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ABSTRACT Source positioning based on energy time-inverse focus is a hot subject in the sphere of shallow
underground source positioning. Due to the grave wave group aliasing and the complex, irregular geological
structure typical of the shallow underground explosion, the reconstruction accuracy of the energy focus is
low and thus the recognition of the focus is a difficult task, ultimately leading to a low accuracy of source
positioning. To address the above problems, this article proposes a method based on deep learning energy
focus recognition, whereby the process of recognizing and positioning the energy focus in an energy field
is made equivalent to the end-to-end feature extraction of the energy field–energy focus. The time-variant
characteristics of explosive vibration signals are put to use in the construction of an adaptive time window.
First, within the time window and by combining cross-correlation and autocorrelation operations, a 3D
energy field image sequence in the time-space domain is produced by grouped energy synthesis; second,
a densely connected 3DCNN network is built and, through multiple layer span layer splicing, a higher
repetitive use is made of the focus point features in the energy field images; third, a spatial pyramid pooling
network is used to extract multi-scale features from different focus areas, which helps achieve high-precision
focus recognition. Finally, numerical simulations and field tests were conducted.The results demonstrated
that compared with the quantum particle swarm optimization (QPSO)-based energy focus search method,
the proposed one is more effectively in recognizing the coordinates of the focus in the energy field, thus
allowing high-precision localization of shallow underground sources. This method is of some engineering
application value in the field of underground source positioning.

INDEX TERMS Position measurement, energy field reconstruction, underground explosion.

I. INTRODUCTION
Distributed source positioning in shallow underground spaces
is a location measurement technique that integrates sens-
ing, networking, transmission, and positioning [1]. It works
by setting up a large number of wireless vibration sensor
nodes on the ground and then acquiring through these nodes
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the vibration signal generated by the explosion. After the
explosion event, the data acquired by the sensor nodes are
gathered at the control center through the wireless trans-
mission network [2]. The control center then pre-processes
the data, extracts the characteristics, builds the positioning
model, and solves the model, to determine the location of
the source, as shown in Fig. 1 [3]. This method is capable of
locating underground shot points and fuze initiation points as
well as giving advance prediction of rock bursts and water
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FIGURE 1. Schematic diagram of shallow underground source positioning.

inrushes and monitoring underground chamber blasting,
etc.

Compared with deep-seismic, deep coal mining, and
petroleum exploration source positioning or similar exten-
sive, deep, and long-duration source positioning, the shallow
source positioning method described in this article offers
the following characteristics: (1) The number of sensors
required for shallow positioning is small, and the layout
can be arbitrary, unlike the high-density layout in natural
earthquake source positioning; (2) The depth of underground
seismic sources are shallow, typically not more than 100m.
The geological structure within shallow depths is complex
and unknown, so it is impractical to develop a shallow
speed field model from the deep earth crust structure model;
(3) The vibration wave group is complex in aliasing and,
as the near-field soil, due to its constitutive characteristics,
is elastoplastic, the elastic wave is greatly affected as a
result of reflection and refraction by the ground, weaken-
ing the phase [4], [5]. Therefore, the conventional natural
earthquake positioning method is not fit for locating shallow
sources.

With the ever-advancing earthquake exploration and com-
putational imaging theory, the positioning technology based
on energy field imaging has become a hot subject in the field
of underground source positioning. It does not depend on
the extraction accuracy of the seismic phase characteristic
parameters and works by scanning the focus position of the
underground energy field to locate the source. It is one of the
best ways to solve the problem of shallow underground space
source positioning.

Gajewski et al., who first proposed this method, suggests
that the signals obtained by the ground sensors be used
as the boundary conditions for the time-inverse wave field
simulation and reconstruct the time-inverse energy field of
the source through 2D and 3D single pass acoustic wave
equation continuation [6]. The feasibility of the method has
been verified by many numerical simulation experiments.
Sava et al. proposes some improvements on this method: after
performing quasi-Wigner distribution function transform on
the microseismic time-inverse wave field, the energy field
is reconstructed using the interferometric imaging condi-
tion, which improves the energy field focusing accuracy [7].
Li et al. propose a weighted elastic wave interferomet-
ric imaging method for microseismic positioning, which
improves the reconstruction accuracy of the energy field [8].

As can be seen from above, researchers mainly try to improve
the accuracy of source positioning by improving the recon-
struction accuracy of the energy field. However, this type
of method depends to a higher degree on the speed model
when performing energy field imaging, thereby poses certain
requirements on the number and layout of the sensors.

