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ABSTRACT Most existing laser welding process monitoring (LWPM) technologies focus on detecting
post-process defects. However, in sheet metal laser welding applications such as welding of electronic
consumer products during mass production, in-process defect detection is more important. In this article,
a compact LWPM system using multi-sensor data fusion to detect in-process defects has been built. This
system can collect the time series of plasma intensity, light intensity and temperature data for feature analysis.
To verify the system’s effectiveness, a plasma-light-temperature dataset has been compiled, which consists
of 5,836 samples of nine classes, including one positive class and eight negative classes of typical in-process
defects. A multi-sensor data fusion network based on a convolution neural network for in-process defect
detection, called IDDNet, has also been proposed. Experimental results have demonstrated that IDDNet
can achieve better multi-classification results than the support vector machine, with an overall accuracy
of 97.57%. In particular, considering this monitoring process as a binary classification problem, IDDNet
can achieve a 99.42% accuracy. Moreover, IDDNet can reach an average speed of 0.79ms per sample on
a single GTX 1080ti graphics card, which meets the real-time requirement for industrial production. The
proposed LWPM system has been successfully verified in real applications of sheet metal laser welding.

INDEX TERMS Laser welding process monitoring, in-process defect detection, multi-sensor data fusion,
convolution neural network.

I. INTRODUCTION
Laser welding is widely used in electronic consumer
products, automobiles and other industries due to the
advantages of contactless processing, high precision and
high speed [1]–[3]. The quality of laser welding is easily
affected by in-process defects such as poor process param-
eters, surface impurities of materials, operation errors [4].
In-process defects may cause post-process defects such as
pores and lack of fusion. For example, defocusing distance
is one of the main process parameters during laser welding.
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Incorrect defocusing distance often leads to pores and lack of
fusion [5]. These defects could potentially affect the safety
performance of the welded components [6].

Most existing laser welding process monitoring (LWPM)
technologies focus on detecting post-process defects
[7]–[9]. In automated production lines, post-process defects
usually appear continuously if in-process defects are not
troubleshot in time. For example, due to the negligence of
suppliers, sometimes a batch of incoming materials have
impurities or wear on the surfaces, which will probably
cause a batch of substandard products. This means a
huge loss if only post-process defects are concerned, espe-
cially in the manufacturing process of high-end electronic
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consumer products. Moreover, most existing post-process
defect detection technologies focus on large-size workpieces
[7]. For small electronic consumer products, manual sam-
pling and destructive detection methods are still dominant,
which are inefficient and hard to guarantee the product qual-
ity. Hence, in automated mass production such as laser weld-
ing of electronic consumer products, detecting in-process
defects is more important.

In practice, it is challenging to detect in-process defects
as the manufacturing process involves many tools, technolo-
gies and parameters. For example, to check whether the
defocusing distance is incorrect, a direct method is to mea-
sure it through a set of specific instruments and methods.
Gao et al. [10] measured defocusing distance in real-time
through a YAG laser, a position sensitive detector, many
convex lenses and a set of geometric methods. However,
these instruments and methods cannot detect surface impu-
rities of materials. In other words, different in-process defect
detection would require different instruments and methods.
If all kinds of in-process defects are required to detect, due
to the heavy workload and high complexity, it is impossible
to integrate all the corresponding instruments and methods
into a single system. Therefore, a compact systemwith strong
universality is preferred.

To develop a compact system, a common practice is to
build the relationship between the process signals during
laser welding and the in-process defects. However, it is still
difficult to establish an explicit and direct relationship due
to the complex laser welding process [7]. The challenge is
twofold:

1) to find out the appropriate process signals that have a
relationship with certain in-process defects, even if the
relationship is implicit; and,

2) to extract and fuse the useful features of these process
signals for detecting the corresponding defective
samples.

In literature, various forms of process signals can be
captured by different sensors in the laser welding pro-
cess [11]. There are mainly four types of sensors: visual [12],
acoustic [13], optical [14] and thermal [15]. Visual sen-
sors are often used in LWPM systems to assess the laser
welding process’s quality by monitoring melt pools or key-
holes [16]–[18]. Usually, a high-resolution image or video is
required to ensure the accuracy of the visual system. Since
a large amount of image data needs to be captured and
processed, it is difficult to achieve real-time performance
for in-process defect detection in rapid production lines [3].
Furthermore, the hard light in the laser welding process
causes saturation in the images, which will reduce the sys-
tem’s accuracy. Due to background noises in production lines,
acoustic sensors are not suitable to be integrated into LWPM
systems for detecting in-process defects [7]. As a result, this
research focuses on optical and thermal sensors.

