IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received July 15, 2020, accepted August 5, 2020, date of publication August 10, 2020, date of current version August 21, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3015506

Walking Control of a Biped Robot on Static
and Rotating Platforms Based on Hybrid

Reinforcement Learning

AO X1~ AND CHAO CHEN

Laboratory of Motion Generation and Analysis, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia

Corresponding author: Chao Chen (chao.chen@monash.edu)

This work was supported by the Australian Research Council under the scheme of LP160101192.

ABSTRACT In this paper, we proposed a novel Hybrid Reinforcement Learning framework to maintain
the stability of a biped robot (NAO) while it is walking on static and dynamic platforms. The reinforcement
learning framework consists of the Model-based off-line Estimator, the Actor Network Pre-training scheme,
and the Mode-free on-line optimizer. We proposed the Hierarchical Gaussian Processes as the Mode-based
Estimator to predict a rough model of the system and to obtain the initial control input. Then, the initial
control input is employed to pre-train the Actor Network by using the initial control input. Finally,
a model-free optimizer based on Deep Deterministic Policy Gradient framework is introduced to fine tune
the Actor Network and to generate the best actions. The proposed reinforcement learning framework not
only successfully avoids the distribution mismatch problem while combining model-based scheme with
model-free structure, but also improves the sample efficiency for the on-line learning procedure. Simulation
results show that the proposed Hybrid Reinforcement Learning mechanism enables the NAO robot to
maintain balance while walking on static and dynamic platforms. The robustness of the learned controllers
in adapting to platforms with different angles, different magnitudes, and different frequencies is tested.

INDEX TERMS Biped robot, reinforcement learning, Gaussian processes, deep deterministic policy

gradient.

I. INTRODUCTION
The biped robot is a unique robotic system that has two
legs, and it is able to perform static and dynamic postures
or walking gait as humans. Biped robots also represent an
interesting research topic that involves the dynamics and
kinematics, mechanical design, control techniques, walking
gait generation, stability, adaptability, rehabilitation, and the
recent integration with artificial intelligence. Due to the kine-
matic complexity that the biped robots have more than twenty
degrees of freedom, the control issue has always been the
most complicated and challenging task for researchers in the
fields of both robotics and artificial intelligence [1], [2].
Many approaches for biped walking based on conventional
control theories rely on the mathematical model (the Inverted
Pendulum Model) of the robot as well as the trajectory of Zero
moment Point (ZMP) or Centre of Pressure (CoP) [3]. These

The associate editor coordinating the review of this manuscript and

approving it for publication was Zeyang Xia

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

approaches are commonly used for walking gait generation
on flat surfaces [4]-[6]. Other implementations based on
conventional approaches focus on biped walking control on
uneven surface, which involves inclined surface [7], partially
inclined surface [8], and grass, snow, sand, burning brush [9].
The main drawback of conventional control methods is that
they highly rely on the accuracy of the mathematical model,
where the model can be affected by joint friction, contact
force with the ground, and other un-measurable uncertainties.
Normally, the uneven surface such as the inclined surface,
grass or snow ground need to be modelled independently,
where, most of the time, the modelling procedure itself is
computationally demanding and the obtained model may
not be accurate enough. Besides, the conventional meth-
ods normally involve many parameters such as the weight
of the robot, the position of the Centre of Mass (CoM)
for each link, the inertial, the motor speed, etc. Therefore,
obtaining the dynamic model using conventional approaches
is highly computationally demanding and time consuming.

148411

https://orcid.org/0000-0002-7407-0138
https://orcid.org/0000-0002-0075-7949

IEEE Access

A. Xi, C. Chen: Walking Control of a Biped Robot on Static and Rotating Platforms

The designed controller for a specific environment is also
not general enough for it to adapt to other different types
of environment. In other words, the controller designed for
the robot to walk on the flat surface is not applicable for
the walking control on inclined surfaces, sand surfaces or
other types of environment. As a conclusion, attempting to
generalize these controllers which enable most biped robots
to be flexible and adaptable to different terrains still remains
difficult for researchers.

Reinforcement Learning (RL) based control strategy is an
alternative way that has been proposed recently to address
the above mentioned problems for biped walking [10]. RL is
an efficient approach that directly employs the interactions
between the robots and the environment, where the robots can
complete the desired tasks by gathering experience directly
from its environment without computing the mathematical
model of the robot or the environment [11]. Although the
integration between RL and biped robots is still at their
early stage, the huge potentials of RL have been proved to
have a promising future in biped robots control applications.
In 2010, Stulp et al. [12] applied Policy improvement with
Path Integrals, which is a model-free RL approach, to con-
trol a biped robot to complete some simple tasks, such as
passing through a way-point or pushing open a door. The
simulation results showed that the proposed algorithm was
able to efficiently learn humanoid motor skills to complete
tasks. In 2017, Phaniteja et al. [13], employed Deep Deter-
ministic Policy Gradient (DDPG) to learn a robust Inverse
Kinematic (IK) solver and obtain stable IK solutions. The
robot was able to complete the tasks involving reaching a
point in the far right, in the left-back side, and blew its
knee, respectively. Navarro-Guerrero et al. [14] proposed a
supervised RL approach that combined supervised learning
(Neural Networks) with RL. Experimental results showed
that the algorithm was able to be applied on a physical robot
to complete the tasks of docking and grasping. Although
these papers showed some successful implementation of RL
in biped robot control tasks, none of them were applied to
biped walking control. Biped walking is much more compli-
cated and requires high dimensional state space and action
space, as it involves the precise control of every joint while
maintaining the stability.

Many attempts based on model-free RL frameworks have
been made recently to involve RL into biped robot walk-
ing control to avoid calculating the mathematical model.
Gil et al. [15] utilized Q-Learning to find a sequence of
pose that allows a NAO robot to reach the furthest dis-
tance in the shortest time, while still keeping a straight
path without falling down. However, the actions were dis-
crete, thus it lacked a smooth transfer between two poses.
Lin et al. [16] successfully applied Q-Learning, a model-free
RL framework, to a NAO robot as the joint controller to
maintain the stability of walking on flat surface, inclined and
declined surface, and a seesaw. They also proved that the pro-
posed Q-learning scheme was able to imitate human motions
captured from cameras while still maintaining the balance

148412

without falling down [17]. Although continuous actions
were considered in their work by using Gaussian distribu-
tion, the Q-Learning framework still relied on a look up
table where the action pairs were pre-defined. In 2019,
Kim et al. [18] utilized Deep Q-Learning (DQN) and the
Inverted Pendulum Model (IPM) to control the robot joints to
complete the push recovery, where DQN was able to deal with
a huge number of states without generating a look-up table
or clusters. Although the steady state performance can be
guaranteed after convergence using mode-free RL, the major
challenge of it is that the convergence time is extremely long
since no prior knowledge of the system is provided.

Model-based RL is an alternative approach to reduce the
convergence time by generating a transition model and pro-
vides information about the dynamics of the system [19].
Deisenroth and Rasmussen [20], Deisenroth et al. [21]
employed Gaussian Processes, known as the most commonly
used mode-based RL approach, and proposed the Probabilis-
tic Inference for Learning Control (PILCO) to estimate the
transition model of the system, where the control policies
are improved using the analytical result of the policy gra-
dient based on a small amount of training data. Compared
with model-free RL, model-based RL relies on the transition
model leading to a shorter convergence time with less training
data, but it highly relies on the accuracy of the estimated
model. The resulting control policy would be changed sig-
nificantly if the transition model is not learned perfectly or it
contains measurement error. Besides, updating the model is
extremely computationally consuming.

Many attempts focusing on combining model-based train-
ing framework with model-free learning techniques on
robotic control tasks have been made in recent years. In 2016,
Gu et al. [22], proposed a novel hybrid structure that incor-
porated a particular type of learned model into the proposed
Q-learning scheme with Normalized Advantage Functions
to improve the sample efficiency. The authors used a mix-
ture of planned iLQG and on-policy trajectories, and then
generated additional synthetic on-policy rollouts using the
learned model from each state visited along the real-world
rollouts. The effectiveness and data-efficiency are guaranteed
by refitting the model itself for every n episodes. In 2018,
Pong et al. [23] introduced a novel Temporal Difference
model (TDM) by combining the benefits of model-free and
model-based RL frameworks. The proposed algorithm was
used for model-based control tasks where it was trained
with mode-free learning mechanism. Nagabandi et al. [24]
employed a HRL framework that combined Model Predic-
tive Control (MPC) with NN Dynamic Models to achieve
excellent sample complexity in a model-based RL algo-
rithm. Then, a NN dynamics model was applied to initialize
the model free learner. The results showed that the algo-
rithm guaranteed the sample efficiency as well as the con-
trol performance. Feinberg et al. [25], however, proposed a
model-based value expansion method where the predictive
system dynamics model was incorporated into the model-
free function estimation to reduce the sample complexity.