Due to the complexity of the underground velocity model
as well as the limited number and arbitrary layout of the
sensors in shallow source positioning, the conditions for
high-precision reconstruction of the underground energy field
are beyond attainment. Before expanding the applicability of
this method, an urgent problem that needs to be solved in
the field of underground positioning with low energy field
reconstruction accuracy is how to quickly and effectively
recognize the energy focus. Kao et al. proposes a position-
ing method of the grid search class, the main principle of
which is to decompose the underground monitoring area into
grids of equal size, after which it is determined by analyz-
ing and calculating each grid whether the source location
is situated in the grid [9]. Angus et al. has improved on
the method by using the speed model correction combined
grid search method, which improves the positioning accuracy
of the source [10]. Lagos and Velis, drawing on previous
research, compare global optimization calculating methods
such as very fast simulated annealing (VFSA), QPSO, and
grid search class methods and, by analyzing 2D and 3D
seismic source positioning results, conclude that the accuracy
is the highest when the energy focus is recognized using
QPSO [11]. Although the QPSO-based energy focus recogni-
tion method improves the accuracy of the energy field source
positioning, it involves some blindness and randomness in
the search, leading to unstable focus recognition and poor
robustness.

To address the above problems, this article proposes a
positioning method based on deep learning energy focus
recognition, whereby the process of recognizing and locating
the energy focus in an energy field is made equivalent to
the end-to-end learning of the energy field–energy focus.
First, with a small number of sensor nodes, the number of
energy field samples along with the generalization of the
model are increased by group mutual imaging. Second, with
a densely connected 3DCNN and in a multi-layer span layer
splicing mode, the number of features of the energy focuses
is maximized with a small number of energy field samples.
Finally, a 3DSPP network is used to perform high-rise multi-
scale feature extraction on focus areas of different sizes to
find the focus coordinates, hence a method for extracting
features of energy focuses.

II. PRINCIPLE OF UNDERGROUND 3D ENERGY FIELD
TIME-REVERSE IMAGING
Time-inverse imaging operates on the reciprocity of the direc-
tion of vibration wave propagation [12]. From the vibration
signal acquired by the sensor array a reverse wave field in
a reverse propagation is developed, as shown in Fig. 2 (a).
With reasonable imaging conditions, a virtual 3D energy field
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FIGURE 2. Schematic diagram of time-inverse focus.

containing source information is established, of which the
energy focus point is the source, as shown in Fig. 2 (b). The
time-inverse propagation mode and the imaging conditions
of the wavefield are the keys to high-precision time-inverse
imaging [13], [14].

A. REVERSE PROPAGATION OF UNDERGROUND
WAVEFIELD
Suppose the vibration wave propagates from the source Xs =
(xs, ys, zs) to the surface, and the signal recorded by the
i-th sensor Xri = (xri, yri, zri) is D(Xri, t). According to the
underground wave theory, the forward propagation process
of the wavefield can be expressed as [15]:

D(Xri, t) = F−1 {S(Xs,w) G(Xri,Xs,w)} (1)

where, G and S are respectively the Green function and
the source function, t and w are respectively the prop-
agation time and the frequency; and D is the signals
recorded by the sensors, and F−1 represents inverse Fourier
transform.

If the signalD(Xri, t) acquired by the i-th sensor is taken as
a virtual source of a reverse propagation in the underground
space. Then the signal at any underground point can be
expressed as:

Ri(X , t) = F−1 {D(Xri,w) G∗(Xri,X ,w)
}

(2)

where, ∗ represents complex conjugation, Ri(X , t) is the
wavefield formed by the i-th sensor in time-inverse propa-
gation, and X = (x, y, z) represents a location in the under-
ground space.

A 3D high-order finite difference algorithm is used to
evaluate the following acoustic wave equations, the solution
of which leads to the time-inverse back propagation field. The
differential formula is:

∇
2Ri(X , t)+

1
v(X )2

∂2Ri(X , t)
∂t2

= D(Xri,T − t) (3)

where, v denotes the wave propagation speed in the under-
ground medium, T is the total time length of the vibration
signal recorded by the sensor, and t is the propagation time
of the reverse propagation wavefield.

With the optimal layer matching method as the bound-
ary condition, assuming the calculation area is D =
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the expression of the boundary absorption condition in the
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∂2Ri(X , t)
∂x∂t

+
1
v
∂2Ri(X , t)
∂t2

−
v
2
(
∂2Ri(X , t)
∂y2

+
∂2Ri(X , t)
∂z2

) = 0, x = +a

∂2Ri(X , t)
∂x∂t

−
1
v
∂2Ri(X , t)
∂t2

+
v
2
(
∂2Ri(X , t)
∂y2

+
∂2Ri(X , t)
∂z2

) = 0, x = −a

∂2Ri(X , t)
∂y∂t

+
1
v
∂2Ri(X , t)
∂t2

−
v
2
(
∂2Ri(X , t)
∂x2

+
∂2Ri(X , t)
∂z2

) = 0, y = +b

∂2Ri(X , t)
∂y∂t

−
1
v
∂2Ri(X , t)
∂t2

+
v
2
(
∂2Ri(X , t)
∂x2

+
∂2Ri(X , t)
∂z2

) = 0, y = −b

∂2Ri(X , t)
∂z∂t

−
1
v
∂2Ri(X , t)
∂t2

+
v
2
(
∂2Ri(X , t)
∂x2

+
∂2Ri(X , t)
∂y2

) = 0, z = −c (4)