The optical and thermal process signals in the laser welding
process have been studied for years. Santhanakrishnan et al.
[19] found that the molten pool’s temperature is related to the

process parameters such as laser power, laser scanning speed
and overlapped laser spot. You et al. [20] investigated that the
keyhole formation has a significant influence on the laser’s
reflecting light intensity. Knag [21] used the time series of
plasma intensity and temperature data to assess the laser
welding process’s quality through a simple statistical method.
However, with only plasma intensity and temperature infor-
mation, it is difficult to identify the types of in-process
defects. Therefore, a compact LWPM system with multiple
sensors has been developed to capture and analyze the time
series of plasma intensity, light intensity and temperature data
during laser welding. Because of the extreme complexity
of the laser-material interactions during laser welding, it is
elusive to establish an explicit physical model that links the
above signals and in-process defects. As machine learning
(ML) can provide an effective data-driven approach to cor-
relate inputs and outputs without knowing too much domain
knowledge [22], in this research, in-process defect detection
is therefore considered as a multi-classification problem,
where multi-sensor data are fused for classification based on
ML methods.

Conventional ML methods include decision tree (random
forest) [23], support vector machine (SVM) [24], Naive
Bayes [25]. In general, these methods heavily rely on heuris-
tic hand-crafted data fusion and feature extraction involving
extensive domain knowledge [26]. Without hand-crafted data
fusion and feature extraction from the raw data, these meth-
ods can only extract low-level features leading to poor accu-
racy in defect detection and classification [27]. Unlike tradi-
tional ML methods, the convolution neural network (CNN)
as a deep learning method does not require rich domain
knowledge for data fusion and feature extraction [28]–[30].
Instead, CNN can automatically learn how to implement data
fusion and high-level feature extraction through a tremendous
amount of training data and the stochastic gradient descent
algorithm [31]. Hence, CNN is chosen for the proposed
multi-sensor data fusion and high-level feature extraction
automatically to detect in-process defects.

To summarize, the contributions of this work are as
follows:

1) A compact LWPM system with multiple optical and
thermal sensors has been developed. This system cap-
tures the time series of plasma intensity, light inten-
sity and temperature data simultaneously during laser
welding. It then analyzes the features of these signals
and identifies the types of in-process defects. To verify
the system’s effectiveness, a plasma-light-temperature
dataset (PLTD) with 5,836 samples has been com-
piled. These samples contain typical in-process
defects.

2) A CNN-based In-Process Defect Detection Network,
called IDDNet, has been proposed to fuse the cap-
tured time series and then detect in-process defects.
Experimental results have demonstrated that IDDNet
achieved better multi-classification results than SVM,
with an overall accuracy of 97.57%. In particular,
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FIGURE 1. (a) The proposed LWPM system integrated into scanning laser
welding machine; (b) overall schematic structure.

considering this monitoring process as a binary clas-
sification problem, IDDNet can achieve an accuracy
of 99.42%. Moreover, IDDNet can reach an average
speed of 0.79ms per sample on a single GTX 1080ti
graphics card, which meets the real-time requirement
for industrial production.

The remainder of this article is organized as follows.
In Section II, the fore-end signal acquisition part of the pro-
posed LWPM system and the PLTD for typical in-process
defects are described. Section III first defines the terms for
time series classification and then elaborates on the details of
IDDNet. The experimental results are presented in Section IV.
Finally, the paper is concluded in Section V with a plan for
future works.

II. EXPERIMENTAL SETUP AND DATASET
A. EXPERIMENTAL SETUP AND SIGNAL ACQUISITION
The proposed LWPM system has been integrated into a scan-
ning laser welding machine from Han’s Laser Technology
Industry Group Co., Ltd (Han’s Laser), as shown in Fig. 1 (a).
The overall schematic structure is presented in Fig. 1 (b).

The scanning laser welding machine mainly includes an SPI
pulsed fiber laser, a galvanometer scanner, two vibrating mir-
rors and a flat field lens. The galvanometer scanner can reflect
laser light to the desired position by turning the reflection
mirrors to change the laser path.