VOLUME 8, 2020

A. Xi, C. Chen: Walking Control of a Biped Robot on Static and Rotating Platforms

IEEE Access

The predicted dynamics model was fitted prior to the sam-
pling of a trajectory from the replay buffer, after which the
actor network was updated. Then, an imagined future tran-
sition was obtained and was used to update the critic net-
work. In 2019, Burhan Hafez et al. [26] proposed a Curious
Meta-Controller which consists of the model-based planner
and the model-free learner, where it was capable of alternat-
ing adaptively between model-based and model-free control.
The approach was validated to be able to improve the sample
efficiency and to achieve the near-optimal performance.

However, these methods were only validated with simple
fully-observed models (the walker or the swimmer) under
ideal conditions (flat surface), where no disturbances or com-
plex terrains were considered as part of the environment.
They also required a huge amount of computations as both
model-based RL and model- free RL were being updated
within the learning iteration during the on-line learning pro-
cedure. Besides, none of the above frameworks considered
the joint limitations, mechanical constraints, or different ter-
rains. Thus, there is a large variation between the generated
walking gait for biped robots (the walker) from their exper-
iments and the real human walking gait. Therefore, their
generated gaits are not suitable for complex biped models,
such as NAO robots, to complete tasks such as stable walking
on different terrains. Hence, a Hybrid Reinforcement Learn-
ing (HRL) framework that is suitable for a complex biped
robot model (a NAO robot) is investigated in this work.

The proposed HRL framework incorporates the model-
based scheme and the model-free structure. The approach is
validated on a NAO robot model to maintain balance while
walking on static and dynamic platforms. By introducing the
pre-training procedure, the proposed control method success-
fully bridges the gap between model-based RL and model-
free RL, where the transition from learning the model to
obtaining the best action has been smoothly completed. It also
avoids the distribution mismatch problem while integrating
the model-based scheme into the model-free framework.
Simulation results show that the proposed HRL framework
is able to generate joint velocity control inputs to generate
stable walking gait on both static and dynamic platforms
without falling down at any time step. The robustness of the
controllers has also been validated, where the robot is able
to adapt to walking on the platforms with different angles,
different magnitudes, and different frequencies.

This paper is organized as follows: Section II shows the
simulation environment of the proposed NAO robot as well
as the rotating platform. Then, we illustrate the calculation
of centre of pressure (CoP), generation of walking gait cycle,
and the desired CoP, after which the state space and action
space of the system are defined accordingly. In Section III,
the overview of the proposed HRL is presented, as well as
the basic principle of GP and the corresponding optimiza-
tion techniques. Then, we demonstrate the structure of the
proposed Hierarchical Gaussian Processes (HGP) and briefly
explain the function of each layer, after which we explain
how the initial control input is obtained according to the

VOLUME 8, 2020

HGP model. After that, we explain the necessity of applying
the Pre-training procedure based on the previously generated
control input. Finally, we present Deep Deterministic Policy
Gradient (DDPG) as the model-free optimizer to improve the
policy based on the pre-trained actions. Section IV describes
how we set up the experiments, where all simulation results
are provided. In section V we present conclusions and discuss
possible extensions of the proposed HRL algorithm.

Il. FORMULATION OF THE PROBLEM

As shown in Figure 1, the NAO robot stands on a platform,
where the platform is able to rotate along x — axis and
y — axis. The platform is employed here to simulate the com-
plex and dynamic environment, where oscillations are intro-
duced to the system to imitate the real external disturbances.
Compared with other studies where the robots are trained
on a flat surface or a platform with fixed angle under the
experimental environment [15]-[17], the proposed platform
is able to provide a more complex and dynamic environment
where the robot is capable of learning a more robust and
efficient controller. Thus, the experiments in this paper will
not only show the convergence of the learning procedure, but
also involve the robustness of the learned controller to adapt
to different complex and dynamic environments.

At the beginning of each experiment, a NAO robot will
be initialized to its default standing posture. The actions of
the upper body, including the torso, arms, hands, and head,
are ignored as it can be considered as a point mass using the
Inverted Pendulum Model (IPM) [27]. The control actions are
provided by ankle joints, knee joints, and hip joints. As shown
in Figure 1, the robot is at its initial position, where the red
and blue frames are the world frame and the robot frame,
respectively. P is the rotating platform which can rotate along
x — axis (roll) and y — axis (pitch) in the world frame.

K, N g
fVa K
A = ! p
r
Ay
y
FIGURE 1. The simulation environment of the NAO robot with the
platform.

Hpg and H| represent the right hip and the left hip, respec-
tively. Kg (Kp) and Ag(Ar) indicate the knee joint and the
ankle joint, respectively. The ankle joint has two Degree of
Freedoms (DoFs) which can rotate along x — axis (roll) and
y — axis (pitch). The knee joint has one DoF that allows it to
rotate along x —axis. The hip joint has two DoFs that are pitch

148413

IEEE Access

A. Xi, C. Chen: Walking Control of a Biped Robot on Static and Rotating Platforms

and roll, which allows it to rotate along x — axis and y — axis,
respectively. The actions applied on NAO at any time step,
known as the action space, is a 10 dimensional array which
can be expressed as

=[Ady, Ady, > Adhy Al Ay, Ay, Ay, Ay,
Adlyer Ay, 1"

where the control inputs for hip joints are the change of
pitch angles (Aql;,R, Aqi,L), and the change of roll angles
(Aqy,. Aqy,), respectively. For knee joints, the control
inputs are the change of pitch angles (Aq!;(R, Aq’;(L). For the
ankle joints, the control inputs are the change of pitch angles
(Aqf\R, AqZL), and the change of roll angles (Aqu, Aq:\L),
respectively. In order to generate training data for the
mode-based estimator, the action space is further specified
as several discrete action combinations. For each dimension
in A the action is ranging from -0.1 to 0.1 and can be written
as Ag € [—0.1,0.1] which contains 11 evenly distributed
discrete actions.

The walking gait for a biped robot is a periodic walking
cycle, where the robot executes the same walking pattern
from one cycle to another. The periodic gait can be further
separated into the double support phase (DSP) and single
support phase (SSP), where the instant transition between the
DSP and SSP is ignored in this work. The simplified walking
gait for one cycle is shown in Figure 2. As can be seen from
Figure 2, the red dot indicates the desired CoP, and the black
quadrilateral is the robot’s foot. We assume that the biped
robot starts this walking cycle from the DSP at the beginning,
as shown in Figure 2 (a), where the left foot is in front of
the right foot. Then it lifts its right foot (Figure 2 (b)) and
takes a step forward (Figure 2 (c)), where the black dash
quadrilateral indicates that the foot is lifted and is in the sky.
The right foot contacts the ground when it completes a step
forward, and at this moment, the desired CoP is shifted to
the right foot immediately, as shown in Figure 2 (d). Then,
the left foot takes the same step forward as the right foot,
after which it contacts the ground, as shown in Figure 2 (g).
The desired CoP is consequently shifted to the left foot at this
moment. After the robot completes this walking cycle, it will
execute the same cycle from the same beginning posture,
where the posture shown in Figure 2 (g) is the same as that
in Figure 2 (a).

0,00 [003
] oy ED o

(a) (W] (c)
FIGURE 2. Biped robot simplified walking gait for one cycle.
In this paper, we utilize foot sensors to measure the centre
of pressure (CoP) of the robot and determine whether it is sta-

ble. The detailed position of foot sensors and the calculation
of CoP for DSP and SSP are shown in Figure 3.

148414

y 0.045m Y | 0.045m
. . '[
Fri Frz
R L] L]
o £l | feror 09w £F |
oLy | ofrt Frag J (%, 1), 0.09m
.Fn FL3. Idy .Fa F3 -~ J’ X
0 ldx T x o x
(a) (b)

FIGURE 3. The position of foot sensors and the center of pressure for
(a) Double support phase, (b) Single support phase.