B. IMAGING CONDITIONS
Proper imaging conditions are critical to suppressing noise
and reaching accurate imaging of the source [16]. There are
two types of noise in the process of the time-inverse imaging:
1. Noise in the vibration signal acquired by the sensor; 2.
Noise generated by the high-order finite difference algorithm
in time-inverse back propagation (calculation error). For the
two types of noise, the following two imaging conditions are
proposed.

1) AUTOCORRELATION IMAGING CONDITIONS
In the process of wavefield reverse-time continuation, every
spatial point in the ground is autocorrelated. The instanta-
neous energy information of each point is obtained by linear
amplitude superposition. Energy information is integrated
over the time domain to produce 3D time-reverse energy field
images, and the specific imaging condition is as follows:

Image(X ) =
t=T∑
t=0

i=N∑
i=1

Ri(X , t).Ri(X , t) (5)

where, Ri(X , t) is the wavefield formed by the i-th sensor in
time-inverse propagation, N is the total number of sensors,
and T is the total time length of the vibration signal recorded
by the sensors. This method suppresses the noise in sensor
signals, but is unable to eliminate the imaging noise generated
by the time-inverse back propagation of the wavefield [17].
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2) CROSS-CORRELATION IMAGING CONDITIONS
In this method, each detection point is treated as an indepen-
dent source, and time-inverse back propagation is then per-
formed separately. Cross-correlation operation is performed
on the wave field information of each spatial point. The
energy is integrated over the time domain, to arrive at the 3D
energy field in the spatial domain. The imaging condition is
as follows:

Image(X ) =
t=T∑
t=0

i=N∏
i=1

Ri(X , t) (6)

where, Ri(X , t) is the wavefield formed by the i-th sensor in
time-inverse propagation, N is the total number of sensors,
and T is the total time length of the vibration signal recorded
by the sensors.

The noise between the time-inverse wavefields of the
sensors can be eliminated through cross-correlation opera-
tion, which improves the resolution and SNR of the imag-
ing. However, this method is insufficient in its ability to
suppress the noise in the sensor signal. Meanwhile, for all
sensors 3D high-order finite difference operation shall be
carried out during time-inverse back propagation, which will
inevitably involve greater calculation load and lower effi-
ciency [18], [19].

To address the above problems, this article proposes a
group mutual imaging condition, as follows:

Image(X , t) =
1
T

t2∑
t=t1

k=M∏
k=1

i=L∑
i=1

Ri(X , t).Ri(X , t) (7)

where, Image(X , t) is the instantaneous 3D energy field
images of the underground space, Ri(X , t) is the wave field
formed by the i-th sensor in reverse propagation, L is the
number of sensors in the group, M is the number of sensor
groups, t1 and t2 is the starting time and end time of the time
window, and T is the length of the time window.
For vibration signal R(t), find its Hilbert transform spec-

trum Rh(t) to get its analytical signal

c(t) = R(t)+ jRh(t) (8)

The local signals near time t can be expressed using ana-
lytical signal c(t):

R(t + τ ) ≈
1
2
(c(t)ej�(t)τ + c∗(t)e−j�(t)τ )

= |c(t)| cos(�(t)τ + arg c(t)) (9)

where,�(t) = d
dt arg c(t), which represents the instantaneous

frequency. The symbol ∗ stands for complex conjugation.
The length of the adaptive time window at time t is

expressed as T (t), defined to be:

T (t) =
2πk
�(t)

(10)

where, k is the weight.
In Eq. 7, the sensor arrays are grouped for imaging based

on the principle of high-dimensional spatial similarity. First,

FIGURE 3. Reconstruction of three-dimensional energy field image in
time-space domain.

the efficiency of time-inverse imaging and the diversity of
energy field samples are improved by grouping. Second,
autocorrelation and linear amplitude superposition operations
are performed within the sensor groups. This helps to elim-
inate the noise of the vibration signal, improve the resolu-
tion of the energy field imaging at each moment. Finally,
inter-group cross-correlation operation is performed to elim-
inate the imaging interference caused by the time-inverse
back propagation, to arrive at the 3D energy field for each
moment.

In the time domain, the time window length is determined
having regard to the instantaneous frequency characteristics
of the signal. The energy field information within the length
of the time window is linearly superimposed. This superim-
posed energy field is used as the instantaneous energy field at
that moment, as shown in Fig. 3.