The fore-end signal acquisition part of the proposed
LWPM system includes two different photodiode sensors,
a pyrometer sensor and some optical components. The first
photodiode sensor is installed behind a 45-degree prism and
a band-stop filter to obtain the plasma intensity. After another
45-degree prism, the light intensity will be captured with
the second photodiode sensor. Finally, a pyrometer sensor is
installed at the end to monitor the temperature data during
welding.

In this experiment, the collection of PLTD was conducted
on the real production lines of Han’s Laser through the pro-
posed LWPM system. The experimental material was Type
SUS301 stainless steel with 0.2mm thickness. This type of
material is being used in the specific sheetmetal laser welding
applications of Han’s Laser. Furthermore, the laser’s output
power was 60W, and the welding speed was set to 50mm/s.
By manually checking the quality of the welded products in
the above applications, these kinds of welding parameters
outperform others, with the lowest defect rate.

B. CATEGORIZATION OF IN-PROCESS DEFECTS
The definitions of PLTD’s categories were based on the real
customer requirements of Han’s Laser. There are nine cate-
gories including one positive class and eight negative classes
of typical in-process defects: (1)Qualified, (2)Defocus 2mm,
(3)Defocus -2mm, (4)White glue, (5)Missing weld, (6)Drift,
(7)Tilt, (8)Repetition and (9)Water. The descriptions of these
categories are as follows:

1) Qualified means no in-process defect occurred.
2) Defocus 2mm refers to the defocusing distance over

2mm. The focus plane above the workpiece is posi-
tive defocus, while the focus plane below the work-
piece is negative defocus. The defocusing distance of
excessively large absolute value leads to the overly
low power density acting on the workpiece, making it
difficult to reach the purpose of welding.

3) Defocus -2mm represents defocusing distances of less
than -2mm.

4) White glue means there is white glue on the surface of
the base metal.

5) Missing weld is a widespread operation error.
6) Drift indicates the welding position suddenly drifted.
7) Tilt represents the base metal’s tilt during welding,

so that defocusing distance was changed.
8) Repetition means to weld again based on the existing

welded seam.
9) Water indicates there is water on the surface of the base

metal.
To emphasize the importance of in-process defect detection,
some examples of negative effects caused by typical
in-process defects are shown in Fig. 2 (a)-(g).
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FIGURE 2. Negative effects caused by typical in-process defects:
(a) the right side are the welded seams of 6mm defocusing distance,
which are shallower than the qualified samples on the left side;
(b) the appearance of the white glue on the welded seam;
(c) the disappearance of the welded seam caused by the
water on the base metal; (d) the distortion of shape caused
by the drift of the base metal; (e) the disappearance of the
welded seam caused by the base metal’s tilt; (f) the repetition
of welding makes the welded seem wider and slightly yellow;
(g) the shape is interrupted by a hollow. Namely, missing
weld occurred.

C. ANALYSIS OF PLASMA-LIGHT-TEMPERATURE DATASET
PLTD contains 5,836 samples. The number of each class is
shown in Fig. 3. As the training of CNN requires as many
samples as possible [32], all the samples available were used
for experiments.

There are three variates in each sample: plasma intensity,
light intensity and temperature. For convenience, each sam-
pling point is used as a unit. The length of each variate is
128, representing a total of 128 sampling points for each
variate. Fig. 4 (a)-(c) plot four samples of the Qualified,
Defocus 2mm,Missing weld andWater classes selected from
PLTD. It can be seen that the values of three variates in
Qualified (blue line) are usually maintained at around 2, 5.5
and 5, respectively. For Defocus 2mm (green line), it can
be easily differentiated from Qualified due to the easily

FIGURE 3. The number of samples for each class.

FIGURE 4. The visual representation of four time series of different
classes on three variates: (a) plasma intensity, (b) light intensity,
(c) temperature.

recognizable distribution interval of each variate. Missing
weld (red line) can also be easily differentiated fromQualified
because once missing weld occurs, the light intensity will
rise sharply while the temperature will drop rapidly. Unlike
Defocus 2mm or Missing weld, Water (yellow line) almost
coincides with Qualified in most of the time series, but the
differences appear at both ends. In summary, each class has
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FIGURE 5. Two-dimensional T-SNE visualization for 100 raw samples
selected from each class randomly.

its characteristics in these three variates, which shows the
possibility of accurate classification to some extent.

