm is often
used in conjunction with feature-based registration methods
to filter out excellent matches. For example, Kahaki ez al. [40]
proposed a local intensity maxima feature-based registration
method for in vivo time lapse microscopy images. They
used a two-step feature matching procedure in which fea-
tures are initially matched coarsely and then the matching
features are refined through RANSAC. The iterative closest
point (ICP) algorithm is a popular method in shape registra-
tion [41]-[43], which has high accuracy for point set regis-
tration. A 3D Canny edge-based objective function is used
in medical image registration for pose estimation and shape
reconstruction [44], multi-modal geometric matching [45]
and respiratory motion correction [46]. A self-similarities-
based feature called a modality-independent neighborhood
descriptor (MIND) [47] was proposed to provide distinc-
tive correspondences in objective function by incorporating
neighborhood pixels’ information. It showed better results
in cases of similar local structural patterns in small regions
than other SMs. However, its performance can be challenged
in cases of large local anatomical variation. Further, it can-
not hide the influence of contrast enhancement and embeds
unwanted information.

1Il. DEFORMABLE 3D-3D REGISTRATION MODEL

A. OVERVIEW

A diagram of the operational flow of the proposed hybrid
registration framework is displayed in Figure 2. As a
pre-processing step, all the original fixed and moving MRI
volumes are trimmed and interpolated to volumes of 128 x
128 x 128 voxels, since they contain some unwanted infor-
mation. The volume of interest is selected as the volume
between the C1 and C7 vertebral levels, which represent the
top and bottom vertebrae of the neck and are the landmarks
most commonly used to assess muscle morphometry [7].
The processed volumes are then manually delineated to
obtain the ground truths, as discussed in detail in Section IV.
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The framework is divided into coarse and fine sections.
All the geometrical transformations at the different stages
in Figure 2 are separable, since each stage uses the registered
moving volume of the prior stage as its moving volume and
the same fixed volume used by the prior stage as its fixed
volume. Thus, the transformations are obtained separately
from the framework. To describe our experimental results
in Section IV, we have assigned the following labels for
different stages of the algorithm: Affine-EPD, DPSW-EPD,
Coarse-EPD and Fine-EPD.

1) COARSE SECTION

All the stages in this section use the same strong edges of
the MRI volumes to align the neck’s trunk and the bound-
aries of other large objects. In each stage, the geometrical
transformation is changed to avoid basins and, importantly,
obtain a good alignment. Other elements, such as the SM or
optimization method, could also be changed in each stage.
A local minimum is considered for a specific combination of
the transformation, SM and optimization. We use the affine,
the DPSW and the coarsest level of the FFD as transforma-
tions to combat basins. Therefore, multiple transformations
can attack the optimization from different directions using
large angle variations to pull out from basins.

2) FINE SECTION

In this section, five stages are used to obtain fine deforma-
tions. This section helps to reduce the chance of the opti-
mization algorithm converging to a dip. As dips occur more
frequently than basins and could cause the optimization to be
stuck at any stage, we have designed a double pushing system
to combat dips. The double pushing system is implemented
by changing the transformation and SM simultaneously at
every stage. The transformation change is performed by using
different levels of the spline in the FFD. The SM change
is accomplished by using the attributes of the EPD which
allow different sets of edges to indicate different ranges of
values. Different sets of edges for specific volume pairs are
used for different stages. These sets of edges are changed
gradually from strong to weak. The strong edges are a subset
of the set of weaker edges. The first four stages in this
section use coarse to fine levels of the spline for the FFD
with corresponding different sets of strong to weak edges,
respectively. The fine deformations are achieved by using the
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weak sets of edges and the fine levels of the spline. The strong
sets of edges and the coarse levels of the spline are used to
correct coarse deformations. The gradual change protects the
framework against mis-correspondences. Finally, we apply
the Demons algorithm [19], [48] in the fifth stage of the fine
section to correct more fine mismatches. Actually, the stages
before Demons bring the moving volume closer to the fixed
volume which helps Demons to align more effectively than
when only using the Demons method.

B. GEOMETRICAL TRANSFORMATION

The choice of transformation has a large effect on the regis-
tration process [49], with the most appropriate one not known
as a prior [50]. In the registration process, the transforma-
tion parameters are estimated using an optimization tech-
nique, with the number of them referring to the deformation’s
degrees of freedom. In our application, the registration needs
to be performed between the MRI volumes of two different
individuals’ necks; this cannot be achieved using only an
affine or rigid transformation because both have a limited
number of parameters. Therefore, an elastic transformation
with a higher degree of freedom is required to tackle the
morphological complexity and variability of the population.
However, to deal with the neck’s variability, we use a mix-
ture of affine, DPSW and FFD transformations to align the
neck’s trunk first by exploiting the advantages of the EPD.
The same strong edges that correspond mainly to the neck’s
trunk are used to correct a coarse mismatch with a different
transformation. This is because a good deformation cannot be
achieved through a single transformation.

In this study, considering F(x,y,z) and I(x’,y,7) as
fixed and moving volumes, respectively, their coordinates are
involved in elastic registration as follows:

P/3
X =xi+ Y migr(xiyi. 20)
k=1
2P/3
yi=yi+ Z My (X, Vi, Zi)
k=P/3+1
P
d=zu+ Y. mg(xi iz (1
k=2P/3+1

where my, are the motion parameters, k is the parameter index,
P is the total number of motion parameters and ¢y is the basis
functions for the complex mapping, given as:

ok (Xi, Yis 2i) = Or+py3(Xis Yin 20) = Qrv2p3(0, Yin 2). - (2)

There are many types of basis functions in the litera-
ture, including polynomial, Fourier, radial, B-spline, DC and
wavelet. Of these, the Fourier, B-spline and wavelet func-
tions support a multi resolution decomposition that provides
a coarse-to-fine representation of the displacement field.
Hence, these basis functions are usually used in medical
image registration. However, wavelet basis functions can
achieve a local deformation more effectively than Fourier
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basis functions due to its localization in both the frequency
and spatial domains [51]. The DPSW and FFD transforma-
tions will be described in Section III-B1 and Section I1I-B2.

1) DISCRETE PERIODIC SPLINE WAVELET
We use the Cai-Wang [52] wavelet, which is compactly sup-
ported, in our DPSW-based basis functions and a fourth-order
B-spline as a scaling function. The wavelet is arranged in a
periodical form with the center of the main lobe translated to
a coordinate origin.

The fourth-order B-spline is defined as:

1< (4
OE: ijo <a><—1)“<x —ay} 3)
where, for any integer (n):

{x" ifx >0 @

n
X = .
0  otherwise.

