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ABSTRACT In this article, the formation control problem has been considered for second-order multi-agent
systemwith time delay. The involved controller is divided into two parts. The first part is to design the leader-
following and adaptive control strategies that are utilized to achieve the specified formation shape. Based
on a potential field function, the second part is applied to realizing the collision avoidance of the agents
communicating with each other. By using the Lyapunov theory, some sufficient criteria are derived to ensure
the specified formation shape of all agents and collision avoidance of any pair of agents. The derived criteria
are formulated in terms of algebraic conditions, in which the control gains play an important role. Finally,
a numerical simulation is given to illustrate the effectiveness of the derived results.

INDEX TERMS Formation control, collision avoidance, multi-agent system, time delay.

I. INTRODUCTION
As a striking way to apply dynamics of autonomous agents
in practical problems, distributed formation control strategies
of multi-agent systems have been considered in many related
fields over the past decades [1]–[7]. The so-called forma-
tion control usually means that all of the agents cooperate
with each other by utilizing local information, meanwhile
approaching to some desired positions as a geometric shape.
As mentioned in [8], many methods have been proposed to
realize the desired formation shape, e.g., the position-based
formation control scheme in [9], displacement-based scheme
in [10], and distance-based scheme in [11]. Among these
methods, the displacement-based formation control scheme
has become an important and active topic, since the control
law is easy to be designed and implemented [10], [12]–[24].

In practical application, there aremany problems to be con-
sidered for the distributed formation control, e.g., collision
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avoidance [25], obstacle avoidance [26], [27], and connec-
tivity assurance [28]. Collision avoidance, as a basic require-
ment in the design of formation control law, is attributed to
some task constraints. Such constraints rely on the imple-
mentation of real-world flight vehicles and computer-based
simulations offering better reliability. In view of theory anal-
ysis, such constraints present a separation control law that
affects the distance of between agents in close proximity. The
basic idea of this separation control law is that a potential
field is utilized for characterizing a repulsive force, such that
the collision avoidance among the agents can be achieved.
This idea had been introduced for obstacle avoidance of
manipulators and mobile robots in [29], and developed to
navigate the robot systems in [30], [31]. Recently, several
kinds of artificial potential fields have been considered to deal
with the collision avoidance or flocking behaviors of multi-
agent systems in [6], [25], [32]. For example, in [6], a general
potential field function has been constructed for the event-
triggered formation control problem of nonlinear uncertain
second-order multi-agent. In [32], a kind of formation control
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problem has been considered in the second-order multi-agent
system, where the collision avoidance is described by a
sequence of potential fields with respect to estimated position
states.

In addition to collision avoidance, time delay is ubiquitous
in the control processes. In some cases, it is difficult for the
agents with time delay to cooperate with each other, and they
may even present oscillation behavior. Therefore, it is crucial
to consider time delay into control problem. Recently, many
kinds of time delay have been introduced in the distributed
control problem of multi-agent systems in [3], [15]–[17],
[33]–[39]. In these works [3], [15]–[17], [33]–[37], time
delay has many presentations: a typical example is system
delay. The system delay, as an inherent delay, is usually
caused by the finite response speed of hardware, such that
the control signals in the system may not be instantaneous
responses [37]. For example, in [15], formation tracking
control problem of second-order multi-agent systems has
been investigated, where time delay is introduced into the
tracking control law. In [17], the leader-following formation
control problem has been studied for nonlinear second-order
multi-agent systems with time delay. In [36], the time delay
has been considered in consensus problem of the second-
order multi-agent system with jointly-connected topologies.
In [37], the stability problem has been examined for a type of
stochastic delayed systems, which can be readily extended for
application to the consensus and formation control problem
of multi-agent systems.

On the other hand, the leader-following control problem is
one of the most important topics in the field of multi-agent
systems [10], [14], [15], [17], [27], [40]–[46]. Generally,
the aim of leader-following control is to design a control law
such that all of the agents can track the dynamics of the leader.
However, the dynamics of followers not only cooperates with
each other under the effects of network communication, but
also exhibits their own motions that are acted by the leader.
These properties of multi-agent systems reveal that it is pos-
sible to control a fraction of agents in order to achieve some
final control objectives. This idea is the so-called pinning
control strategy. Recently, the pinning control strategy has
been utilized to study the leader-following control problem
in [10], [47], [48]. For example, in [10], the formation control
problem of second-order multi-agent system with fixed and
switching topologies has been considered by using a pinning
control strategy. In [47], several pinning control strategies
have been examined for the synchronization problem of
stochastic dynamical networks, where the selection of control
nodes is optimized according to the evolutionary algorithms
and the convex method.