T-SNE [33] is a dimensional reduction technology that
maps data into two-dimensional space for visualization. One
hundred samples from each class were chosen randomly and
used T-SNE, as shown in Fig. 5. Apart from White glue,
Missing weld and Defocus 2mm, the distributions of other
classes are almost overlapped. This well demonstrates the
difficulties in the current defect classification problem.

III. METHODOLOGY
A. TIME SERIES CLASSIFICATION BASED ON
PLASMA-LIGHT-TEMPERATURE DATASET
Based on PLTD, in-process defect detection can be seen as
a time series classification problem. Before introducing the
proposed approach, the formal definitions for this time series
classification are provided as follows.

(i) A univariate time series U can be defined as:

U = [x1, x2, . . . , x128] , (1)

where every xi denotes a real value.
(ii) A three-variate time series X can be defined as:

X =
[
U1,U2,U3

]
, (2)

where X consists of three univariate time series U ,
corresponding to plasma intensity, light intensity and temper-
ature, respectively.

(iii) PLTD contains 5,836 pairs:

PLTD =
{
(X1,Y1) , (X2,Y2) , . . . ,

(
X5,836,Y5,836

)}
,

∀Yi ∈ [1, 2, . . . , 9] (3)

where Xi denotes a three-variate time series with Yi as the
label of the corresponding class. For PLTD, there are nine
classes.

The time series classification based on PLTD is to build a
classifier that can map from a given three-variate time series
X to the predicted probabilities of the nine classes.

B. CONVOLUTION NEURAL NETWORK FOR TIME SERIES
Convolution for time series can be seen as sliding a filter over
the time series [32]. An example of convolution is depicted

FIGURE 6. Operation of convolution: a 1 × 3 kernel convolves with
a 1 × 5 input time series to produce a 1 × 3 feature map.

in Fig. 6. The convolution for a centered timestamp t is given
in the following equation:

Ot = F
(
w ∗ Xt− l

2 :t+
l
2
+ b

)
, ∀t ∈ [1, 2, . . . ,T ], (4)

where ∗ denotes dot product, and Ot denotes the result of
a convolution operation applied on an input X of length T
with a filter w of length l. b is a bias parameter, and F is
a non-linear function such as rectified linear unit (ReLU).
After convolution, the following layers are usually pooling
and batch normalization (BN) layers [34].

C. ADVANTAGES OF CONVOLUTION NEURAL NETWORK
In recent years, many advanced deep learning methods have
been developed, such as the recurrent neural network (RNN),
the multi-layer perceptron (MLP) and CNN. RNN is mainly
designed to predict output for each timestamp in the time
series [35]. Besides, it is difficult to train and parallelize
[36]. MLP tends to overfit because it does not exhibit
any spatial invariance among a huge number of trainable
parameters [32]. Unlike MLP, CNN has the characteristic of
weight sharing by using the same filters on all timestamps.
Weight sharing contributes to reducing the number of param-
eters drastically and avoiding overfitting [37]. Therefore, a
CNN-based in-process defects network for feature extraction
and classification is proposed.

D. IN-PROCESS DEFECT DETECTION NETWORK
The performance of CNN is affected by many factors such as
the number of layers, number of filters, kernel size and strides
in the convolution layer [37]. In this work, the architecture
of CNN proposed by Wang et al. [38] is adopted to design
IDDNet, where the first layer has three variates as inputs.
The architecture of IDDNet is illustrated in Fig. 7. This
architecture first consists of three convolution blocks. Each
block contains three operations: a convolution layer followed
by a BN layer whose result is fed to a ReLU activation
function. The final discriminative layers are comprised of a
global average pooling layer [39], a fully connected layer and
a softmax layer. Finally, the predicted probabilities of the nine
classes are obtained.

All convolutions are designed with strides equal to 1.
Moreover, no padding is used. The first convolution contains
128 filters with a filter length equal to 8. The second con-
volution contains 256 filters with a filter length equal to 5.
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FIGURE 7. The architecture of IDDNet.

FIGURE 8. Confusion matrix of the classification result.

At last, the third convolution layer contains 128 filters with a
filter length equal to 3.