As shown in Figure 3, the blue area indicates the support
polygon (stable region), the black quadrilateral is the robot’s
foot, and the black and red dot show the position of foot
sensors and the centre of pressure (CoP), respectively. For
SSP, as shown in Figure 3 (b), the position of CoP in x — axis
and y — axis can be calculated as follows

L/ _ X1F1 +x0F) +x3F3 + x4k,

X, = 1
CoP Fil+F,+F3+Fy4)
L/R _ Y1F1+y2F) 4+ y3F3 + yaFy

YC{)P = (2)

Fi+F,+F;3+Fy

where x;i € [1,4] and y;i € [1,4] indicate the x and y
coordinates for the i sensor, respectively, and F; is the sensor
reading of the i sensor. The length and width of the foot
are 0.09m and 0.045m, respectively. For DSP, as shown in
Figure 3 (a), the position of CoP in x — axis and y — axis can
be expressed as

FL FR

L R

Xcor = Xcop (m)*xwﬁ@) x <F+F)
(3)

Fr Fr

L R

YCOP = YC!)P X (FL+FR)+<YC0P+dy) X (FL+FR>
“)

where Fy, and Fp are the sum of sensor readings of the left
and right foot, respectively. The superscript L and R in (3), (4)
indicates the left foot and right foot, respectively. F and Fg
are the sum of all four sensor readings for left and right foot,
respectively. [X& p. Y& p] and [X& p. Y& 5] are the position
of CoP of the left and right foot, which can be calculated using
(1) and (2). d; is the offset of the foot in x — axis, which
indicates the length of one step forward. dy is the offset in
x — axis, which represents the distance between the left and
right feet. As shown in Figure 3 (a), both d, and d, will be
calculated and refreshed at each step. The state space contains
the position of CoP as well as the joint angles and can be
presented as

= [XC()Ps YC()Pa ‘IZR’ KIZL, quv qu’ q?(Rv C[?(L, quR9 ‘]JZL
r r 1T
qHR’ QHL]

As this paper only focuses on the static stability walking con-
trol of the NAO robot for both SSP and DSP, the goal of the
proposed RL algorithm is to make the measured CoP as close

VOLUME 8, 2020

A. Xi, C. Chen: Walking Control of a Biped Robot on Static and Rotating Platforms

IEEE Access

to the desired CoP (X, (dﬁf’ed , Ygf)f[f”d) as possible at any time
steps under any environment. In other words, the objective of
the proposed approach is to generate an adaptive walking gait
based on the existing gait on the flat surface, which allows
the NAO robot walking steadily on both static and dynamic
platforms.

lll. FRAMEWORK

A. THE STRUCTURE OF THE PROPOSED HYBRID
REINFORCEMENT LEARNING

Many existing Hybrid RL structures attempt to integrate the
model-based structure into model-free learning [22]-[26].
The model itself is being updated leading to a faster and
more accurate value function estimation, where the sample
efficiency is significantly improved. Inspired by their struc-
ture, we believe by reducing the dimension of action space
with a reduced state space will also improve the sample
efficiency with less computational load. In addition, avoiding
the distribution mismatch problem [22]-[26] is much more
straightforward with less computation than finding a method
to address it. Thus, alternatively, a novel structure is proposed
in this work which establishes a serial connection between
model-based and model-free structures, where the distribu-
tion mismatch issue can be avoided. The model-based (MB)
estimator is used to estimate the system model and obtain
initial control inputs during the off-line training procedure.
The model-free (MF) optimizer utilizes the control inputs as
a reduced action space and fine tunes the action during the
learning procedure.

As shown in Figure 4, at the beginning of off-line training,
the predefined discrete actions are randomly applied to the
robot to collect training data x;. All training data will be
stored as an array D1 where it contains N training tuples
(x;eDy,i=1,2,---, N). Each tuple includes three elements
that x; = [si, aj, si+1]T, where s; and siy] represent the
current and the successor state respectively, and a; in the cur-
rent random action. Then the proposed Hierarchical Gaussian
Processes (HGP) is employed to predict the initial model
of the system and generate initial control inputs. Detailed

Apply actions Training
Robot randomly The rotating data Higrarchical
platform D Gaussian Processes
1

Initial
control inputs

i

The action
network

Pre-initialized action

network Pre-train

the action
network 0"
i

Pre-training

tore Take
transition an action

The rotating

platform
St @1t Sevt a;

Model-Free Optimizer Select an action a, = u(S.|6%) + N;

FIGURE 4. The structure of the proposed Hybrid Reinforcement Learning.

VOLUME 8, 2020

implementation of HGP is demonstrated in Section III C.
The generated initial control inputs are essentially a reduced
action space, where the elements in this space are action
ranges. Every action range can be redefined as Gaussian
distribution specified by mean MiA and variance aiA, where
A indicates the action space, and i represents the correspond-
ing state.

Before the model-based off-line training, the action space
is defined as action ranges for all states, where the range
is identical for each corresponding state. Assuming that the
range for ith state can be defined as aj|sie [—C, C], where
the total number of actions is K. The goal of the proposed
HGP is to significantly reduce the number of actions for each
state, that is, to reduce the range of action space. The HGP
will now generate a new action space for each state, i.e. the
reduced action space, where it only contains k actions ranging
from ¢ to ¢ (k < K and ¢ <« C). Now, the action space for
it state can be written as a; |si€ [—c, c], which indicates that
the actions within this range can better control the robot than
the actions without this range. Suppose that the best action
for i state can be presented as a!’. Given that the objective
of RL is to find a}’ for i state, and the searching space is
reduced from [—C, C] to [—c, c]. The sample efficiency is
consequently improved, and thus, the convergence time
is also reduced.

However, the parameters 6* for the actor network are
randomly initialized [29], thus, it does not know that the
actions from the reduced range a;|s; € [—c, c] can control the
biped robot with better performance. As a result, the next step
is to pre-train the actor network and to obtain a pre-initialized
actor network parameterized by 6" that allows the model-free
optimizer to start learning from a relatively stable state. The
ground-truth for the pre-training procedure is defined as the
mean ,uf* for each state, and the parameters 6/ are randomly
initialized. The loss function is defined as the mean squared
error (MSE) between the desired action /L;A and the current
action. Consequently, the pre-trained network will be directly
used as the initialized network for the Deep Deterministic
Policy Gradient (DDPG) based model-free optimizer. DDPG
is a model-free off-policy RL structure which is able to be
applied to robotic systems with high dimensional continuous
action space [29]. DDPG not only utilizes a critic network
to approximate the value function but employs the actor
network to generate action directly. Given that the action of
the proposed NAO robot is the change of angle for each joint
that contains the ankle joints, knee joints and hip joints. Also
consider that the principle of the proposed HRL resembles a
fine tuning scheme based on the original walking gait, where
the robot is able to walk on different terrains. Thus, we believe
that generating the policy directly through the deep neu-
ral network (Deterministic Policy) is much more efficient
than employing gradient descent on Stochastic Policy. Many
attempts based on Stochastic Policy gradient, such as Actor
Critic and A3C [30], samples training data from both state and
action spaces, leading to a low sampling efficiency and long
convergence time. DDPG, on the other hand, samples training

148415

IEEE Access

A. Xi, C. Chen: Walking Control of a Biped Robot on Static and Rotating Platforms

data only from the state space since the mapping between the
state space and the action space is determined [29].

B. HIERARCHICAL GAUSSIAN PROCESSES
The Hierarchical Gaussian Processes (HGP) that consists of
two layers, shown in Algorithm 1, is employed to estimate

the dynamics of the system. The training data of the first layer
) : L. je{1,2,....N}
can be written as]D>'1 = {sJt aj, th+1 }

o Coiel1,2,..N)
1s XJI = {s{, aJ.}

Hite(1,2,....1})

[jell,2,..N

{SCOP‘“ }te{lzT}
action space A. The state in D’l is specified by the current
position of CoP and the current joint information, which can
be written as

iyl U T Y
S;—[Xcup,YCUP’QZ’qu K H9qH’] (5)
Here, we use the bold letters to represent joint information as
the robot has two legs. After obtained the estimated model,

the training results of the first layer will be sued as the
training inputs of the second layer. The training input of

. The input
te{1,2,...,T}

. i
, and the training target is Y| =

, where j indicates j action pair from the

o A . yie{1,2,..,M)

the second layer is X, €D, where X, = {s‘, a!}
T Hiet12,...N)
and the training target (Y} €ID}) is the successor state obtained

) . . ie{l,2,... M}
from the first layer Y}, = {S(t+1)j }je{l,z,,..,N} . Given the test
input and the corresponding hyper-parameters, the estimated

training outputs of HGP are the Gaussian Distributions of
the successor states which can be calculated using Multiple
Inputs Multiple Outputs Gaussian Processes in (6), as shown
at the bottom of the page. The Detailed implementation of
HGP can be found in our previous paper [33].