Although it is important to consider the leader-following
formation control and collision avoidance of multi-agent sys-
tems with time delay, there are still some difficulties and
challenges which remain to be investigated. The primary
difficulties and challenges can be listed as three aspects.

1) There are many recent works that study the formation
control and collision avoidance of multi-agent systems
in [3], [4], [10]. However, in some works, the potential
field function has been designed by only considering
the minimum radius of the avoidance region and ignor-
ing radius of the detection region. In this case, how to
design an appropriate control protocol that, not only
can be utilized to realize the specified formation shape
of all the agents and the collision avoidance of any
pair of agents, but also considers both the radius of
the avoidance region and radius of the detection region,
must be determined.

2) Different from the relevant works in [2], [3], [5], [6],
the main aim of this article focuses on the dynamic
relationship between the system delay and the con-
trol protocol rather than some certain cases, e.g.,
only studying the collision avoidance or the specified
formation shape. Therefore, the relationship between
the time delay and the control parameters must be
determined.

3) Due to the requirement of collision avoidance, the com-
mon Lyapunov function candidate may be hard to
be utilized. Thus, how to apply a decentralized Lya-
punov function to deal with the system delay and the
potential field in the adaptive control protocol must be
determined.

Inspired by the above considerations, the aim of this article
is to explore a mathematical framework to describe the rela-
tionship among the pinning control strategy, system delay and
collision avoidance in the formation control problem. First,
the dynamics of each agent is modeled by a nonlinear func-
tion with time delay acting on the position and velocity states.
Then, a mixed control law is designed, where the pinning and
adaptive control strategies are utilized to achieve the specified
formation shape. Meanwhile, a typical potential field func-
tion is considered for ensuring collision avoidance. Based
on the Lyapunov theory, two sufficient criteria are derived
to ensure leader-following formation control and collision
avoidance of second-order multi-agent systems with time
delay. Finally, an example is given to show the effectiveness
of results. The contributions of this article are summarized as
follows:

1) Compared with the usual formation control problems
in [3], [4], [10], a mathematical framework of forma-
tion control and collision avoidance in second-order
multi-agent systems with time delay is constructed,
in which both the radius of the avoidance region and
the detection region are considered for ensuring colli-
sion avoidance and connectivity preservation in a unify
potential field function.

2) Different from the formation control problems with
collision avoidance [6], [25], [32], time delay, along
with pinning and adaptive control strategies are simul-
taneously considered. Such strategies provide a mixed
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control approach that, on one hand, the specified for-
mation shape and collision avoidance can be achieved,
and on the other hand, the relationship among control
parameters can be revealed.

The rest of this article is organized as follows. In Section II,
some basic concepts and the control problem are formu-
lated, where the potential field function, as well as pinning
and adaptive control strategies are introduced, respectively.
In Section III, the main results are presented. In Section IV,
an example is given to show the effectiveness of results.
In Section V, the conclusion is drawn.

Moreover, throughout this article,Rn×m indicates the set of
the n×m real matrix, and Rn is the n-dimensional Euclidean
space. For matrices X ∈ Rq×p and Y ∈ Rn×m, X ⊗ Y stands
for their Kronecker product. For a matrix A ∈ Rn×m, the
2-norm of A is ‖A‖ =

√
λmax(ATA), where the superscript

‘‘T’’ means the transpose of matrixA and λmax(·) is the largest
eigenvalue. For a vector x ∈ Rn, ‖x‖ =

√
xT x denotes the

Euclidean vector norm.

II. MODEL AND CONTROL PROBLEM FORMULATION
Denote an undirected graph G = (V, E) as the communi-
cation structure among the agents, where V = {1, . . . ,N }
stands for the agent set and E = {(i, j)} means the edge set.
Let L = [`ij] ∈ RN×N be the Laplacian matrix of graph G,
and the elements of the Laplacian matrix L be defined as:
for i 6= j, `ij = `ji = −1 holds if (i, j) ∈ E ; otherwise
`ij = `ji = 0 holds if (i, j) /∈ E , and for i = j, `ii =∑N

j∈Ni
`ij, where Ni = {j ∈ {(i, j)}} is the neighboring set of

agent i. In this article, the graphG is assumed to be undirected,
connected and simple (i.e., without multiple edges and self-
loops). As shown in [47], if the graph G is undirected and
connected, all eigenvalues of the Laplacian matrix L can
be reordered by 0 = λ1(L) < λ2(L) ≤ . . . ≤ λN (L),
where λi(L) means the i-smallest eigenvalue of the Laplacian
matrix L.
Considering a nonlinear second-order multi-agent system,

the dynamics of the i-th agent is expressed by{
ẋi(t) = vi(t),
v̇i(t) = f (xi(t − τ ), vi(t − τ ))+ ui(t),