The energy focusing degree of the instantaneous energy
field image is improved in this way, and at the same time,
the 3D energy field images in the space domain are converted
into a 3D energy field image sequence in the time-space
domain.

III. METHOD OF ENERGY FIELD FOCUS RECOGNITION
AND POSITIONING
So far, researchers mainly use QPSO and other swarm intel-
ligent optimization algorithms to locate the energy focus
by scanning a large area [20]. This method operates on the
energy focusing principle, constructs the energy flow objec-
tive function using the QPSO algorithm. This objective func-
tion is evaluated by iterative optimization to find the energy
focus. The energy objective function is as follows [18]:

max ζ (x, y, z) =
N∑
k=1

∣∣∣EATk · Ee(m, x, y, z)∣∣∣p (11)

where,
∣∣∣EATk ∣∣∣ is the signal amplitude recorded by this sensor

at time T , EeTk is the direction of propagation, Eek (m, x, y, z)
is the direction cosine of the seismic wave propagation at
the k-th sensor as estimated by the above finite difference
time-inverse numerical simulation, m is the stratum velocity
information, (x, y, z) is the source coordinates, |·| represents
the vector dot product, and p represents the 2-norm, and N is
the number of sensors.
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FIGURE 4. Network model framework.

Locating the source by QPSO involves random parameters
in the particle updating equation, and additionally the initial
particles are randomly generated too. Therefore, the source
location results are tainted with some randomness, unable to
guarantee the robustness of the solution [14], [21].

In respect of the above problem, the advantages of deep
learning in the field of image feature recognition is put to
full use by equating the focus point positioning process with
the building and training process of the end-to-end network
model of the energy field image–focus point. The height,
length, width and number of channels of the energy field
image make up the 4D tensor information for deep learning;
Fig.4 shows a network model consists of a densely connected
3DCNN + a 3D pyramid network + an FC. First, a dense
convolutional 3DCNN is employed to reuse the feature infor-
mation in the network through multiple layer span layer
splicing, which effectively solves the problem of gradient
disappearance caused by limited samples. Second, the 3DSPP
model is used to extract multi-scale and high-resolution fea-
tures of the feature map, which improves the recognition rate
of the focus. Finally, the FC layer is connected and the source
coordinates are output.

A. 3DCNN BASED ON DENSE STRUCTURE
Dense convolutional neural network (DenseNet) is composed
of multiple dense connection modules [22], [23]. In each
dense connection module, in order to maintain feedforward
resistance, each layer splices up the output of all previous
layers, with the splicing result used as the input of this layer,
and then the obtained feature map is passed to all subsequent
layers. Therefore, dense connection modules make it possible
to reuse the features to a greater degree, and feature redun-
dancy can be alleviated by learning fewer parameters, and the
problem of gradient disappearance is solvable.

Assuming that the network consists of L layers, the output
of layer l is expressed as xl . For each layer, a nonlinear
transformation Hl(·) is implemented, which includes three
consecutive operations: batch normalization (BN), rectified
linear unit (ReLU), and convolution. Therefore, xl can be
expressed as follows:

xl = H ([x0, x1 . . . xl−1]) (12)

where, [x0, x1 . . . xl−1] means splicing up the features from
layer 0 to layer l − 1.

FIGURE 5. Schematic diagram of densely connected 3DCNN.

Taking advantage of dense connections in DenseNet, this
article introduces it into 3DCNN to form a dense structure-
based 3DCNN [24], [25]. With this network, the feature
information in the 3D energy field image is extracted. Its
network structure is shown in Fig. 5.

The proposed densely connected 3DCNN contains 7 layers
of networks, 5 convolutional layers, and 2 pooling layers. The
3D energy field images as the input and the feature maps as
the output are applied to connecting subsequent 3DSPP net-
works. The above-described network forms a dense connec-
tion module throughmultiple layer span layer splicing, which
enables the reuse of the feature information. Pooling layer
P1, convolutional layer C2, and convolutional layer C3 make
up dense connection module 1; the feature maps generated
by pooling layer P1 and convolutional layer C2 are, after
being spliced, used as the input of convolutional layer C3.
Pooling layer P1 and convolutional layer C2, convolutional
layers C3, and C4 make up dense connection module 2, that
is, the feature maps generated by pooling layer P1, convolu-
tional layer C2, and convolutional layer C3 are spliced and
then used as the input of convolutional layer C4. Pooling
layer P1 and convolutional layers C2, C3, C4 and C5 make
up dense connection module 3, that is, pooling layer P1,
the feature maps generated by convolutional layers C2, C3
and C4, after splicing up, are used as input to convolutional
layer C5.