Then, the spline wavelet is:

-3 12 3
Yx) = 7¢(2x) + 7¢(2x -1 - ;¢(2x -2).
The DPSW-based basis functions are:

Ok (Xis Yis 2i) = Pr+p/3(Xi» Vi 2) = Qk+2p/3(Xi, Yi» Zi)
= Y ()P v (zw) (6)

where k = 2su+sv+w+ L, u,v,w=0,1,2,--- ;s — 1,
§ = C/g and ¥, () is the DPSW.

The supports are 4 and 3 for the spline and spline wavelet
respectively, as shown in Figure 3, with the periodic spline
wavelet generated by considering the wavelet as one period.
Our 3D basis functions are generated from the fifth resolu-
tion of the wavelet using a point-to-point multiplication of
the 1D functions, whereas the FFD uses a tensor product
of the 1D non-periodic third-order spline to generate basis
functions. The DPSW-based transformation requires fewer
parameters than the spline or B-spline-based wavelets to
represent local deformations. Specifically, one basis func-
tion in the DPSW can represent local deformations over an
entire image, whereas the B-spline or spline wavelet cannot,
since they require more parameters to represent the same
level of local deformation for a whole image, which places
a burden on the optimization process. In particular, for a
128 x 128 x 128 image, a B-spline-based transformation
requires 15, 27 and 51 parameters for the fifth, fourth and
third resolutions, respectively, while the DPSW uses only
24 parameters for all resolutions. Although DC-based basis
functions can obtain local deformations over an entire image
and are widely popular in video and various image-processing
applications [53], they cause shrinking and stretching in sev-
eral parts of the image. There are two reasons for these effects.
First, the parameterizations in the available DC-based basis
functions do not use the full cycle of a cosine wave within a
cubical image support, whereas we use multiple cycles of the
periodical spline wavelet in the DPSW-based basis functions,
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FIGURE 3. (a) 1D B-spline and (b) spline wavelet. The supports of the
B-spline and spline wavelet are 4 and 3, respectively.

which have greater variations in values, as shown in Figure 4.
We also perform registrations using the DPSW and DC on
the 3D MRI volumes shown in Figure 5 and obtain stretching
effects in the latter’s results. Second, there is a lower span
in the negative lobe of the spline wavelet with regularization
when compared to the cosine one.

Cosine Wave Dilated Periodic Spline Wavelet

0.6 0.8
0.6
0 0.4

04 02
0

-1 -0.2
0 20 40 60 80 100 120 0 20 40 60 80 100 120
X X

(a) (b)

FIGURE 4. (a) 1D cosine and (b) periodic spline wavelet within an image
support of 128 x 128 x 128. Basis functions in discrete cosine

ok, i zj) = cos ((ZXiz‘;)nu cos (ZYi;',J)nv (Zzi-zi—ll))nw
In discrete periodic spline wavelet, o (x;, y;, zj) = ¥ (xu)¥; (yv) ¥ (zw),

where M, N and O are the volumetric image’s dimensions. The wave and
wavelet are at the coarsest scale resolution level for the image support.

2) FREE FORM DEFORMATION

We use the fourth-order B-spline defined in (3) in the
FFD-based basis functions to obtain smoother local deforma-
tions than those in the traditional FFD using the third-order
B-spline, with the basis functions:

L ' Nj/2 ' _
gr(x) =Y 27 Y d@x —12)
=R t=—N;/2

N; = 27N = 277 (Ny, N,N;)
1= (t)n tya tZ)s X = (xv ys Z) (7)

where ¢ is the translation index, j is the resolution level, R
is the starting resolution level, L is the maximum resolution
level and ®() is the basis functions. As L depends on the
volume’s size, the number of parameters for a resolution level
is 27N + 1) x 3if N = Ny = N, = N, and the 3D basis
functions use the tensor product of the 1D spline, given by:

® =2 7x — 1:2)p27y — 1,202z — 1.2).  (8)
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FIGURE 5. Registration results for two magnetic resonance imaging
volumes using discrete cosine- and discrete periodic spline wavelet-based
basis functions, showing a stretching effect in one slice of the former. The
edges of the fixed image are superimposed in red over the unregistered
and registered moving images. The registration is performed in 3D-3D,
but the results are shown in 2D by taking one image from the 3D volume.

C. EPD SIMILARITY MEASURE

As the SM is another significant part of the registration
process, in our method, a new measure called the EPD is
leveraged in our coarse-to-fine registration framework to
accomplish alignments in both the coarse and fine levels.
This measure is based on the hierarchical Chamfer match-
ing algorithm [54] and determines the distance between the
corresponding edges in two images. The EPD is not exactly
the same as root mean square (RMS), Euclidean distance or
closest distance which are commonly used in shape matching.
First, the EPD uses the arithmetic mean of Chamfer values
of the moving image at the position of edges in the fixed
image. Second, the Chamfer distance uses an approxima-
tion of the Euclidean distance to calculate distance from
a pixel to the nearest edge. Third, the edge points of the
fixed image may map to Chamfer values which may cor-
respond to different edges other than the edge in the fixed
image. One of the most popular intensity-based SMs in the
literature is the MI measure. However, it is not suitable for
neck MRI datasets in which multiple muscles are near each
other and have similar compositions, with large deforma-
tions between subjects. Therefore, using a Ml-based SM
causes mis-registrations between MRI volumes. Conversely,
the EPD is a feature-based SM that uses the edges of the
muscles and the neck’s trunk. In this registration technique,
every edge pixel in a moving image contributes to a regis-
tration error with a value proportional to the distance to its
closest edge in the reference image. Therefore, the edges of
overlapping images are attracted to each other, which leads
the EPD SM to have better registration accuracy than the
MI measure, as justified in Section IV-C. Moreover, the EPD
supports coarse-to-fine tuning because it uses edges that are
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controllable by selecting their detection thresholds. Conse-
quently, since it is more suitable than the MI, this new SM is
used in our proposed framework.

To calculate the EPD, first, edge volumes of the moving /
and fixed F volumes (E7 and EF, respectively) are calculated
using a canny edge detector, with a value of 1 corresponding
to an edge; otherwise, the value is 0. We can select strong
or weak edges by choosing thresholds in the canny edge
detector, which assists in designing a double-pushing system
for combating dips in the fine section of the registration
framework. Then, the locations of the edges (8) in EFr are
calculated and the distance transform volume (C) from Ej is
determined using the 3D Chamfer distance transform method.
This transform is an approximation of the Euclidean dis-
tance transform, in which each value of a voxel represents
a distance to the closest edge in the edge volume. Finally,
the EPD §, which is the arithmetic mean of the values of the
voxels in the B positions, is calculated as:

1
Somy =2 Y C&'y.2) ©)

(x,y,2)eB

where T is the total number of edge voxels in 8, 3 is used to
compensate local distance in the Chamfer distance.