(1)

where xi(t) ∈ Rn means the position state, vi(t) ∈ Rn

is the velocity state, τ ≥ 0 is the bounded system delay,
f (xi(t), vi(t)) is a nonlinear function, and ui(t) ∈ Rn is the
formation control law. Moreover, for t ∈ [τ, 0], xi(t) = %i(t)
and vi(t) = ρi(t) are the initial functions, where the initial
functions %i(t) and ρi(t) are continuous for all t ∈ [τ, 0] and
i ∈ V .
The dynamics of the virtual leader is given by{

ẋ0(t) = v0(t),
v̇0(t) = f (x0(t − τ ), v0(t − τ )),

(2)

where x0(t) ∈ Rn means the position state of the virtual
leader, and v0(t) ∈ Rn is the velocity state of the virtual
leader.

Then, denote P = {1, 2, . . . ,M} (M ≤ N ) as a fixed
pinning set, and therefore, P ⊆ V . For i ∈ P , the formation
control law is designed by

ui(t) = f (x0(t − τ ), v0(t − τ ))− f (x0(t − τ )

+ di, v0(t − τ ))+ αi(t)
∑
j∈Ni

(xj(t)− xi(t)

+ di − dj)+ αi(t)
∑
j∈Ni

(vj(t)− vi(t))

+ uoi (t)+ u
p
i (t), (3)

and for i /∈ P , the formation control law is given by

ui(t) = f (x0(t − τ ), v0(t − τ ))− f (x0(t − τ )

+ di, v0(t − τ ))+ αi(t)
∑
j∈Ni

(xj(t)− xi(t)

+ di − dj)+ αi(t)
∑
j∈Ni

(vj(t)− vi(t))

+ uoi (t), (4)

where αi(t) is an adaptive control gain given later, di ∈ Rn

is an absolute desired position of agent i, upi (t) ∈ Rn is a
pinning control law, and uoi (t) ∈ Rn is a collision avoidance
control law.

The adaptive control gain αi(t) is updated according to the
following form

α̇i(t) = α
∑
j∈Ni

(xj(t)− xi(t)+ di − dj + vj(t)− vi(t))T

× (xj(t)− xi(t)+ di − dj + vj(t)− vi(t)), (5)

where α > 0.
The pinning control law upi (t) is written by

upi (t) = bi(xi(t)− x0(t)− di + vi(t)− v0(t)), (6)

where bi is a control gain.
The collision avoidance control law uoi (t) has the following

form

uoi (t) = −
N∑
j=1

∂W T
ij (xi(t), xj(t))

∂xi(t)
. (7)

The collision avoidance control law uoi (t) in (3) is composed
of a potential field function that is utilized to realize the
collision avoidance between any pair of agents. Given two
positive parameters r and R, r expresses a minimum radius of
the avoidance region, and R means a radius of the detection
region, where r ≤ mini,j∈V {‖di − dj‖} and R ≥ r . The
potential field function Wij(xi(t), xj(t)) is described by

Wij(xi(t), xj(t)) =
(
min

{
‖xi(t)− xj(t)‖2 − R2

‖xi(t)− xj(t)‖2 − r2
, 0
})2

.

Taking the partial differential of the potential field func-
tion Wij(xi(t), xj(t)) with respect to xi(t), for the case of
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‖xi(t)− xj(t)‖ ∈ [r,R], one has

∂W T
ij (xi(t), xj(t))

∂xi(t)
=

4(R2 − r2)(‖xi(t)− xj(t)‖2 − R2)
(‖xi(t)− xj(t)‖2 − r2)3

× (xi(t)− xj(t))T ,

and for the case of ‖xi(t)− xj(t)‖ ∈ (R,∞], one gets

∂W T
ij (xi(t), xj(t))

∂xi(t)
= 0.

Based on the above discussions, the potential field function
Wij(xi(t), xj(t)) has the following properties:
• If the relative distance of any pair of agents i, j is less
than r , Wij(xi(t), xj(t)) is not equal to 0.

• If the relative distance of any pair of agents i, j tends to
r , Wij(xi(t), xj(t)) increases.