The specific network parameters of the densely con-
nected 3DCNN are shown in Table 1. The 3D convolu-
tion kernel size, step size, and Padding method are the
same across all convolution layers, so they are not included
in the table. To accelerate the convergence during net-
work training, an extra batch normalization (BN) layer is
included [26], [27]. Here are the notes on some parameters
in Table 1:

(1)The size of the energy field samples is 96× 192× 192;
(2)The image format of the network input layer and the

representation format of the feature map are as ‘‘number of
channels @ height × length × width’’;

(3)Each 3D convolution kernel has a size of 3× 3× 3,
convolution kernel step sizes being all 1 × 1 × 1. Padding
is of ‘SAME’ mode, which makes the spatial size of
the feature map remain unchanged after 3D convolution
operation;

(4)3D pooling is of a ‘max-pooling’ type.
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TABLE 1. Densely connected 3DCNN structure.

B. 3DSPP MODEL
SPP is a new type of network that is capable of multi-scale
feature extraction [28], [29]. In this article, such a network is
introduced into the recognition of the energy focus, and hence
a 3DSPP model designed. By dividing a feature map into
different sizes, multi-resolution recognition of the feature of
the focus is made possible, thereby improving the recognition
accuracy of the focus.

Assuming that the size of the input feature map is a ×a,
the SPP layer evenly divides the feature map into n ×n bins,
with n being customizable, and then the maximum pooling
of each bin generates n×n feature vectors. Even division
of different sizes can be made a number of times. Then,
the pooling window size is win = [a/n], and the step is
str = [a/n]. Among them, d·e and b·c represent rounding
up and rounding down.

A 3D energy field image, after going through a dense
structure-based 3DCNN, outputs a feature map of 32 @
24× 48×48 in size. After going through the dense structure-
based 3DCNN, connection is made to the 3DSPP model. The
actual network structure of the 3DSPP model is shown in
Fig.6.

The 3DSPP model structure under study incorporated
a total of 5 3DSPP layers, namely 1 × 2×2, 2 × 4×4,

FIGURE 6. Schematic diagram of 3DSPP model.

4×8×8, 8×16×16, and 12×24×24 structures respectively.
Dimension reduction was performed on the feature maps
through the pooling layers. As shown in Fig. 6, the final
output was 32D eigenvectors to the number of 4 + 32 +
256 + 2048 + 6912 = 9252. When it was flattened into
a one-dimensional vector, we got 1 × 9252×32 = 296064.
In this way, the feature maps could be reduced in dimen-
sion, such that the network outputs eigenvectors of a fixed
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size; meanwhile, multi-level 3DSPP could be employed to
extract features across the energy focus area at multiple
scales, which significantly improved the accuracy of the focus
recognition [30].

After being converted into a 1D vector, it was connected to
an FC layer [31]. Since the source coordinates were defined
by x, y, z, this article used a FC layer containing 3 neurons.
For fear of over-fitting in training the FC layer, the Dropout
technology p = 0.5 was employed so that half of the con-
nection weights were randomly inactivated. In the course of
training, the optimization function was based on the stochas-
tic gradient descent method, with the mean square difference
as the loss function.

IV. SIMULATION VERIFICATION
To demonstrate the feasibility of this method, an underground
source positioning model was built with MATLAB. The
energy focus point was located with the deep learning method
and the QPSO separately. The positioning accuracy was eval-
uated in terms of Root Mean Square Error (RMSE), SEP
(spherical error probable), and relative errors in the X, Y, and
Z directions. RMSE evaluates the deviation of the positioning
results of the two methods from the actual sources, SEP
evaluates the uncertainty of the positioning results, and the
triaxial relative errors evaluate the positioning accuracy of the
two methods in 3D space.

The underground source simulation location model had its
center on the origin of the surface and was of X [−50m,
50m], Y [−50m, 50m], and Z [0m, −50m] in size. In this
underground model, the P-wave propagation velocity was
800m/s, and there were 9 preset sources, which were Ricker
wavelets. The underground space noise was Gaussian white
noise, the SNR of which was 20dB.

35 vibration sensors are arranged at equal intervals on the
surface of themodel to form an array of vibration sensors. The
signal sampling rate was set to 100kHz and the sampling time
to 0.2s. The deep network model was trained using the first
8 source locations and their corresponding sensor signals;
the data acquired from the 9th test were used for evaluat-
ing the deep learning and QPSO methods regarding their
focus point recognition accuracy. The following paragraphs
describe, using as example the sensor data acquired from the
first blasting, how a 3D energy field image is generated in the
deep learning process. Fig. 7 (b) shows some of the sensor
signals corresponding to the first blasting source.

The underground space was divided into grids, and 4 were
selected from the 35 sensor signals to form up a group.
A total of 50,000 energy field images were generated at a
time through autocorrelation imaging. Fig. 8 gives some of
the energy field images.

The results of autocorrelation imaging were subjected
to cross-correlation and amplitude superposition operations.
A part of the energy field image sequence generated by the
group cross-correlation method is shown in Fig. 9.