Figure 6 presents an example of a MRI slice with its corre-
sponding edge image and the latter’s Chamfer distance image,
obtained from a 3D MRI volume using the 3D Chamfer
distance algorithm with local distances of d| = 3,d>, = 4
and dz = 5 [55]. However, if there are no edges in some
consecutive slices of a 3D volume or some local 3D regions
of it, infinity remains in the border voxels of the cubical sup-
port. Therefore, we modify the original 3D Chamfer distance
transform algorithm, as described below.

(a) (b) (c)

FIGURE 6. (a) Magnetic resonance imaging slice. (b) Edge image of (a).
(c) Chamfer distance image of (b). The binary and Chamfer distance
images are calculated for 3D image but the results are shown in 2D.

1) MODIFIED THREE-DIMENSIONAL CHAMFER DISTANCE
TRANSFORM ALGORITHM

To tackle the problem mentioned above regarding the bound-
ary voxels, we use two forward and two backward passes
rather than only two passes as in the original algorithm. The
new algorithm handles the other voxels similarly to those
in the original algorithm. We process the boundary voxels
of the last and first slices separately in the first forward
and backward passes, respectively. The masks of the origi-
nal algorithm are changed according to the positions of the
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boundary voxels and are used in our algorithm, with Figure 7
(a) showing their modified positions and Figure 7 (b) showing
the modified mask for special condition 3. There are five
special conditions in the first forward and backward passes,
and four in the second ones. The framework is summarized
in Algorithm 1.

| 2" Forward for second to last slice ‘
1 al A

4
S VA

1* Forward for last slice |«

17/ 16/

YO ) s T ey
\ 2" Backward for (O-1) to 1* slice \ T ‘\ 1%t Backward for first slice \
(@)
Forward
+d2 | +d1 ‘+d1’ 0 ‘
+d3 +d2

For special condition 3

(b)

FIGURE 7. (a) Auxiliary schematic diagram for modified 3D Chamfer
distance algorithm (voxels of the same color use the same mask modified
from the original [55], with O slices in volume and each red number
meaning a special condition corresponding to the modified mask).

(b) Mask for special condition 3 of (a). The masks are used during
traversing for the specified slices in the text boxes.

D. TRANSFORMATION PARAMETERS OPTIMIZATION
Optimizing a registration is considered ill posed and is actu-
ally a multidimensional problem that maximizes or mini-
mizes the SM with respect to the transformation param-
eters. Generally, optimization methods for medical image
registration are classified into three categories: continuous,
discrete and miscellaneous. The first category includes GD,
conjugate gradient, Powell’s conjugate directions, quasi-
Newton, Gauss-Newton (GN), Levenberg-Marquardt and
stochastic GD approaches, the second includes graph-based,
belief propagation and linear programming techniques and
the third includes greedy and evolutionary algorithms. The
Powell’s conjugate directions and stochastic GD methods
have been applied for transformations with low degrees
of freedom [49], while evolutionary algorithms, which are
used mainly in linear registration, have shown slow con-
vergence. Hence, GN and GD approaches have been used
in many medical image registration approaches. In our
application of mono modal registration, the GNGD method
is used because the EPD involves summing the function
values.

The optimization procedure required to find my is
described as follows:

— —0. (10)
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Algorithm 1 Modified 3D Chamfer Distance Transformation
Input £;, Q.
Output C.
1: Initialize dy = 3,d» = 4 and d3 = 5, obtain dimensions
M, N and O from E; and pre-allocate output matrix (C)
with the same dimensions as E; by zeros.

2: forr=1:0do
33 forp=1:Mdo
4: forg=1:Ndo
5: Update C by Q where the value of Ej is zero, and
by zero otherwise.
6: end for
7:  end for
8: end for
9: forr =2:0do
10. forp=2:Mdo
11: forg=2:N do
12: if p <M A q < N then
13: Update C according to forward mask in Fig-
ure 17 in [55].
14: else if r = O then
15: forp=1:Mdo
16: forg=1:N do
17: ifp=1A¢g=1then
18: Update C according to the first special
condition in Figure 7.
19: elseifp=1A1 < g < N then
20: Update C according to the second spe-
cial condition in Figure 7.
21: elseifp =1 A g = N then
22: Update C according to the third special
condition in Figure 7.
23: elseif ] <p <M A g =1 then
24: Update C according to the fourth spe-
cial condition in Figure 7.
25: elseif p = M A g = 1 then
26: Update C according to the fifth special
condition in Figure 7.
27: end if
28: end for
29: end for
30: end if
31: end for
32:  end for
33: end for

34: forr=0—1:1do

35:. forp=M—1:1do

36: forq=N—-1:1do

37: Update C as first forward pass using backward
mask in Figure 17 in [55] and special condi-
tions 6, 7, 8, 9 and 10 in Figure 7 for the first
slice.

38: end for

39:  end for

40: end for

41: Return C
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To minimize S, it is necessary to estimate its values in a
small neighborhood of my, as:

0
—S(m + Am) =0 (11)
dmy,

where Am is a vector added to my in each iteration.
The value of Am is determined using the first-order Taylor
series approximation, as:

0
——[S(m) + ' Om)am| =0
omy
= VS(my) + V2S(mp)Am = 0
-1
= Am = —VS(mk)(VzS(mk)) . (12)
The VS(my) is calculated as:
as ax’  3S 3y aS 97
VS(me) = o o g 2
ox’ dmy 0y Omy 97 Imy
aC ax’ aC 3y’ aC 37
=Z<—/ t it g ) (13)
3 ox' omy 9y Omy 07 Omy
where %, 3—5 and % are the spatial gradients of C, while
%, % and % are obtained from corresponding transfor-

mation basis functions (¢ ) in equations (6) and (7).
The Hessian matrix V2 S(my) in equation (12) is defined
in the GN optimization technique as:

VES(my) = J(mi)J (mi)" (14)
where J(my,) is the Jacobian of C(x', ', 7'), calculated as:
aC(',y', 7))

, for (x',y,7)eB (15)
anmy

Jb,c(mk) =

where b is the parameter indices and c is the position index
of B. Finally, we obtain the vector Am from equation (12),
which is used to update the transformation parameters as
follows:

mtt = mh + Am. (16)

As most of the elements in the fine resolution’s basis func-
tions are zero in the FFD transformation, most of those in the
Hessian matrix become zero, since this matrix is calculated
by multiplying the spatial gradients of C and basis functions
in the B positions, making it impossible to invert the matrix.
Therefore, we omit this matrix in the FFD transformation,
which changes the optimization to a GD method.