IV. EXPERIMENTAL RESULTS
This section presents the comparison between the
classification results of IDDNet and that of SVM. In addition,
to explore each variate’s contribution, the experiments on
each variate and each combination of two variates were
performed separately. All evaluations were conducted with
ten times 3-fold cross-validation [40], and then the average
value of ten times 3-fold cross-validation was used as the final
results.

A. CLASSIFICATION RESULT OF IDDNET
IDDNet was trained under the training parameters with
a learning rate of 0.0005 and a mini-batch size of 128.
The stochastic gradient descent algorithm with backpropa-
gation was used to minimize the cross-entropy loss function
[27] in IDDNet. The training was stopped after 500 training
epochs. A confusion matrix [41] was chosen to illustrate
the classification results, as shown in Fig. 8. All diagonal
elements of the confusion matrix are the maximum values
of the corresponding rows. This indicates that most samples

FIGURE 9. Confusion probability matrix of the classification result.

could be correctly classified. Fig. 9 shows the confusion
probability matrix. Only one sample of Tiltwas misclassified
intoQualified andQualified achieved an accuracy of 99.42%.
As shown in Fig. 10, the feature map of the last convolution
layer of IDDNet was extracted and T-SNE was used for
visualization. It can be seen that the distributions of all classes
are no longer overlapped and have significant differences,
compared with that in Fig. 5.

B. COMPARE WITH CONVENTIONAL METHOD
To illustrate the comparative advantages of IDDNet, it
was compared with SVM. Moreover, SVM can solve
high-dimensional problems and non-linear problems based
on kernel tricks. Fig. 11 shows that IDDNet outperforms SVM.
Since SVM heavily relies on heuristic hand-crafted data
fusion and feature extraction, it is difficult to find the optimal
feature for classification. In contrast, the proposed IDDNet
can fuse the high-dimensional data for feature extraction
automatically and thus achieve better performances.

The computation time for the above two methods on
the same computer (Intel Core i7-6700 HQ CPU and
16.00 GB RAM, GTX 1080ti graphics card) was calculated.
Table 1 summarizes the training time and testing time of
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FIGURE 10. Two-dimensional visualization of the classification result
after processing by IDDNet.

FIGURE 11. Classification performance comparison between IDDNet and
SVM.

TABLE 1. The training time and testing time for IDDNet and SVM.

two methods. IDDNet can be accelerated by the parallel
computations of GPU.And IDDNet reached an average speed
of 0.79ms per sample on a single GTX 1080ti graphics card.

C. ANALYSIS OF THE INFLUENCE OF EACH VARIATE
ON THE CLASSIFICATION RESULTS
In order to explore the contribution of each variate, the
performance of IDDNet based on every single variate and
each combination of two variates was investigated, as sum-
marized in Fig. 12. The classification result based on tem-
perature outperforms that of the plasma intensity or light
intensity, achieving an 89.94% overall accuracy. That means
temperature contributes the most to the classification result
among the three variates.

FIGURE 12. Classification results of each variate and their combinations;
P, L and T represent plasma intensity, light intensity and temperature,
respectively; & denotes ‘‘and’’, for instance, P&L represents the
combination of plasma intensity and light intensity.

V. CONCLUSION AND FUTURE WORK
In this work, a compact laser welding process monitoring
system using multi-sensor data fusion to detect in-process
defects has been developed. This system first captures the
time series of plasma intensity, light intensity, and tem-
perature data simultaneously during laser welding. It then
analyzes these signals’ features and identifies the types
of in-process defects. To verify the system’s effective-
ness, a plasma-light-temperature dataset (PLTD) has been
compiled for experiments, consisting of 5,836 samples.
Experimental results have demonstrated that the proposed
IDDNet has an overall accuracy of 97.57%, which is a much
better multi-classification result than that of SVM. In partic-
ular, considering this monitoring process as a binary classifi-
cation problem, IDDNet can achieve an accuracy of 99.42%.
Moreover, IDDNet can reach an average speed of 0.79ms
per sample on a single GTX 1080ti graphics card, which can
satisfy the real-time requirement for industrial production.

In this research, the proposed system and methods have
been verified in the sheet metal laser welding application.
In the future, more applications will be studied. Furthermore,
the influence of process parameters such as the laser power
on the quality of products will be investigated to optimize the
process parameters automatically and efficiently.
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