C. INITIAL CONTROL INPUT GENERATION

After obtaining the estimated model of the system, the initial
control inputs will be consequently calculated by minimizing
the predicted immediate cost, which can be presented by the
following binary saturating function

E e (s141)]

1
— ’I + ZA—]’ 2022
1 T 1
xexp _P (M - Starget) Q (M - Starget) @)
e

where A~! is the diagonal precision matrix where the ele-
ments are in unity. Ql=A"1 (I + EA‘I)_I. As a result,

Algorithm 1 Implementation of HGP

1 : Initialize: state space S, and action space A

2 : Apply discrete actions randomly to the robot and collect
data set D

3: Using D to generate ID,, and then obtain the transition
model M

4 : Calculate the finial guesses a
predicted cost

5: Repeat forever

6 : Obtain current state s; from sensors’ reading

7 : Learn the transition model M

8 : Calculate the finial guesses a; according to M
Usinga; = E [c (s,+1)]

9: Apply a, observe the next state s;41, and receive an
immediate reward ry.1

10 : Store s, a;, St4+1 as Dy

11: Dy =Dy U Dy

12 : until s is terminal

i
guess

by evaluating the

for any given state s; after taking an action a;, the expected
immediate cost IE [c (s¢+1)] can be computed using (7), where
n and X are the predicted mean and covariance of p (s¢+1)
respectively. Thus, the initial control inputs are defined as
the actions for each state where the expected immediate costs
are minimum and can be expressed as a ~ N (u?, o). The
superscript of mean and variance with capital letter indicate
that a is calculated from the original action space A. The
initial control inputs can be generalized as an array, where
each element represents a best action range corresponds to a
certain state. Detained calculation of the initial control inputs
can be found in our previous paper [33].

D. THE ACTOR NETWORK PRETRAINING

Gradient based model-free RL algorithms apply the calcula-
tion of policy gradient (Reinforce), value function gradient
(DQN), or both (A3C) [30]. The principle of these methods
is to utilize deep neural networks to obtain a mapping mp(als)
between the input and output. The policy is being updated
by relying on an estimated return by Monte-Carlo (MC)
using episode samples to update the policy parameters 6.
However, MC algorithm receives the reward and learns value
functions until the end of an episode, which is time consum-
ing. DQN and its variations on the other hand, generates a
mapping between the input states and the Value Function,
where the network is employed to estimate the function val-
ues with respect to each action. Although it performs well

pGset’ X1, X, Yo)
Er [SJL,+1|X1,X1*,Y1]
~N ,
E [S'Lm X, X1, Yl]

148416

vary [1K1 X, Y |0 o 0

- vary I:S]L,H-lle’ Xis, Y]] -0

VOLUME 8, 2020

A. Xi, C. Chen: Walking Control of a Biped Robot on Static and Rotating Platforms

IEEE Access

with high dimensional state space, the estimated function
values are only capable of evaluating discrete action space.
A3C employs Actor Critic Structure that involves the critic
network and the actor network. The critic network updates
the Value Function parameters w based on Temporal Differ-
ence (TD) error, while the actor network updates the policy
parameters 6 for my(als), in the direction suggested by the
critic network.

In the above-mentioned approaches, the policy function
mp(als) is typically modeled as a probability distribution over
actions A with respect to the current state and thus it is a
stochastic policy. The problem of stochastic policy gradient
is that after the policy is learned, the probability distribution
of optimal policy must be sampled to obtain the real action.
The action is normally a high dimensional array, which means
that frequent sampling is required in this high dimensional
space leading to high computational load. As a result, during
the process of learning, the policy gradient is calculated by
integrating the entire action space. Alternatively, Determinis-
tic Policy based algorithm considers the policy as a determin-
istic decision a = p(s) which does not require the integration
in action space. Consequently, it improves the learning effi-
ciency with less sampling procedures. However, performing
gradient descent on deterministic policy usually starts from
a randomly initialized actor network as the algorithm does
not have prior knowledge of the system. On the other hand,
updating the parameters that change the policy too much
while using the deterministic policy gradient may induce
training instability. Many approaches, such as TRPO [31]
and PPO [32], that attempt to avoid this problem employ the
KL Divergence that constrains the size of the policy update
at each iteration. They improve the sample efficiency and
thus improve the learning stability, but those approaches are
still based on stochastic policy gradient. To bridge the gap
between the mode-based HGP and the mode-free DDPG,
we employ the Actor Network Pre-training scheme.

According to the previous sections, the HGP estimates the
dynamic model of the system and also provides the initial
control inputs. The control input is the possible actions for
each that can better control the robot, where these actions
can be stored as an array for each state. As a conclusion,
the HGP essentially provides the exact prior knowledge of
the system showing which actions can better control the robot
and guarantee the stability, where the model-free optimizer is
able to directly utilize it. We assume that the actor network is
parameterized by 6#, and the output of it is the real actions
and can be expressed as a = (s|6#). Since the initial control
input only provides an action range and the exact best action
for each state is still unknown, we extract the mean of the esti-
mated actions for each state ;1 as the prior knowledge of the
target actor network which can be written as a. The objective
of pre-training is to train the actor network that minimizes the
following Mean Squared Error (MSE) loss function

| N
L(a.a) =~ (- &)’ ®)

i=1

VOLUME 8, 2020

The resulting actor network is able to generate actions for
any given state where the robot is relatively stable. Thus,
the model-free optimizer can perform gradient descent from
a better beginning where the action is relatively close to the
best action given the state. Consequently, the convergence
time for the on-line learning procedure will be reduced.

E. MODEL FREE FINE TUNING

We employ DDPG as the model-free optimizer for the
on-line learning procedure. DDPG is a model-free off-policy
based on AC framework, which combines Deterministic
Policy Gradient (DPG) with DQN [29]. DPG utilizes deter-
ministic policy gradient to replace the importance sampling
and thus avoid the mismatch between behavior and target
policies introduced by stochastic policy gradient. DOQN is
an expansion of Q-Learning, where a deep neural network
(Q-Network), together with experience replay, are used to
replace the Q-Table and estimate the Q-Function [30]. The
original DQN works in discrete action space, and DDPG
extends it to continuous space to address the high dimen-
sional action space. The objectives of DDPG are to learn
a Q-Function, and to learn a policy. For the first objective,
we assume that a deep neural network is used to approximate
the Q-Function and can be expressed as (s, aj |9Q), which is
parameterized by #Q. The objective is to minimize the fol-
lowing Mean Squared Bellman Error (MSBE) loss function

£(0°.D)

=]E(s,a,r,s’,d)N'D

X |:(Q (s, a|9Q) - (r—i—y (1—d) max,Q (s’, a/|9Q>>)2}
)

where (s, a,rs, d) is the collected transitions from D, and
d indicates whether s’ is terminal. The target term of this
loss function is r+ y (1 — d) max,Q (s, a' | #Q), where the
algorithm is trying to make the Q-Function be more like this
target. However, it depends on the same parameters < and
the learning process might be unstable when minimizing the
loss function. Thus, DDPG introduces the target network to
avoid this issue

02" « pe2" 1 (1 — p)62 (10)

where p is a hyperparameter ranging from O to 1. In DDPG,
the target network is copied from the main network and is
updated once per main network update (Gerg < 69). Thus,
the MSBE loss function can be written as

L <9Q, D)
= E.ar.s.d)~D
Jlotan-ra-nem]
(n

where Q'€ represents the target Q-Network, and ;'€ is the
target policy. For the second objective, DDPG is trying to

148417

IEEE Access

A. Xi, C. Chen: Walking Control of a Biped Robot on Static and Rotating Platforms

learn a policy that maximizes the Q-Function Q(s;, ai|<9Q).
We assume that the actor function, parameterized by 6" can
be written as u (s|0*). The objective is to perform gradient
ascent with respect to 8% only to solve the following loss
function

£(6".D) = Evop [QGsio ns10™109)] (12)

where the parameters in Q-Function are considered as
constants in the above equation. The actor network is
updated by introducing the target network and follow-
ing the same principle in (10) as ot p@“mg +
(1 — p) 6*. Detailed implementation of the proposed HRL
that combines HGP, pre-training, and DDPG is shown in

Algorithm 2.