IV. EXPERIMENTAL PROCEDURE AND RESULT ANALYSIS
A. DATA AND ANNOTATIONS

Our experiments were performed on neck MR images as part
of a larger study of neck pain undertaken at the Australian
National University (ANU) Medical School. The study had
ethics approval from the Human Research Ethics Committees
of the ANU and Australian Capital Territory Health, with
written informed consent from all participants. T1 SE axial
spin echo MR images with voxel spacings of 0.8594 mm x
0.8594 mm x 4 mm and sizes of 256 x 256 x 45 were acquired
using a 3 Tesla Skyra scanner (Siemens, Erlangen, Germany)
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and then cropped and interpolated to 128 x 128 x 128. Data
from 11 participants collected at different times using differ-
ent MRI machine settings were used in our experiments. The
participants’ demographics and the MR sequence parameters
for each scan are shown in Table 1.

TABLE 1. Demographic data and magnetic resonance imaging scanner
parameters.

Patient Age Weight Height Repetition Echo Acquisition
index (years) (kg) (m) time (s) time (s) date (yyyymmdd)
PT-1 29 57 1.61 746 15 20140106
PT-2 19 59 1.65 737 15 20141216
PT-3 25 57 1.67 827 15 20131217
PT-4 20 56 1.55 750 15 20141212
PT-5 32 59 1.64 766 15 20141202
PT-6 23 45 1.60 827 15 20140922
PT-7 23 61 1.72 827 15 20141113
PT-8 27 61 1.62 827 15 20141124
PT-9 24 75 1.75 949 15 20140120
PT-10 27 57 1.65 777 15 20141201
PT-11 32 43 1.50 827 15 20141209

An ANU graduate-entry medical student with a degree in
anatomy manually delineated the right and left sternoclei-
domastoid, semispinalis capitis and splenius capitis muscles
between the C1 and C7 vertebral levels. These segmentations
were validated and edited by two medical experts from the
ANU Medical School and Canberra Hospital. A MATLAB
graphical user interface developed by our team for segmenta-
tion could use as many vertices as necessary to capture small
details of the contours of these muscles. The contours of a
slice from an MRI volume are shown in Figure 8.

Muscle 1 Muscle 2

Muscle 3 Muscle 4

Muscle 5 Muscle 6

FIGURE 8. Annotated contours of an axial magnetic resonance image.
Different colors are used for each separate muscle due to annotation
convenience; however, the same color is used for symmetric muscles.

B. EVALUATION METRIC

To evaluate our registration results, we used the DSC due
to its popularity in medical image research. The DSC is
expressed as:

21gNs|
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where g is the annotation contour and s is the transformed
contour, with the volumetric DSC for each muscle calculated
separately.

C. NUMERICAL RESULTS ANALYSIS

We performed experiments on a HP z230 tower worksta-
tion with a 16 GB RAM and 3.40 GHz Intel(R) Core(TM)
17-4770 processor running the Windows 7 operating sys-
tem using MATLAB, and C and C++ MEX programming.
A canny edge detector with sigma 1.5 was used to calculate
the edge image for the EPD similarity measure. The lower and
higher thresholds pairs 0.1, 0.9; 0.08, 0.7; 0.04, 0.4;0.01, 0.2
and 0.001, 0.1 were selected in the 5, 4%, 3 2nd apg 15t
resolution levels of the FFD registration respectively. The
threshold pair 0.1, 0.9 was also used with affine and DPSW
registrations.

1) COMPARISON OF EPD, MI AND SSD SIMILARITY
MEASURES

We performed affine EPD, affine MI and affine SSD registra-
tions on our dataset to compare the EPD, MI and SSD simi-
larity measures. The affine MI registrations were performed
using advanced normalization tools (ANTSs). For each fixed
patient, the other 10 patients were considered moving, giving
atotal of 11 x 10 = 110 cases (registrations). Table 2 shows
the experimental results obtained for affine registrations-that
is, the DSC values for 10 of the 110 cases for the six mus-
cles in which PT-1’s volume was considered fixed and the
others moving. Similar tables were constructed for the other
patients. The bold values, which represent the highest DSC
in each column, indicate that the EPD has the highest DSC
in eight cases and the MI and SSD each in only one. It is
also clear that the PT-2 case has the lowest best value, with
best DSCs for the EPD, MI and SSD of 0.8179, 0.7845,
and 0.6735 respectively. Overall, the EPD achieved better
accuracy than the MI and SSD.

Table 3 shows the mean and overall mean DSCs for all
the fixed volumes of the affine registration. The last column
represents the final means of the 110 cases and the last three
rows display the means of 10 cases when considering the
other 10 patients as moving. The table indicates that the EPD
has better registration accuracy than the MI and SSD for
the nine patients, and SSD has better accuracy than EPD
and MI for the two patients, EPD achieving a final DSC
of 0.5477, significantly better than the MI’s 0.2609 and the
SSD’s 0.5188. This large difference in DSC values proves
that the MI similarity measure is not suitable for our dataset
and, therefore, for our coarse-to-fine framework. Although
the accuracy of SSD is close to that of EPD, it can not provide
object-wise alignment. Therefore, we have selected EPD as
the similarity measure for our proposed method. Although
the volumetric DSCs for EPD are better than for the other
methods, its values are not in the excellent range because
strong edges were used to align the volumes coarsely. The
coarse alignment is further refined through the latter multiple
stages in our proposed method. These results are obtained
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TABLE 2. Results obtained for the edge proposition difference (EPD), mutual information (Ml) and sum of squared difference (SSD) measures from the
affine registration experiments in terms of volumetric dice similarity coefficient (DSC) (DSC values for patient-1 [PT-1] fixed and others considered
moving; left and right sternocleidomastoid, left and right semispinalis capitis, and left and right splenius capitis muscles denoted as Muscles 1, 2, 3, 4,
5 and 6, respectively, where higher values indicate better performances, with maximum value 1, and best DSC in each column marked in bold).