More than 200,000 energy field image samples were gen-
erated through grouped cross-correlation. To increase the

FIGURE 7. Schematic diagram of simulated underground seismic source
positioning.

FIGURE 8. Autocorrelation images.

FIGURE 9. Image sequence of time-inverse energy field.

generalization of the model, samples with different energy
field focusing effects, including: (1) incomplete energy focus-
ing areas, (2) divergent energy focusing areas, (3) low SNR
energy focusing areas, and (4) low intensity energy focus
points, were taken as training data.

Table 2 gives the source coordinates correspond-
ing to 9 simulation experiments; the explosion data of
groups 1-8 were used as training samples for deep learning.
The 9th group of experiments was used to evaluate the
positioning accuracy of the deep learning method and QPSO
algorithm.

With the source locations of the first 8 times as the output
tags, the energy field images and the source locations were
loaded respectively into the deep neural network. The times
of training of the network was set to 2,000, to establish the
loss value and the accuracy curve of the network in training.
At the end of training, 10,000 samples were loaded into the
network, to get the network’s loss value and accuracy curve
during the test phase, as shown in Fig. 10.

As can be seen from the Fig.10, the proposed deep neu-
ral network produced curves of the same trend in training
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TABLE 2. Source location (unit: m).

FIGURE 10. Results of deep training.

and testing. Stabilization appears after 400 trainings, and
the loss value drops to 0.02 when iteration proceeds to
1,000 times, giving a test accuracy stabilizing at 95%. At the
end of the network training and testing, the source data of the
9th blasting were loaded into the network, to give the energy
focus location

To determine the benefit of this method, the energy focus
was located with the ninth experiment as an example and
using the QPSO algorithm [18], [32], [33].To begin with,
the search range of the source was set to x(-50m,50m),
y(-50m,50m), z(-50m,0m), the swarm size to 40, the spa-
tial dimensions to 3, the iteration times to 5000. The ini-
tial particle swarm was randomly generated. Second, with
the energy target function as the particle fitness value,
the location with the greatest fitness value among the swarm
was found and taken as the optimal source position of
the current source swarm. Third, the average optimal loca-
tion of the 40 swarms was determined, and each source
location was updated by the evolution equation. Finally,
when the number of iterations was reached, the optimized
source location was output. Fig. 11 gives a trajectory graph
of particles searching for the energy focus in an energy
field.

As can be seen from Fig.11, the large-scale scanning search
of the particle swarm in the underground space, it is gradually
converges when iterating to 1400 times.

FIGURE 11. QPSO-based source location map.

FIGURE 12. RMSE graph.

After completing the deep neural network model train-
ing and searching the QPSO focus, the two methods were
evaluated for their real-time positioning accuracy in terms of
RMSE in the course of 2000 iterations, as shown in Fig.12.

As can be seen from Fig.12, during the 2000 iterations,
the QPSO method searches the energy focus in steps, and
after 1400 times of iteration, the search result begins to sta-
bilize and the ‘‘precocity’’ phenomenon appears. The RMSE
eventually approaches 0.26m. In contrast, with the deep learn-
ing method, in the energy focus search process the RMSE
drops rapidly to 0.15m after 400 times of training. Then the
energy focus was further recognized using the deep neu-
ral network method, to end up with an RMSE of 0.09m.
Throughout the 2000 iterations, the method based on deep
learning fared better than the one based on QPSO.

To further compare their positioning performance after the
focus point search stabilizes down, more comparison was
made based on the positioning results reached between the
1400th and 2000th time of iteration [34]. The performance is
evaluated in terms of SEP (spherical error probable), X-axis,
Y-axis, and Z-axis relative errors [35], [36].

Fig. 13 shows the SEP error curves of the two methods.
It can be seen that from 1400 to 2000 times of energy focus
point scanning, with the deep learning-based source localiza-
tion method the SEP radius is significantly smaller and the
accuracy of focus positioning is higher.

Fig.13 shows the relative error curves, in the X, Y, and Z
directions, corresponding to the two methods. As can be seen
from the Fig.13, in the X and Y directions, the two methods
are close in their positioning errors; in the Z direction, the
localization based on deep learning is slightly better than the
one based on QPSO.

The positioning accuracy was evaluated in terms of Root
Mean Square Error (RMSE), SEP (spherical error probable),
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FIGURE 13. SEP curves.

FIGURE 14. Three-direction relative error curves.

and relative errors in the X, Y, and Z directions. From
Fig.12, Fig.13 and Fig.14, the positioning results of the two
positioning methods in the 9th test can be found, as shown
in Table 3.