Algorithm 2 Hybrid Reinforcement Learning Algorithm

1 : Initialize: state space S, and action space A, randomly
initialized the critic network Q(s, @|09) and the actor
network 1(s|@*) with the weight ¢ and %

2 : Apply Algorithm 1 to generate the initial control inputs

a|s with the mean u4 and the variance o4
3 : Pre-train the actor network and obtain the pre-trained
parameters 9"
4 : Initialize: the actor network u(s|6w) with the weight or
5 : Initialize target network Q" and p’ with weights
anrg - OQ, oﬂmrg - éM
6:Initialize replay buffer D
7: For episode = 1, K do
8: Reset the robot and the platform to their initial position
9: Fort=1,Tdo

10: Select an action a; = p (s, Ié“) + ¢, wheree ~ N

11 : Execute action a; in the environment
12: Observe next state s;.+1, reward 7;

13: Store transition (s;, ay, 1+, S;41) in replay buffer D
14: If ;1 is the terminal state
15: Reset everything and back to step 8

16: Else

17: Randomly sample a minibatch of A transitions
18: (si, @i, i, Si1) from D

19: Compute the targets as

200 7+ y Q™ (sipr, 18 (51 07) 09
21: Update Q-function by one step of gradient

descent 5
22: Voo = 5 2 (vi — O (si,4:162))
23: Update polic;ﬁ by one step of gradient ascent
24 Vi = X Va0 (56 ai169) la=usp Vuit (16
25: Update 1target n’etworks with
26: oQ:‘”g «~ ,00thg +(1—p)8?
27: 0" — p@ "t + (1 — p)oH
28: EndIf
29: End For
19: End For

148418

IV. EXPERIMENT

A. EXPERIMENT SETUP

The experiment environment is built in V-REP, as shown
in Figure 1, which contains a rotating platform and a NAO
robot. We also assume that all sensor readings contain mea-
surement noises at all times. The total time of off-line train-
ing procedure for collecting training samples for HGP is
800 episodes. During the process of training, if the robot
falls, the training procedure will be paused and the robot as
well as the platform will be reset to their initial position, after
which the process will start again and continue collecting
training data. After the estimated model is obtained, the algo-
rithm will find the actions where the predicted immediate cost
is minimal. The cost is defined as the Euler distance between
the current CoP and the desired CoP. To avoid overshoot, we
employ the generalized binary saturating function to evaluate
this distance penalty, which can be expressed as

1
c=1—exp (—P\/(yp -)’0)2 + (xp —xo)2> (13)

where (Xp, yp) is the current position of CoP, and (Xo, yo)
is the desired position of CoP. The result of HGP model-
based off-line training is the action range for each state, where
the estimated immediate cost is minimal. After it, the mean
of the previous obtained action range for each state will be
selected as the training data for the pre-training procedure,
where the actor network of the model-free on-line learning
framework will be pre-trained. This process does not require
the interaction between the robot and the environment, thus,
it can be considered as a separated procedure between the
off-line training and the on-line learning where the NAO
robot is not involved. Finally, DDPG is employed as the
model-free optimizer to find the best action pair for each state.
The reward function is defined as

—10 FallsDown
10 StableRegion

1
exp <_§ (s—so) T w1 (s—so)> Otherwise

where W is the diagonal weighting matrix with the elements
of 0.5, where each element determines the impact of the
corresponding state. s and sq indicate the current position of
CoP and the desired CoP, respectively. Considering that the
final goal of the algorithm is to maintain the robot balance
where the CoP must be located within the desired region.
The joint angles may vary from each state as the angle of the
platform is changing; thus, joint angles are not considered as
part of the desired state.

Instead of allowing the simulation to run forever,
we employ the episodic tasks in our work. At the beginning
of each episode, the robot and the platform will be reset
to their initial positions. This is because the entire experi-
ment, including the off-line training process and the on-line
learning procedure, assumes that the Robot Frame (local
frame) is translated from the World Frame without rotation,
which means that the x — axis, y — axis, and z — axis of

VOLUME 8, 2020

A. Xi, C. Chen: Walking Control of a Biped Robot on Static and Rotating Platforms

IEEE Access

the Robot Frame are pointing the same directions as the
World Frame. However, during the experiment, some of the
intense actions may result in large instant velocity of the robot
joints, leading the robot to deviate from the original local
frame. The resulting Robot Frame may rotate from the World
Frame, which consequently introduces errors after applying
the control inputs. Episodic tasks allow the robot to be able
to recalibrate the consistency between the Robot Frame and
the World Frame, which avoids the error and increases the
efficiency of the algorithm. In addition, as the platform is
designed with finite length and width, the robot may walk
outside of the platform and falls to the ground. Therefore,
during the process of model-free on-line learning, if the robot
falls on the ground from the rotating platform, the simulation
will be paused and the platform will be set to their initial
position. For the robot, the posture will be set to the initial
posture but the starting position will be set to a random
position within the range of the platform. This is because if we
set the platform, as well as the robot, to their initial position
and posture, the robot will always start learning from the same
point and the platform will always execute the same rotating
behaviour. Consequently, the robot will only explore actions
where the environment only varies within a very small range,
and thus the learned controller will be much less robust.
To enable the robot to explore more actions where it is able
to walk in a more complex environment, we select a random
position within the range of the platform as the new starting
position of the robot.

The benefit of employing simulation is that it can speed
up the training and learning process, which will save a lot of
time in reality. It is still hard to say that the system is exactly
the same as the real one. One challenge is the difference
between the simulation and the real platform. In the simula-
tion, the dynamics of the platform is pre-defined and assumed
not to be affected by the robot. However, in reality, the rota-
tion may change slightly due to the contact force generated by
the interaction between the robot and the platform. We will
therefore consider the deviation between the simulated and
the real platform in our future works.

B. EXPERIMENT RESULTS
We separate our experiment into three stages: uphill,
downhill, and walking on the rotating platform. The on-line

EDY
(@) (b)

EBU

learning curve (i.e. the average error with respect to the learn-
ing episode), the real time position of CoP at the beginning
and the end of learning, and the snapshots of the simulation
are shown respectively for each experiment stage. For the
uphill task, the on-line learning episode is 500. During the
process of learning, if the robot falls on the ground from the
platform, the simulation will be paused and the robot will
be reset to its initial position, after which the simulation will
continue.

Figure 5 shows 4 simulation snapshots of the NAO robot
walking uphill on Episode 500 during the experiment on 4s,
18s, 43s, and 1min 15s, respectively. As can be seen from the
figure, the robot walks uphill with steady steps without falling
down. The robot is also able to walk in a straight line and
no left or right deviation in walking occurs. Since we ignore
the DSP and consider it as an instant transition between two
SSPs, to show the stability of walking, the position of CoP
for SSP is shown in our experiments. Since the stability of the
robot is controlled by the model-free optimizer, the walking
pattern may differ from one gait circle to another. The total
time of completing each gait circle is consequently different.
Thus, we collect 100 sampling points of CoP during the
experiment for each foot to show the performance of walking
before and after using the model-free optimizer. These sam-
pling points may not be obtained from a single gait circle,
and most of the time they are collected from two nearby gait
circles.

Figure 8 (a) and (b) shows the position of CoP on the left
and right feet, respectively. The blue circles indicate the posi-
tion of CoP in Episode 1, which is the beginning of the model-
free on-line learning procedure, and the red star markers are
the position of CoP at the end of learning (Episode 500).
The black dash lines indicate the desired CoP in x — axis and
y — axis, which are x = 0.0225m and y = 0.07m, respec-
tively. The more the sample points are close to the intersection
of two dash lines, the more the robot is stable. For the left foot,
shown in Figure 8(a), at the beginning for on-line learning,
the sampling points are scattered ranging from 0.005m to
0.045m in x — axis and 0.027m to 0.09m in y — axis. The
blue curve shows the CoP boundary of Episode 1. During
the process of learning, the sampling points tend to gradually
concentrate at the desired steady state [0.0225m, 0.07m], and
the average error between the measured CoP and the desired

2 EDU~
(©) (d)

FIGURE 5. Simulation snapshots of the NAO robot walking uphill on a static platform, where the incline angle is 7 degrees.

VOLUME 8, 2020

148419

IEEE Access

A. Xi, C. Chen: Walking Control of a Biped Robot on Static and Rotating Platforms

EDU
(@) (b)

(© (d

FIGURE 6. Simulation snapshots of the NAO robot walking downhill on a static platform, where the incline angle is 7 degrees.

(@ (b)

CoP is consequently reduced. At the end of learning (episode
500), indicated by the red boundary, the sampling points are
scattered ranging from 0.0109m to 0.0384m in x—axis and
0.058m to 0.084m in y—axis.