Patient Index

Muscles Methods
PT-2 PT-3 PT-4 PT-5 PT-6 PT-7 PT-8 PT-9 PT-10 PT-11
EPD 0.6065 0.7807 0.6460 0.6302 0.6052 0.7394 0.6736 04837 0.6719 0.4375
Muscle-1  MI 0.1164  0.2530 0.1558  0.4991 0.0000 0.1648 0.0374 0.2903  0.6577 0.2877
SSD 0.4402 0.6611 0.4899 0.6667 0.4147 0.5345 0.5122 0.5044 0.5696  0.5597
EPD 0.6677 0.6917 0.6869 0.6477 0.5771 0.6315 0.7034 0.4408 0.4446 0.5067
Muscle-2  MI 0.2782 03932 04868 0.4466 0.0620 0.5772 0.2519 0.1406 0.1889  0.3623
SSD 0.5315 0.5892 0.6216 0.3935 0.0557 0.1850 0.1438 04108 0.2115 0.1518
EPD 0.6566  0.7023  0.6408 0.6883 0.6687 0.5482 0.5142 04342 0.5483  0.7090
Muscle-3  MI 0.2801 0.3503 0.3942 0.4633 0.0246 0.5589 0.3559 04906 0.5248 0.3192
SSD 0.6094  0.6444 0.5412 0.6545 0.5705 0.5786 0.5344  0.3541 0.5076  0.6350
EPD 0.6530 0.8179 0.8127 0.7368 0.7407 0.5065 0.7731 0.7850 0.7163  0.6897
Muscle-4  MI 0.1734  0.0951 0.5216  0.1663  0.0367 0.0716  0.0227 0.3761 0.6859 0.0316
SSD 0.6291 0.7201 0.7415 0.6476  0.4828 0.6871 0.3924 0.7843 0.5742 0.7063
EPD 0.5957 0.6485 0.7734  0.6030 0.6659 0.5480 0.4160 0.5483 0.3643 0.6128
Muscle-5 MI 0.3895 0.1673 0.5672  0.1929  0.0201 0.7845 0.5572 0.2099 0.4460 0.0149
SSD 0.6735 0.5573 0.5804 0.6017 0.5458 0.5497 0.5629 0.3798 0.4132 0.5171
EPD 0.5715  0.6392 0.6899 0.7135 0.6785 0.6094 0.6098 0.6559 0.6488  0.5939
Muscle-6  MI 0.2454  0.0000 0.3181 0.0515 0.0028 0.0789  0.0000 0.1309 0.6678  0.0000
SSD 0.6221 0.3390 0.5980 0.5914 0.5183  0.6797 0.3375 0.5769 0.5769 0.6169
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FIGURE 9. Comparison of performances of the edge proposition difference (EPD), mutual information (MI) and sum of squared difference (SSD)
similarity measures from the affine registration experiments. (a) Registration accuracies of 110 cases for each muscle (higher volumetric dice
similarity coefficient [DSC] values are better). (b) Registration accuracies of 110 cases x 6 muscles = 660 DSCs for all muscles combined. The 110 cases
are assessed by considering all other patients’ images as moving and a specific patient’s image as fixed for the total 11 patients in our neck dataset.

using only the single stage "Affine-EPD" from our proposed
framework. The EPD yields mediocre results in some circum-
stances such as PT-11. There could be two possible reasons.
First, the patient is demographically and anatomically more
different than the other patients. Second, there may be some
noise or intensity inhomogeneity problems. These problems
can be eliminated by using our proposed complete frame-
work.

To investigate further, we used a box plot to statistically
analyze our experiments. Figure 9 exhibits the registration
accuracies obtained by the EPD, MI and SSD for each muscle
separately (see Figure 9(a)) and combined (see Figure 9(b)).
Figure 9(a) indicates that the EPD has better median DSCs
than the MI and SSD for four muscles, and the SSD is better
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for the other two muscles. In addition, the maximum DSCs
for EPD are higher than for the MI and SSD measures for all
muscles except for Muscle-5 when using MI.

Similarly, Figure 9(b) reveals that the EPD has better over-
all median and maximum DSCs for all the muscles com-
bined (0.5866 and 0.8627, respectively) than the MI (0.2430
and 0.8441, respectively) and SSD (0.5484 and 0.8220,
respectively).

2) PERFORMANCE COMPARISON

We used strong and weak sets of edges to obtain coarse and
fine level deformation. Figure 10 shows edge maps and the
corresponding deformation fields for an inter-subject regis-
tration case using strong and weak sets of edges. These maps
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TABLE 3. Results obtained for the edge proposition difference (EPD), mutual information (M1) and sum of squared difference (SSD) from the affine
registration experiments in terms of volumetric dice similarity coefficient (DSC) (mean DSC values for all fixed volumes calculated over all moving ones;
values in first column obtained from Table 2 by taking row-wise mean; bold values indicate better results).

Muscles Methods Patient Index Org;?lu
PT-1 PT-2 PT-3 PT4 PT-5 PT-6 PI-7 PT-8 PT9 PT-10 PT-11

EPD 0.6275 0.5917 0.5074 0.5405 0.5049 0.5302 0.6147 0.5612 0.4828 0.5671 0.2790 0.5279+0.1784
Muscle 1 MI 0.2462 0.3039 0.3120 0.3962 0.2572 0.0872 0.3915 0.3190 0.2117 0.2101 0.3472 0.280240.2242
SSD 0.5353 0.3908 0.5488 0.4130 0.5259 0.4682 0.5321 0.5834 0.4034 0.5340 0.3778 0.483040.1717
EPD 0.5998 0.4415 0.5638 0.4677 0.4632 0.5953 0.4988 0.6455 0.5607 0.5179 0.2945 0.5135+0.2025
Muscle 2 MI 0.3188 0.2760 0.2375 0.3193 0.3174 0.1225 0.2912 0.3964 0.1417 0.1232 0.2607 0.25504+0.2100
SSD 0.3294 0.6381 0.4362 0.5346 0.5474 0.5959 0.5204 0.5360 0.5208 0.4433 0.4228 0.502340.1860
EPD 0.6111 0.6154 0.6963 0.6096 0.6010 0.6399 0.5831 0.6151 0.4905 0.5754 0.3638 0.5819+0.1652
Muscle 3 MI 0.3762 0.2637 0.3370 0.2879 0.2737 0.0422 0.2919 0.3689 0.3842 0.2312 0.3693 0.2933+0.2311
SSD 0.5630 0.4443 0.6250 0.6457 0.5138 0.6146 0.6097 0.5740 0.3737 0.5873 0.6285 0.5618+0.1493
EPD 0.7232 0.5359 0.6593 0.6420 0.5560 0.5701 0.5295 0.6434 0.7401 0.5666 0.3636 0.5936+0.1632
Muscle 4 MI 0.2181 0.3325 0.3179 0.2657 0.4075 0.2111 0.3753 0.4436 0.2464 0.0660 0.2820 0.2878+0.2175
SSD 0.6365 0.5497 0.5745 0.6823 0.5506 0.6335 0.6241 0.5704 0.6172 0.5559 0.6150 0.6009+0.1377
EPD 0.5776 0.5708 0.6270 0.5954 0.5716 0.5504 0.5745 0.4961 0.4823 0.4958 0.3816 0.5385+0.1771
Muscle 5 MI 0.3350 0.2070 0.3469 0.2882 0.2379 0.0460 0.2305 0.3654 0.2789 0.1664 0.2218 0.2476+0.2409
SSD 0.5381 0.3616 0.5057 0.5267 0.5008 0.5777 0.5363 0.4796 0.3715 0.4865 0.5299 0.4922+0.1479
EPD 0.6411 0.5297 0.5596 0.6137 0.6045 0.4046 0.5887 0.5006 0.5841 0.4673 0.3459 0.5309+0.1922
Muscle 6 MI 0.1495 0.2725 0.1831 0.2312 0.3378 0.0857 0.3578 0.2470 0.1900 0.0299 0.1308 0.201440.2185
SSD 0.5457 0.4419 0.3016 0.5025 0.4660 0.4922 0.5285 0.4744 0.4920 0.4183 0.5387 0.4729+0.1548
Overall EPD 0.6300 0.5475 0.6022 0.5781 0.5502 0.5484 0.5649 0.5770 0.5568 0.5317 0.3381 0.5477+0.1820
mV:ai MI 0.2740 0.2759 0.2891 0.2981 0.3052 0.0991 0.3230 0.3567 0.2421 0.1378 0.2686 0.2609+0.2252
SSD 0.5247 0.4711 0.4987 0.5508 0.5174 0.5637 0.5585 0.5363 0.4631 0.5042 0.5188 0.5188+0.1648