As can be seen from Table 3, in point of RMSE, SEP,
and relative errors in X, Y, and Z directions, the proposed
method performs better in focus positioning accuracy than the
method based on QPSO, though the advantage is not much
obvious. This is mainly because the simulation dealt with
ideal underground medium, which favors a higher energy
focus, making focus recognition less of a hard task. Anyway,
when it comes to the calculation speed, the proposed method
is more competitive. To output a set of valid positioning
results, the QPSO has to complete 2000 times of searching in
the energy field. Conversely, the deep neural network, once
trained using the network parameters, is able to output a set
of valid positioning results after one running.

V. EXPERIMENTAL VALIDATION
To further evaluate the feasibility of this method in engi-
neering applications, it was necessary to conduct field
tests. The project team conducted a field experiment of
source positioning at Shanxi 247 shooting range. A com-
parison with the QPSO-based method further demonstrates
the advantage of this method in engineering applications.

TABLE 3. Positioning results.

FIGURE 15. Experiment layout.

The experiment included a total of 64 sets of sensors and
10 sets of multi-channel acquisition nodes and wireless
bridges, developed by North University of China, to build
up an acquisition system of distributed source parameters,
as shown in Fig. 15.

The actual coordinates of the TNT explosive, as shown
in Table 4, was measured with the BeiDou positioning system
CC50II-BG-T.

The experiment involved a total of 8 explosions, as shown
in Table 4. The 1-5th initiation locations, in different quad-
rants, were used to train the deep neural network model,
and the 6-8th test data were used to evaluate the positioning
accuracy of the method. The 64 sensor nodes were arranged
in the source monitoring area, as shown in Fig. 16.

During the actual experiment, holes 50m deep were drilled
with a drilling rig, to hold TNT explosives. A sample of
the excavated underground medium is shown in Fig. 17.
The medium in this area, complex in geological structure,
is dominated by rock strata.

A multi-channel data acquisition system was set up, which
had a sampling rate of 20 kHz and a sampling time of 2s.
After the end of each test, the data were transmitted back to
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TABLE 4. Locations of fire points.

FIGURE 16. Layout of sensors.

FIGURE 17. Test site.

the control master station for processing. Fig.18 shows part
of the data acquired by the sensor array following the first
explosion.

The generation process of the energy field samples will
be described here using the first test as an example. First,
the underground space was meshed, with x(-50m, 50m),
y(-50m, 50m), and z(-50m, 0m) as the energy field recon-
struction range. Second, the sensor array was grouped using
the high dimension space distance method. Finally, 3D
energy field images were obtained using the grouped cross-
correlation method. The size of each 3D energy field image
was 96× 192×192.

FIGURE 18. Read data waveform.

FIGURE 19. Energy field learning sample.

The time corresponding to the first and the final phase
was evaluated, and in this test the period of the valid signal
was found to be 0.4s-1s. With a sampling rate of 20kHz, the
number of valid samples was 60,000. Following the method
of grouped cross-correlation, 3D energy field samples in the
effective time range, that is, 4D tensor information of deep
learning, were obtained, and corresponding source coordi-
nates were used as the output tag. Samples with different
energy field focusing effects were taken as training data,
as shown in Fig. 19. The following: (1) incomplete energy
focusing areas, (2) divergent energy focusing areas, (3) low
SNR energy focusing areas, and (4) low intensity energy
focus points, were among the training data.

Similarly, the training data of the second to fifth tests were
used as the training data of the network, with the times of
network training set to 2000, to train the deep neural network.
After completing network training, 10,000 random samples
were loaded into the network to test out its performance, for
which the corresponding loss values and accuracy curves are
shown in Fig. 20.

As can be seen from Fig.20, after 1300 times of deep
network model training, the internal parameters of the net-
work stabilized practically. The loss value is close to 0.8, and
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TABLE 5. Positioning error curves for 3 shot tests.

FIGURE 20. Results of deep learning training.

the accuracy is as high as 93%. Compared with the training
process during simulation, adjusting network parameters took
significantly greater time. The network was tested after train-
ing. The loss values and accuracy curves of testing resemble
those of training; however, due to the complex geological
structure and grave energy field focus blurring, the final test
accuracy of the network was 87%, lower than in simulation,
which was 95%. After completing the network training and
testing, the network was made to output the source coordi-
nates for the 6-8th explosions, which are given in Table 4.

FIGURE 21. QPSO-based source location.

To examine the benefits of this method, the source coor-
dinates for the 6-8th explosions were also estimated using
the QPSO algorithm. To begin with, the search range of the
source was set to x(-50m,50m), y(-50m,50m), z(-50m,0m),
the swarm size to 40, the spatial dimensions to 3, the iteration
times to 2000. The initial particle swarm was randomly gen-
erated. Second, with the energy target function as particle fit-
ness value, the location with the greatest fitness value among
the swarm was found and taken as the optimal source loca-
tion of the current source swarm. Third, the average optimal
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TABLE 6. Positioning results of three tests.

location of the 40 swarms was determined, and each source
location was updated by the evolution equation. Finally, when
the number of iterations was reached, the optimized source
location was output. Fig.21 gives the searching map of the
6th explosion based on QPSO.