Figure 8 (b) shows the convergence of the sampling CoP
of the right foot, where it has the same convergence pattern
as the left foot.

At the beginning of learning, the CoP boundaries are
[Om, 0.041m] in x—axis and [0.029m, 0.09m] in y—axis.
At the end of learning, represented by the red boundary,
the sampling points are converged to [0.007m, 0.031m] in
x—axis and [0.055m, 0.084m] in y—axis. Figure 8 (c) shows
the average errors from 50 individual trails with respect to
learning episodes while applying the proposed HRL and
applying HGP as the pure model-based RL, respectively. The
error is defined as the Euler distance from the desired CoP to
the measured CoP, which can be calculated using (13). The
error at each episode is computed by averaging the values
from 40 randomly initialized trails at the same episode.

The episode reward is not listed as it only shows the
convergence of applying the RL algorithm. Here we show
the error since it not only provides the convergence of the
proposed model-free optimizer, but also indicates the control
performance of the controller as the CoP error is the most
significant criteria of stability for biped robots. As shown in
Figure 8 (c), the red curve represents the average error while
applying the proposed Hybrid RL framework which contains
the mode-based estimator, actor network pre-training, and
the mode-free optimizer. The blue curve shows the average
error while applying the pure model-based RL without the
model-free optimizer. The shaded area indicates the maximal

148420

|
‘
|
‘
Lol
4

(© (d)

—— Hybrid RL
' —— Model Based RL

'

Right Cop in Episode 1

* Right Cop in Episode 500 0,005

001 - - - -Desired Cop
T

'
Left Cop in Episode 1
* LeftCopin Episode 500
001 - - - Desired Cop

T

' '

" . 0 . P — . 0 . .

0 001 002 003 004 0 001 002 003 004 0 100 200 300 400 500
Xcop (m) Xcop (m) Episode

() (b) ()

FIGURE 8. (a) 100 random sensor readings and boundaries of CoP at the
left foot at episode 1 and 500 while the robot is walking upwnhill, (b) the
sensor readings and boundaries of CoP at the right foot, (c) the average
episode CoP errors of the proposed HRL compared with the model-based
RL from 50 individual trails.

and minimal average error of 50 individual learning pro-
cesses. At the beginning, the error of both frameworks is
approximately 0.03m, with the increase of learning episode,
the mode-based RL descents faster than HRL at the early
stage of learning. The blue curve drops to 0.018m at
Episode 260, after which it drops slightly to 0.017m at
Episode 410 and does not change anymore. The red curve
however, takes 330 Episodes to descend from 0.03m to
0.0125m, and the error is stable at 0.0125m after Episode 330.
Although the convergence speed of mode-based RL is faster
than HRL, due to the disturbance induced model uncertainty,
the steady state error is larger than the proposed HRL.
Figure 6 shows 4 simulation snapshots of the NAO robot
walking uphill on Episode 500 during the experiment on

VOLUME 8, 2020

A. Xi, C. Chen: Walking Control of a Biped Robot on Static and Rotating Platforms

IEEE Access

—— Hybrid RL
—— Mode Based RL

| O | ——
1 o002 Right Cop n Episode 1| |
* Right Cop n Episode 500
Desired Cop
i

0 o001 002 003 004 0 001 002 003 004 0 0 200 300 400 500
Xcop (m) Xcop (m) Episode

(a) (®) (©

FIGURE 9. (a) 100 random sensor readings and boundaries of CoP at the
left foot at episode 1 and 500 while the robot is walking downhill, (b) the
sensor readings and boundaries of CoP at the right foot, (c) the average
episode CoP errors of the proposed HRL compared with the model-based
RL from 50 individual trails.

Ss, 13s, 24s, and 43s, respectively. The robot is also able
to walk in a straight line steadily without left or right
deviation or falling down. Figure 9 (a) and (b) shows the
position of CoP in Episode 1 and Episode 500 on left
and right foot, respectively. At the beginning of on-line
learning, the boundaries for the left foot in x—axis and
y—axis are [0.004m, 0.045m] and [0.038m, 0.09m], respec-
tively. The boundaries for the right foot in x—axis and
y—axis are [0.001m, 0.041m] and [0.031m, 0.09m], respec-
tively. At the end of learning, the boundaries for the left and
right feet are : [0.015m, 0.03m]y : [0.058m, 0.084m], and
x : [0.014m, 0.0265m]y : [0.059m, 0.085m], respectively.
As can be seen from Figure 6 and as compared with Figure 8,
walking downhill is steadier than walking uphill as the posi-
tion of CoP after on-line learning is more concentrated. Also,
comparing Figure 9 (c) with Figure 8 (c), the steady state
average error of walking downbhill is less than walking uphill.
The convergence speed of pure mode-based RL, represented
by the blue curve, is faster than HRL at the beginning, but
the final error (0.015m) is larger than HRL (0.01m) after
it reaches the steady state, which shows the same result as
walking uphill.

Both of the positions of sampled CoP and the average
error for walking downhill after employs the HRL model-free
optimizer show better results than walking uphill. This is
because the robot walks against the gravity while walking
uphill, thus it is harder for the robot to maintain balance.

Figure 7 shows the snapshots of the third stage of the
experiment, where the NAO robot is walking on the rotating
platform while the platform is rotating along the y — axis.
The snapshots are taken on Episode 1000 at 7s, 21s, 31s, and
41s, respectively. Figure 10 (a), (b) show the CoP position
before and after the learning. At the beginning, the boundaries
are the same as walking uphill and downhill as the initial
control input is obtained from the same model-based esti-
mation procedure. However, since the platform is rotating
during the learning process, the robot is essentially inter-
acting with a dynamic environment, the control task for
the RL algorithm to maintain balance is more challenging.

VOLUME 8, 2020

Thus, the CoP boundaries of the left and right feet on
stage 3 is slightly larger than those of uphill and downhill,
which are x :[0.013m, 0.039m], y :[0.048m, 0.086m], and
x :[0.008m, 0.032m], y :[0.048m, 0.085m], respectively.
Figure 10 (c) shows the average error with respect to learning
episode, which shows almost the same convergence pattern
as that in Figure 8 (c) and Figure 9 (c), respectively. The con-
vergence speed for mode-based RL is faster at the beginning,
but it slows down after Episode 410 and does not change any
longer. The error of applying HRL is reducing gradually at
the beginning, and it continues decreasing when the error
of model-based no longer changes. The steady state error of
HRL (0.0155m) is much less than that in the model-based RL
(0.019m).

—— Hybrid R
|—— Model Based RL.

Loft Copin Episode 1
. pisodo 10

ob— g
0 001 002 003 004 0 001 002 003 004 0 200 40 60 800 1000
Xcop (m) Xcop (m) Episode

(a) (b) ()

FIGURE 10. (a) 100 random sensor readings and boundaries of CoP at the
left foot at episode 1 and 500 while the robot is walking on a dynamic
platform, (b) the sensor readings and boundaries of CoP at the right foot,
(c) the average episode CoP errors of the proposed HRL compared with
the model-based RL from 50 individual trails.

Table 1 shows the detailed comparisons between the pro-
posed HRL and pure model-based RL in terms of the on-line
learning time, the average error, and the walking velocity.
Although the model-based RL has faster convergence speed,
the overall control performance is much worse than the pro-
posed HRL framework.

TABLE 1. Comparisons Between HRL and model-based RL.

On-line

Case learning Average Walking velocity
time error

Uphill (HRL) 330 episodes 0.017m 0.037m/s
Uphill 260 episodes 0.0125m 0.028m/s
(Model-based)

Downbhill 426 episodes 0.01m 0.069m/s
(Model-based)

Downbhill 373 episodes 0.015m 0.061m/s
(Model-based)

Platform (HRL) 633 episodes 0.0155m 0.054m/s
Platform 400 episodes 0.019m 0.047m/s

(Model-based)

Further experiments are conducted to test the robustness
of the controller obtained by the proposed HRL framework.
We utilize the learning controllers obtained from Stage 1 and
Stage 2 and apply them to the robot, where the robot is walk-
ing on the platform with different slope angles. By gradually

148421

IEEE Access

A. Xi, C. Chen: Walking Control of a Biped Robot on Static and Rotating Platforms

Model-based Uphill

Model-based Downhill

HRL Uphill

o o
o 10 20 30 o

Platform Angle (deg)

(a)

Platform Angle (deg)

(b)

HRL Downhill

10 20 30
Platform Angle (deg)

(d)

10 20 30
Platform Angle (deg)

(©)

FIGURE 11. The x — axis is the angle of the static platform, the blue and red y — axises represent the Success Rate and the Maximal Walking Distance,
(a): the Success Rate and Maximal Walking Distance of the proposed HRL while the robot is walking uphill, (b): the results of mode-based RL for uphill
walking, (c): the results of the proposed HRL for downhill walking, (d): the results of mode-based RL for downhill walking.