(a) (b)

(d)

(©)

FIGURE 10. Axial deformation fields and edge maps of a inter-subject case for different sets of edges using different sets of thresholds with different
resolution levels of the spline: (a) edge map with lower and higher thresholds pair of 0.08 and 0.7, (b) deformation field of (a) using 4! resolution level
of spline, (c) edge map with thresholds pair of 0.04 and 0.4, (d) deformation field of (c) using 37/ resolution level of spline.

illustrate a coarse displacement field for the strong set and a
fine displacement field for the weak set. To evaluate the effec-
tiveness of every stage of our proposed method, we calculated
the volumetric DSC for one of our inter-subject registrations
at every stage. Figure 11 shows the 2D visual results at
different stages of our proposed registration method with a
corresponding volumetric DSC value. It can be seen from
Figure 11(c) that the required deformations are very large
across subjects. Every stage gradually aligns the two images
as indicated by the alignment of the vertebra, muscles and
neck trunk with the superimposed edges. The effectiveness of
some stages is more clearly visible in some other inter-subject
registration cases. The rising trend of volumetric DSC proves
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the effectiveness of every stage in our proposed framework.
Figure 12 shows the corresponding coronal views for the
patient shown in Figure 11. We have not shown the sagittal
views due to anterior information loss caused by inhomo-
geneity problems with the MRI scanner. It exhibits similar
alignment improvement with every stage as in the axial views.
Figure 13 shows the results in terms of muscles contours of
different methods compared with the ground truths. It can
be seen that the proposed method’s contours are more fairly
matched than for the SyN and Demons algorithms.

We compared our full proposed method for the 110
inter-subject cases with Coarse-EPD and Fine-EPD using
volumetric DSC. We excluded other stages for presentation
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(c) DSC = 0.0838 (d) DSC = 0.6218

(e) DSC =0.6631

() DSC = 0.6651

(g) DSC = 0.6764 (h) DSC =0.7782

FIGURE 11. Axial visual results of one of the 110 inter-subject registration cases to show the effectiveness of every stage of the proposed framework,
as shown in Figure 2, in terms of the volumetric DSC value. It should be noted that, although the registration is performed between the two 3D MRI
volumes, the results are illustrated in 2D for presentation convenience. (a) fixed image, (b) moving image before registration, (c) moving image before
registration with superimposed fixed image’s edges; superimposed fixed image’s edges on the moving image after (d) Affine-EPD stage, (e¢) DPSW-EPD
stage, (f) Coarse-EPD stage, (g) Fine-EPD stage and (h) final stage (proposed method).

TABLE 4. Parameter settings for SyN [20] and Demons [19] registrations
in our neck dataset. The SyN and Demons registrations were conducted
through ANTs and MATLAB, respectively. Multistage registrations were
used in the SyN method, in which the rigid, affine and SyN geometrical
transformations used the same smoothing sigmas, shrink factors, and
convergence, except that SyN used different convergence. The metric
CC means cross-correlation.

Parameter SyN [20] Demons [19]
Script antsRegistrationSyN.sh imregdemons.m
Dimension 3 3

Pyramid levels - 3

Iterations - 100x100x100
Transformations ~ Rigid[ 0.1 ], Affine[ 0.1 ] -

Metric MI[E]1,32,Regular,0.25 ] -

Smoothing sigmas 3x2x1x0vox 1

Shrink factors 8x4x2x1 -
Convergence [ 1000x500x250x100,1e-6,10 ] -
Transformation SyN[ 0.1,3,0 ] -

Metric CC[EL1,4] -
Convergence [ 100x70x50x20,1e-6,10 ] -

convenience. We also performed ISR using the diffeomorphic
Demons [19], [48] and SyN [20] methods on our dataset
for the 110 cases. The two methods are powerful and pop-
ular registration algorithms considered as a gold standard
in the deformable registration field. We used ANTs and
MATLAB for implementing the SyN and diffeomorphic
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Demons, respectively. The parameter information for the
SyN and diffeomorphic Demons is shown in Table 4.
Table 5 shows the mean and overall mean volumetric DSCs
for all the fixed volumes of the proposed, diffeomorphic
Demons [19], SyN [20], Coarse-EPD and Fine-EPD regis-
trations. Tables 3 and 5 were generated in a similar way.
The overall mean values in the last column represent the
final means for our 110 cases and those in the last five
rows represent the means for the 10 cases considering the
other 10 patients as moving. The proposed method clearly
yields better registration accuracy than the others for nine
of the 11 participants, whereas Demons [19] and SyN [20]
yield good accuracies for only one each of the 11 partici-
pants. The proposed method achieves a final DSC of 0.7029,
significantly better than those of the Demons (0.6654) and
SyN (0.6606), with the overall mean volumetric DSC values
obtained for five muscles higher by the proposed method
than others, except for Muscle 2 by SyN. However, the rising
trend of final DSC of Coarse-EPD and Fine-EPD indicate
that the stages before Demons stage in our proposed method
bring the moving volumes closer to the fixed volume which
helps Demons to align more effectively than the only Demons
method.

Figure 14 shows the results obtained from the statisti-
cal analysis of the proposed, diffeomorphic Demons, SyN,
Coarse-EPD and Fine-EPD experiments for each muscle
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(h)

FIGURE 12. Coronal visual results for the same case shown in Figure 11. It should be noted that, although the registration is performed between the two
3D MRI volumes, the results are illustrated in 2D for presentation convenience. (a) fixed image, (b) moving image before registration, (c) moving image
before registration with superimposed fixed image’s edges; superimposed fixed image’s edges on the moving image after (d) Affine-EPD stage,

(e) DPSW-EPD stage, (f) Coarse-EPD stage, (g) Fine-EPD stage and (h) final stage (proposed method).

separately (see Figure 14(a)) and combined (see Fig-
ure 14(b)). Figure 14(a) indicates that the proposed method
has better median and maximum DSCs than the others for
Muscles 1, 4, 5 and 6, whereas the SyN algorithm performs
better for Muscles 2 and 3.