It can be seen from Fig. 21 that, due to the complex
geological structure, the problems of focus blurring and focus
artifacts are more prominent. The QPSO method develops
‘‘precocity’’ in its searching in the energy field, and con-
verged locally to a false focus.

After the deep neural network model training and the
QPSO focus searching, the two methods were evaluated for
their real-time positioning accuracy in terms of RMSE in the
course of 2000 iterations, as shown in Fig. 22.

As can be seen from Fig. 22, in point of RMSE, the
positioning accuracy of this method is significantly better
than that of the QPSO-based method in the 6th, 7th, and
8th energy focus point positioning process. In the case of
the QPSO-based method, the RMSE results, in all the three
times, drop stepwise in the focus positioning process. More
specifically, for the 6th shot the convergence begins at the
1400th iterations and the RMSE drops to 0.548m in the end;
for the 7th shot, the convergence begins at the 1600th iteration
and the RMSE ultimately drops to 0.425m; for the 8th shot,
the convergence begins at the 1200th iteration and the RMSE
ultimately drops to 0.750m. With the proposed deep learning
method however, the RMSE keeps falling throughout the
2000 iterations, and the positioning error is less than 0.2m
for all the 3 shots.

To further compare their positioning performance after
the focus point search stabilizes down, the performance was
evaluated in terms of SEP (spherical error probable), and
X-axis, Y-axis, and Z-axis relative errors. Table 5 compares

FIGURE 22. RMSE graph.

further the positioning results in the intervals of 1400 to 2000
searches (in the 6th test), of 1600 to 2000 searches (in the 7th
test), and of 1200 to 2000 searches (in the 8th test).

From Fig. 22 and Table 5, the actual positioning results of
the three methods are found, as given in Table 6.

As can be seen from Table 6, under the actual geo-
logical conditions and in terms of positioning accuracy
and calculation time, the proposed method works signifi-
cantly better than the QPSO-based energy focus positioning
method. The QPSO-based energy focus positioning method
develops certain blindness and randomness in the process
of scanning the energy focus. The RMSE varies between
0.425-0.750, and the SEP varies between 0.237-0.745. The
greatest of relative errors of the three axes is close to 0.6m.
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Its positioning accuracy is unstable and the robustness is
poor. With the proposed method however, the RMSE falls
between 0.15m-0.20m, the SEP stabilizes between 0.03-0.05,
and all the relative errors in the three directions are below
0.040, hence giving higher robustness and having evident
positioning advantages. In point of positioning speed, this
method shortens the calculation time from 20s to 1.5s. It thus
follows that the proposed method has evident advantages in
focus recognition and positioning.

However, it is not without demerits when compared with
the QPSO method. 1. This method necessitates detonating
several seismic sources in advance in order to train the deep
neural network. This, as a result, drives up the experiment cost
and time. 2. The network training is a long process. In this
experiment, the deep learning environment was constructed
with Keras as the framework and Tensorflow as the back
end. Two 1080Ti GPUs were used along with the parallel
computing architecture CUDA to accelerate the image pro-
cessing process. Iterative training was performed 2000 times,
each iteration taking 10s. The total training time took close
to 6 hours. Therefore, further research shall focus on how,
in actual engineering applications, to reduce the amount of
data in deep learning and to improve the training efficiency
of the network while ensuring the positioning accuracy.

VI. CONCLUSION
To address the unsatisfactory recognition and positioning of
the energy field focus in shallow underground source posi-
tioning, this article proposes an energy field focus search-
ing and positioning method, which is based on and takes
advantage of deep learning, a technique used in the field
of image recognition. This method, by use of the grouped
cross-correlation, generates 4D input information for deep
learning and then, through the 3DCNN structure and the
3DSPP model, constructs a deep learning framework. The
source coordinates are used as the output tags to generate
an end-to-end model that converts energy field images to the
source coordinates. Simulation and field testing results show
that compared with the QPSO-based energy point recognition
and positioning method, the proposed method reduced the
RMSE from amaximum of 0.75m to 0.18m, to stabilize in the
range of 0.15–0.20m, and lowered the SEP from a maximum
of 0.745m to 0.035m, indicating that the proposed method
is not only more robust but significantly more accurate in
positioning. More prominently is the performance in SEP;
and particularly in terms of positioning speed, the proposed
method shortened the calculation time from 20s to 1.5s.
It can be seen that this method significantly improves the
recognition accuracy of the energy focus and accelerates the
recognition process, affording therefore promising value of
engineering application in the field of underground space
positioning.
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