HRL 3D View Success Iﬁale HRL 2D View

cy (Hz)

Success Rate
=]
3

Platform Frequenc:

Platform Magnitude 71 90

l—‘l atform Magr vl\.Ll\. (m)

(b)

o
) Platform Frequency (Hz)

@

changing the slope angle, the robustness of the controller
is tested by evaluating the maximal Walking Distance as
well as the Success Rate. We fix platform angle before each
experiment, and then apply the learning controllers from
States 1 and 2 to uphill and downhill tasks, respectively.
The robot tries to walk on the platform with a fixed slope
angle 100 times. If the robot falls down, the simulation will
be paused and the robot will be reset to the position where
it falls down, after which the simulation will continue run-
ning and the robot will continue walking until it reaches
to the end of the platform. The walking distance is defined
as the distance between the start of walking to the position
where the robot falls. Thus, the maximal distance for a cer-
tain slope angle is calculated by finding the maximal value
within 100 rounds. The success rate is defined as the aver-
age walking distance divided by the length of the platform.
We compared the robustness of two controllers obtained by
HRL and model-based RL respectively from Stage 1 on a
rotating platform to enable the robot walking uphill, where
the slope angles of the platform are 0, 4, 6, 10, 12, 15, 17,
20, 22.5, 25, 28 degrees, respectively. For the downhill task,
the angles are 0, 4, 6, 10, 12, 15, 17, 22.5, 25, 28, 33 degrees,
respectively.

As shown in Figure 11 (a), (c), the Success Rates of HRL
for both uphill and downhill tasks are dropping dramatically if

148422

uuuuu Ral

1
0.24
0.9 0.9
$is 0.22
0.8
0.8
0.2
a8 0.7
o018 o
0.6 e 5-015 o
0.5 0.5
0.4
04 E C
Eonz "
0z 0.3 0.1
0.:
0a 008
0.l 0.2
N 03 0.06
-~ 0.1
~— 0.2 o.
10 S 25
o

Suceess Rate

Platform Magnitude (m)

Model-based 2D View Succoss Rato

Model-based 3D View ko
o8

1
o8
0.8 .]
0.6 0.8

0.2

0.24

0.22

0.2

0.18

0.16

0.14

0.12

Platform Frequency |

-]

0.08

0.06

o8
o8
07
c
0.5
c

F'Iaifnrm Ms anit m= (rn)

(d)

FIGURE 12. The x — axis and y — axis represent the magnitude and the frequency of the dynamic platform, respectively, the z — axis is the Success Rate,
(a) (b): the Success Rate of the proposed HRL while the robot is walking on a dynamic platform, (c) (d): the Success Rate of the mode-based RL.

0.04
0.1 o

“blatorm Frequency (Hz)

©

the platform angle increases. The blue and red curves indicate
the Success Rate and the maximal Walking Distance from
100 individual tests, respectively. For uphill walking control,
if the angle of the platform is smaller than 10 degrees, the Suc-
cess Rate is guaranteed to be 1 and the robot is able to walk
from the beginning to the end of the platform without falling
down. If the angle of the platform is 28 degrees, the Success
Rate reduces to 0.04 with the threshold of [+0.021, —0.03]
and the maximal walking distance decreases to 0.13m with
the threshold of [+-0.06m, —0.11m]. Compared with walking
uphill, both the Success Rate and Walking Distance begin
to drop from 12 degrees. If the angle of the platform is
33 degrees, the Success Rate and Distance are reduced to
0.041 and 0.33m, with the threshold of [+0.023, —0.037],
and [+0.11m, —0.29m], respectively. For the model-based
RL, both the Success Rate and the Distance drop faster,
particularly for the angles between 10 degrees to 20 degrees
for uphill, and between 8 degrees to 22 degrees for downhill,
respectively. The variance of model-based RL is also larger
than that of HRL.

To test the robustness of the controller obtained from
Stage 3, the platform is rotating along y — axis with different
frequencies and magnitudes. The environment is now con-
sidered to be a dynamic environment during the experiment,
where it is much more challenging for the robot to complete

VOLUME 8, 2020

A. Xi, C. Chen: Walking Control of a Biped Robot on Static and Rotating Platforms

IEEE Access

the stable walking tasks. Considering that the robot may not
walk in a straight line during the experiment as the platform
is continuously rotating, we only show the Success Rate and
ignore the Walking Distance. The frequencies of the platform
are selected as 0.025, 0.031, 0.0417, 0.0625, 0.0833, 0.125,
0.25Hz, respectively, while the magnitudes are chosen as 1,
2,4,6,8, 10, 12, 14, 15, 18 degrees, respectively.

As can be seen from Figure 12 (a), (b), the increase in the
frequency and the magnitude results in a significant decrease
in the Success Rate. The Success Rate can be guaranteed to be
1 if the magnitude is smaller than 8 degrees and the frequency
is smaller than 0.0417Hz, which means the robot is robust
enough to walk on the platform from the beginning to the
end without falling down under these dynamic environments.
When the frequency equals 0.25Hz, the success rate drops
to O if the magnitude is selected as 14, 15, and 18 degrees.
It means that the robot is not able to complete one step walk-
ing under the above dynamic environment. For model-based
RL, shown in Figure 12 (c), (d), the Success Rate drops much
faster than HRL. The 100% Success Rate area, indicated by
the red area, is also smaller than that of HRL. In addition,
model-based RL is highly sensitive to the change of platform
angle. As a result, the robustness of HRL is better than that
of model-based RL.

V. CONCLUSION

In this paper, a novel Hybrid Reinforcement Learning
algorithm that consists of MBRL and MFRL frameworks
was proposed and applied to a NAO robot to maintain stable
walking behaviors on static and rotating platforms. HGL was
proposed as the model-based off-line estimator to predict
the dynamic model of the system. Compared with other
Gaussian Processes based MBRL framework, the proposed
HGP employs two layers of prediction that estimates the tran-
sition model twice, where it enables the algorithm to estimate
the system model with few training samples and consequently
increases the training time. The result of HGP provided a
rough model of the system and generated an initial control
input, after which the Actor Critic Pre-training scheme was
proposed to pre-train the Actor Network by considering the
obtained initial control input as the ground-truth. The Pre-
training procedure bridged the gap between the HGP based
mode-based estimator and the DDPG based mode-free opti-
mizer. Finally, DDPG was applied as the mode-free opti-
mizer to directly generate joint angular velocity actions to the
biped robot. The sample efficiency for online learning was
improved as the model-free optimizer is only needed to eval-
uate a small number of states and actions. The proposed HRL
framework also avoided the distribution mismatch problem
when integrating model-free RL into model-based RL. The
simulation results showed that the proposed HRL algorithm
guaranteed the efficiency of MBRL while it still achieved
the steady state performance of MFRL. The algorithm was
able to control a NAO robot to achieve stable walking gait on
static and dynamic platforms with different frequencies and
magnitudes, where the robustness of the controller was also

VOLUME 8, 2020

demonstrated. Future works will involve the stable walking
on a dynamic platform with 2 degrees of freedom, as well as
the physical implementations on real robots.

REFERENCES

[1] C. Chevallereau, G. Bessonnet, G. Abba, and Y. Aoustin, Bipedal Robots:
Modeling, Design and Walking Synthesis, 1st ed. Hoboken, NJ, USA:
Wiley, 2008.

[2] Y. Hurmuzlu and O. D. 1. Nwokah, The Mechanical System Design
Handbook Modeling, Measurement, and Control. Boca Raton, FL, USA:
CRC Press, 2001.

[3] M. Vukobratovic and B. Borovac, “Zero-moment point—Thirty five
years of its life,” Int. J. Human Robot., vol. 1, no. 1, pp. 157-173,
2004.

[4] J. H. Park and K. D. Kim, “Biped robot walking using gravity-

compensated inverted pendulum mode and computed torque con-

trol,” in Proc. IEEE Int. Conf. Robot. Autom., vol. 4, May 1998,

pp. 3528-3533.

Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koyachi, and

K. Tanie, “Planning walking patterns for a biped robot,” IEEE Trans.

Robot. Autom., vol. 17, no. 3, pp. 280-289, Jun. 2001.