Similarly, Figure 14(b) reveals that the proposed method
has better overall median and maximum volumetric DSCs for
all the muscles combined (0.7385 and 0.9075, respectively)
than the diffeomorphic Demons (0.7215 and 0.8680, respec-
tively) and SyN (0.7137 and 0.8940, respectively) methods.
Moreover, the diffeomorphic Demons method has more out-
liers (53) than the proposed method (20) and SyN (32) for all
the muscles combined.

To perform a complete analysis, we also used the Hausdorff
distance (HD) as a distance error metric. Figure 15 shows
the HD results for all muscles combined. It reveals that the
proposed method has better median HD (5.7446 mm) than the
SyN (6.0000 mm) and diffeomorphic Demons (5.9161 mm)
methods.

Finally, the experimental results and analyses reveal that
the proposed method outperforms the diffeomorphic Demons
and SyN algorithms in terms of registration accuracy and
consistency.

V. DISCUSSION
A deformable 3D-3D fully automatic registration frame-
work using a novel DPSW transformation and modified
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3D Chamfer distance transform of the EPD was developed.
The empirical outcomes demonstrated that our method out-
performed the well-established diffeomorphic Demons [19],
[48] and SyN [20] algorithms in terms of accuracy and consis-
tency. Also, interestingly, the proposed framework was robust
in terms of input volumes because it worked on multiple MRI
scanner settings. In particular, the same thresholds were used
in the EPD SM for the input volumes with different repetition
and echo times, which is common when acquiring MR images
in clinical practice.

The computational time required to register two neck
volumes was calculated for the EPD, SSD, MI, proposed,
Demons [19] and SyN [20] methods. These times are shown
in Table 6. Although, some parts of the proposed method were
implemented using C/C++ MEX coding, the computational
time of the proposed method could be reduced if the full code
was implemented in C/C++. The proposed method is slower
than the Demons algorithm but has better accuracy. The low
computational time for Demons was due to the professional
implementation of this algorithm in MATLAB.

The experiments in our work were conducted on real clini-
cal neck MRI data. Our proposed registration framework was
thoroughly evaluated against well-recognized deformable
registration methods [19], [20], [48] applied to our dataset,
and obtained a better overall mean DSC value, confirming
its effectiveness. The reasons for the consistently enhanced
accuracy of our method are as follows:
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FIGURE 13. Comparison of visual results in terms of muscles contours: (a) axial view and (b) coronal view.
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FIGURE 14. Comparison of performances of proposed, diffeomorphic Demons, SyN, Coarse-EPD and Fine-EPD methods. (a) Registration accuracies
of 110 cases for each muscle (higher volumetric dice similarity coefficient [DSC] values are better). (b) Registration accuracies of

110 cases x 6 muscles = 660 DSCs for all muscles combined. The 110 cases are assessed by considering all other patients’ images as moving and a
specific patient’s image as fixed for the total 11 patients in our neck dataset.

o A conventional multi resolution registration method the same stage is used repeatedly because it becomes
attempts to avoid large-scale basins in the function to trapped in a local optimum of the SM, to escape from
be optimized, using only the coarse resolution levels of which a different SM and optimization approach is
the spline. This approach has limited success because required. In the past, FFD-based registrations attempted
of the monotonous SM and optimization. In our work, to escape large-scale basins by exploiting multi res-
the framework was constructed based on the novel olution versions of the B-spline with the same SM
notion that correct deformations cannot be obtained and optimization. However, they did not succeed due
through a single transformation due to the constraints to the similar characteristics of the different B-spline
placed on the parameters of the geometrical transforma- resolutions. In this work, completely different combi-
tion. This approach brings the floating volume nearer to nations were used in each stage of the coarse section
the reference one by applying multiple transformations, to align the neck’s trunk first, which avoids large-scale
optimizations and SMs. However, if an exact deforma- basins in the optimization function and provides good
tion is near a transformation, it cannot be obtained if alignment.
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TABLE 5. Registration results obtained from inter-patient neck magnetic resonance imaging experiments in terms of volumetric dice similarity coefficient
(DSC) (proposed method compared with diffeomorphic demons [19], SyN [20], Coarse-EPD, and Fine-EPD; mean DSC values for all fixed volumes

calculated over all moving ones; bold values indicate better results).