E. Ohashi, T. Sato, and K. Ohnishi, “A walking stabilization method based

on environmental modes on each foot for biped robot,” IEEE Trans. Ind.

Electron., vol. 56, no. 10, pp. 3964-3974, Oct. 2009.

J. Yi, Q. Zhu, R. Xiong, and J. Wu, “Walking algorithm of humanoid

robot on uneven terrain with terrain estimation,” Int. J. Adv. Robotic Syst.,

vol. 13, no. 1, p. 35, 2016.

[8] J.-Y. Kim, I.-W. Park, and J.-H. Oh, ““Walking control algorithm of biped
humanoid robot on uneven and inclined floor,” J. Intell. Robotic Syst.,
vol. 48, no. 4, pp. 457-484, Mar. 2007.

[9] Y. Gong, R. Hartley, X. Da, A. Hereid, O. Harib, J.-K. Huang, and
J. Grizzle, “Feedback control of a cassie bipedal robot: Walking, standing,
and riding a segway,” in Proc. Amer. Control Conf. (ACC), Jul. 2019,
pp. 4559-4566.

[10] S. Wang, W. Chaovalitwongse, and R. Babuska, ‘“Machine learning algo-
rithms in bipedal robot control,” IEEE Trans. Syst., Man, Cybern. C, Appl.
Rev., vol. 42, no. 5, pp. 728-743, Sep. 2012.

[11] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[12] F Stulp, J. Buchli, E. Theodorou, and S. Schaal, “Reinforcement learning
of full-body humanoid motor skills,” in Proc. 10th IEEE-RAS Int. Conf.
Humanoid Robots, Dec. 2010, pp. 405-410.

[13] S. Phaniteja, P. Dewangan, P. Guhan, A. Sarkar, and K. M. Krishna,
“A deep reinforcement learning approach for dynamically stable inverse
kinematics of humanoid robots,” in Proc. IEEE Int. Conf. Robot.
Biomimetics, Dec. 2017, pp. 1818-1823.

[14] N.Navarro-Guerrero, C. Weber, P. Schroeter, and S. Wermter, ‘‘Real-world
reinforcement learning for autonomous humanoid robot docking,” Robot.
Auto. Syst., vol. 60, no. 11, pp. 1400-1407, Nov. 2012.

[15] C.Gil, H. Calvo, and H. Sossa, “Learning an efficient gait cycle of a biped
robot based on reinforcement learning and artificial neural networks,”
Appl. Sci., vol. 9, no. 3, p. 502, Feb. 2019.

[16] J.-L. Lin, K.-S. Hwang, W.-C. Jiang, and Y.-J. Chen, “Gait balance and
acceleration of a biped robot based on Q-Learning,” IEEE Access, vol. 4,
pp. 2439-2449, 2016.

[17] K.-S. Hwang, W.-C. Jiang, Y.-J. Chen, and H. Shi, “Motion segmentation
and balancing for a biped Robot’s imitation learning,” IEEE Trans. Ind.
Informat., vol. 13, no. 3, pp. 1099-1108, Jun. 2017.

[18] H. Kim, D. Seo, and D. Kim, “Push recovery control for humanoid
robot using reinforcement learning,” in Proc. 3rd IEEE Int. Conf. Robotic
Comput. (IRC), Feb. 2019, pp. 488-492.

[19] A. S. Polydoros and L. Nalpantidis, “Survey of model-based reinforce-
ment learning: Applications on robotics,” J. Intell. Robotic Syst., vol. 86,
pp. 153-173, May 2017.

[20] M. P. Deisenroth and C. E. Rasmussen, “PILCO: A model-based and data-
efficient approach to policy search,” in Proc. 28th Int. Conf. Mach. Learn.,
2011, pp. 465-472.

[21] M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaussian processes for
data-efficient learning in robotics and control,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 37, no. 2, pp. 408-423, Feb. 2015.

[5

—

[6

—

17

—

148423

IEEE Access

A. Xi, C. Chen: Walking Control of a Biped Robot on Static and Rotating Platforms

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, “Continuous deep
Q-Learning with model-based acceleration,” 2016, arXiv:1603.00748.
[Online]. Available: http://arxiv.org/abs/1603.00748

V. Pong, S. Gu, M. Dalal, and S. Levine, “Temporal difference models:
Model-free deep RL for model-based control,” 2018, arXiv:1802.09081.
[Online]. Available: https://arxiv.org/abs/1802.09081

A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, ‘“Neural network
dynamics for model-based deep reinforcement learning with model-free
fine-tuning,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2018,
pp. 7579-7586.

V. Feinberg, A. Wan, 1. Stoica, M. 1. Jordan, J. E. Gonzalez, and
S. Levine, “Model-based value estimation for efficient model-free
reinforcement learning,” 2018, arXiv:1803.00101. [Online]. Available:
http://arxiv.org/abs/1803.00101

M. Burhan Hafez, C. Weber, M. Kerzel, and S. Wermter, ““Curious meta-
controller: Adaptive alternation between model-based and model-free con-
trol in deep reinforcement learning,” 2019, arXiv:1905.01718. [Online].
Available: http://arxiv.org/abs/1905.01718

J. J. Alcaraz-Jiménez, D. Herrero-Pérez, and H. Martinez-Barbera,
“Robust feedback control of ZMP-based gait for the humanoid robot nao,”
Int. J. Robot. Res., vol. 32, nos. 9-10, pp. 1074-1088, Aug. 2013.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, ‘“Continuous control with deep
reinforcement learning,” 2015, arXiv:1509.02971. [Online]. Available:
http://arxiv.org/abs/1509.02971

L. Tai, J. Zhang, M. Liu, J. Boedecker, and W. Burgard, “A survey
of deep network solutions for learning control in robotics: From rein-
forcement to imitation,” 2016, arXiv:1612.07139. [Online]. Available:
http://arxiv.org/abs/1612.07139

J. Schulman, S. Levine, P. Moritz, M. Jordan, and P. Abbeel, “Trust
Region Policy Optimization,” in Proc. 31th Int. Conf. Mach. Learn., 2015,
pp. 1889-1897.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, ‘“‘Prox-
imal policy optimization algorithms,” 2017, arXiv:1707.06347. [Online].
Available: http://arxiv.org/abs/1707.06347

A. Xi, T. W. Mudiyanselage, D. Tao, and C. Chen, “Balance control
of a biped robot on a rotating platform based on efficient reinforcement
learning,” IEEE/CAA J. Automatica Sinica, vol. 6, no. 4, pp. 938-951,
Jul. 2019.

148424

AO XI received the B.Eng. degree in automation
from Northwestern Polytechnical University,
Xi’an, in 2014, and the Postgraduate Diploma
degree in advanced control and systems engi-
neering from The University of Manchester,
Manchester, in 2015. He is currently pursuing the
Ph.D. degree with Monash University, Melbourne.
Since 2017, he has been a Research Assistant with
the Laboratory of Motion Generation and Anal-
ysis, Monash University. His research interests
include humanoid biped robot, reinforcement learning, deep reinforcement
learning, biped robot gait generation, flight control systems, and control
theories. He received awards, including the 2012 Technology Star First Class
Scholarship, the 2012 and 2013 Merit Student First Class Scholarship from
Northwestern Polytechnical University, and the 2013 Endress and Hauser
First Class Scholarship.

CHAO CHEN received the B.Eng. degree in
mechanical engineering from Shanghai Jiao Tong
University, Shanghai, in 1996, and the M.Eng.
and Ph.D. degrees in mechanical engineering from
McGill University, Montreal, in 2002 and 2006,
respectively.

He was a Visiting Professor with the Ecole
Central de Nantes, IRCCyN. From 2006 to 2007,
he was a Postdoctoral Fellow with the University
of Toronto. From 2007 to 2010, he was a Lecturer
with the Department of Mechanical and Aerospace Engineering, Monash
University, Melbourne, where he has been a Senior Lecturer, since 2011.
He is currently an Adjunct Associate Professor with The Chinese University
of Hong Kong. His research interests include robotic design and control,
theory of mechanisms, robotic exoskeleton, robotic surgery, agricultural
robots, and humanoid robots.

Dr. Chen received awards, including the 1996 Dean’s Honor List from
Shanghai Jiao Tong University, the 2004 ASME International Scholarship,
the 2005 FQRNT Doctorate Fellowship, the FQRNT Postdoctoral Fellow-
ship from 2006 to 2007, and the 2017 Years Innovation Award from the
Australia hand Therapy Association.

VOLUME 8, 2020