Muscles Methods Patient Index Overall

PI.1 PT2 PL3 PL4 PL5 PL6 PTL7 PL§ PLY9 PL10 PL1l fmean
Coarse-EPD 0.7021 0.6946 0.6721 0.6339 0.6530 0.6332 0.7226 0.7519 0.3440 0.3745 0.5119 0.6413+0.1841
Fine-EPD  0.7166 0.7111 0.6940 0.6568 0.6784 0.6646 0.7452 0.7677 0.3603 0.7099 0.5321 0.6614-£0.1843
Muscle 1 Proposed  0.7338 0.7213 0.7379 0.7043 0.6942 0.7207 0.7272 0.7613 0.7362 0.7321 0.7668 0.6943-+0.1814
SYN[20]  0.7447 0.7661 0.6745 0.6193 0.6424 0.7641 0.7646 0.6981 0.5699 0.6230 0.6501 0.683340.1609
Demons [19] 0.6582 0.7409 0.7140 0.6887 0.4601 0.6704 0.7761 0.6707 0.6900 0.3251 0.7031 0.6452-0.2226
Coarse-EPD  0.6913 0.5885 0.5868 0.6668 0.6140 0.6500 0.5890 0.7058 0.6639 0.6608 0.3934 0.6227+0.1515
Fine-EPD  0.7137 0.6054 0.5968 0.6909 0.6539 0.6536 0.6024 0.7201 0.6787 0.6792 0.4094 0.6381+0.1532
Muscle 2 Proposed  0.7585 0.6848 0.6515 0.7429 0.6617 0.6608 0.6781 0.6363 0.6751 0.6850 0.7202 0.6818=-0.1409
SYN[20] 07410 0.7842 0.6612 0.7453 0.6627 0.7311 0.7376 0.7263 0.6100 0.6650 0.5546 0.6926-0.1650
Demons [19] 0.7180 0.6932 0.6879 0.6928 0.5462 0.6815 0.7014 0.7064 0.6667 0.4987 0.6100 0.6548+0.1757
Coarse-EPD  0.7359 0.6286 0.6721 0.7635 0.5946 0.7126 0.7483 0.7574 0.6025 0.6854 0.5534 0.6812+0.1310
Fine-EPD  0.7560 0.6381 0.6922 0.7753 0.6264 0.7192 0.7647 0.7750 0.6250 0.6985 0.5624 0.6973+0.1311
Muscle 3 Proposed  0.7853 0.6802 0.7618 0.7920 0.6429 0.7347 0.7840 0.8113 0.7895 0.7043 0.7544 0.7422-+0.1133
SYN[20] 07413 0.6422 0.7389 0.7089 0.6652 0.7942 0.7872 0.7653 0.6932 0.5610 0.5668 0.696740.1546
Demons [19] 0.7539 0.6345 0.7580 0.7113 0.4718 0.7062 0.7827 0.7718 0.7601 0.6839 0.7605 0.7086-£0.1396
Coarse-EPD 07345 0.7224 0.6570 0.6846 0.6365 0.7276 0.6519 0.7017 0.6500 0.7644 0.5770 0.6885+0.1053
Fine-EPD  0.7526 0.7370 0.6795 0.6973 0.7021 0.7438 0.6627 0.7222 0.6765 0.7582 0.5908 0.7058-0.1058
Muscle 4 Proposed  0.7888 0.7461 0.7308 0.7394 0.7197 0.7504 0.7777 0.6832 0.7586 0.7812 0.8002 0.7427-+0.1087
SYN[20]  0.7536 0.6927 0.6874 0.7411 0.6790 0.7845 0.7594 0.7354 0.7239 0.5537 0.6435 0.7049+0.1560
Demons [19] 0.7645 0.7307 0.7467 0.4160 0.7356 0.7820 0.7222 0.7704 0.7418 0.7630 0.6933 0.7100+0.1534
Coarse-EPD  0.6922 0.4634 0.6602 0.6849 0.5576 0.6530 0.7000 0.6528 0.5327 0.5980 0.5197 0.6122+0.1347
Fine-EPD  0.7096 0.4815 0.6831 0.7102 0.5771 0.6729 0.7204 0.6731 0.5560 0.6217 0.5348 0.6330-£0.1369
Muscle 5 Proposed  0.7175 0.5519 0.7107 0.7593 0.5811 0.6960 0.7460 0.7746 0.7088 0.6220 0.7009 0.6842+0.1291
SYN[20]  0.6476 0.5036 0.7029 0.6234 0.6191 0.7102 0.7233 0.6198 0.5718 0.4791 0.4823 0.6076+0.1737
Demons [19] 0.6507 0.5561 0.6640 0.6804 0.4492 0.6511 0.7342 0.7221 0.6643 0.5914 0.7251 0.644440.1730
Coarse-EPD  0.6490 0.6509 0.5746 0.6034 0.5617 0.6285 0.5754 0.6036 0.4906 0.5622 0.5059 0.5824-£0.1328
Fine-EPD  0.6620 0.6741 0.5951 0.6278 0.5892 0.6551 0.5952 0.6136 0.5154 0.5904 0.5210 0.6035+0.1310
Muscle 6 Proposed  0.6613 0.7443 0.6576 0.7022 0.6716 0.6640 0.7089 0.6531 0.6392 0.6107 0.6808 0.672140.1233
SYN[20]  0.5907 0.5620 0.4523 0.6189 0.6120 0.6454 0.7128 0.5745 0.5277 0.5163 0.5479 0.5782+0.1716
Demons [19] 0.6072 0.6093 0.6327 0.6457 0.4061 0.6718 0.7202 0.6895 0.6271 0.6080 0.7018 0.6290+0.1740
Coarse-EPD  0.7008 0.6247 0.6371 0.6728 0.6251 0.6719 0.6645 0.6955 0.5473 0.6248 0.5102 0.6380-0.1463
Overarl FINE-EPD 07184 0.6412 06568 0.6931 0.6300 0.6924 0.6818 0.7120 0.5686 0.6635 0.5251 0.6565:£0.1464
o’ Proposed  0.7409 0.6881 0.7084 0.7400 0.6475 0.6925 0.7370 0.7200 0.7179 0.6848 0.7372 0.7029-+-0.1375
SYN[20] 07031 0.6585 0.6529 0.6761 0.6467 0.7383 0.7475 0.6866 0.6161 0.5663 0.5742 0.660640.1704
Demons [19] 0.6921 0.6453 0.6979 0.6942 0.4582 0.6861 0.7494 0.7138 0.6964 0.5748 0.7106 0.6654-£0.1772

o A registration process can frequently become stuck

due to dips in the optimization function, rather than
basins [14]. Although all the multi resolution tech-
niques using the B-spline have tried to avoid these,
they could not mitigate all their effects because they
considered only variations of the spline resolution and
the nature of their cost functions was non-convex [11],
[34], [35]. For our framework, a double-pushing sys-
tem was designed in the fine section to prevent dips
yielding small deformations and to reduce the chance
of becoming stuck in dips. The first process in this
system involved changing the edges of the EPD from
the strongest to weakest, while the second involved
altering the resolution of the spline. Therefore, our
framework obtained better accuracy by avoiding more
dips.

The negative lobe of the spline wavelet provides
an implicit regularization in the transformation and,
therefore, a smooth deformation. The DPSW has
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fewer parameters than the FFD, which facilitates the
optimization process to avoid large-scale basins and
improves matching.

The EPD provides an opportunity to achieve an align-
ment through multiple stages for the same objects
or edges. Therefore, tuning an alignment can be per-
formed object-wise, a capability not available using any
other SM.

Although a limitation of our work is the lack of explicit
regularization, which normally introduces a parameter that
imposes a burden on the user, in our framework, we pre-
ferred the DPSW, which provides an implicit regularization
and obtains smooth transformations through the fourth-order
spline.

In our future work, the proposed framework will be vali-
dated using some public brain and lung datasets with a more
theoretical insight into DPSW. Also, some other optimiza-
tion methods, such as stochastic ones, will be explored, and
other evaluation metrics for the proposed framework will be
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FIGURE 15. Comparison of performances of proposed, diffeomorphic
Demons, SyN, Coarse-EPD and Fine-EPD methods on our neck dataset in
hausdorff distance (HD) in mm (lower values are better) for all muscles
combined for 110 cases x 6 muscles = 660 HDs. The 110 cases are
assessed by considering all other patients’ images as moving and a
specific patient’s image as fixed for the total 11 patients.

TABLE 6. Computational time to register our dataset using the EPD, SSD,
MI, proposed, Demons [19] and SyN [20] algorithms on our computer for
a single case. The affine transformation is used for the EPD, SSD and MI
registration. The MI and SyN [20] are implemented through advanced
normalization tools (ANTs).

Methods Time (minutes)
EPD 3.21

SSD 24

MI 2.21

Proposed 33

Demons [19]  0.81

SyN [20] 69.95

investigated. Further, the neck dataset will be increased for
experimental analysis.

VI. CONCLUSION

In this research, we proposed a registration framework with
different combinations of transformations, optimizations and
SMs with a new transformation DPSW and a modified 3D
Chamfer distance transform algorithm. The DPSW requires
fewer parameters than the FFD to represent similar local
deformations, which decreases the burden on the optimiza-
tion process. Our framework enhances the probability of
finding the global minimum by reducing the effects of basins
and dips, with outcomes obtained from experiments on real
clinical datasets confirming its effectiveness.
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