• If the relative distance of any pair of agents i, j is larger
than r and less than R, Wij(xi(t), xj(t)) increases.

In this case, if the relative distance of any pair of agents i, j
belongs to [r,R], the potential field function Wij(xi(t), xj(t))
can be regarded as an extra control input such that the colli-
sion avoidance is realized.

Let ei(t) = xi(t)− di− x0(t) and νi(t) = vi(t)− v0(t), then
the system in (1)-(6) is transformed into the following form

ėi(t) = νi(t),
ν̇i(t) = f̃ (ei(t − τ ), νi(t − τ ))− αi(t)

×

∑N

j=1
`ij(ej(t)+ νj(t))− bi(ei(t)+ νi(t))

−

∑N

j=1

∂W T
ij (xi(t), xj(t))

∂xi(t)
,

(8)

where f̃ (ei(t−τ ), νi(t−τ )) = f (xi(t−τ ), vi(t−τ ))−f (x0(t−
τ )+ di, v0(t − τ )), and for i ∈ P , bi 6= 0, otherwise, bi = 0.
For the sake of obtaining the main results, the following

assumption, lemma and definition are necessary.
Assumption 1: For any x(t), y(t), v(t), u(t) ∈ Rn, there

exist two nonnegative parameters ϕ and φ, such that the
nonlinear function f (·, ·) satisfies the following condition,

‖f (x(t), v(t))−f (y(t), u(t))‖≤ϕ‖x(t)−y(t)‖+φ‖v(t)−u(t)‖.

Lemma 1: For any vectors X ,Y ∈ Rn, the following
inequality holds

2XTY ≤ XTX + Y TY .

Definition 1: The leader-following formation control of
second-order multi-agent systems with time delay in (8) is
said to be ensured, if the following conditions hold

lim
t→∞
‖xi(t)− di − x0(t)‖ = 0,

lim
t→∞
‖vi(t)− v0(t)‖ = 0.

Remark 1: In this article, the formation control problem
has been considered for a second-order multi-agent system
with time delay in (8). Different from the usual formation
control problems in [3], [4], [10], the collision avoidance

control law in (7) is constructed by a typical potential field
function. This potential field function can be regarded as a
repulsive force, such that the collision avoidance among any
pair of agents can be achieved. Compared with the formation
control problems with collision avoidance [6], [25], [32],
a mixed control approach is considered. The controller is
designed by using this mixed control approach that not only
involves the leader-following and adaptive control strategies
to ensure the specified formation shape, but also depends on
the potential field function in order to guarantee the collision
avoidance.
Remark 2: Recently, the adaptive control strategies have

been introduced into many problems of multi-agent sys-
tem [5], [35], [46]. However, time delay is inevitable due to
the finite response speed of hardware. In this article, the adap-
tive control strategy is utilized to design the formation control
protocol in (3) and (4), and the updated law in (5). On the
other hand, the pinning control method has been proven to
be an effective method which only acts on a small fraction of
agents, rather than the whole system in the control process.
In this case, this article develops the adaptive control and
pinning control methods for application to the formation con-
trol problem of second-order multi-agent system with time
delay in (8).
Remark 3: In this article, the time delay τ has been consid-

ered for the second-order multi-agent system in (1). The time
delay τ is molded by a kind of system delay, which is caused
by the finite response speed of hardware and is regarded as
a signal for an exact amount of time in (1). For this reason,
the time delay τ is assumed to be a same constant in all the
leader and follower agents. Although, an ideal time delay in
networked systems would be heterogeneous, it may result in
some complex mathematical analyses. For the case that the
time delay is heterogeneous, we will try to explore these in
the following work.

III. FORMATION CONTROL AND COLLISION AVOIDANCE
OF SECOND-ORDER MULTI-AGENT SYSTEM
In this section, the formation control problem of the second-
order multi-agent system in (8) is studied. The derived results
are divided into two cases. The first case considers the
second-order multi-agent system in (8) without time delay,
and the second case examines the second-order multi-agent
system with time delay in (8).
Theorem 1: Suppose that Assumption 1 and τ = 0 hold.

The formation control and collision avoidance of the second-
order multi-agent system in (8) are achieved, if there is a
positive parameter α̃, such that the following condition holds,

ϕ̃ − α̃λ1(L+ B) < 0, (9)

where ϕ̃ = max{1+ ϕ + 2φ, 3+ φ + 2ϕ}/2, the matrix B =
diag{b1, . . . , bN }, and λ1(L+B) is the smallest eigenvalue of
matrix L+ B.

Proof: Denote Wij(xi(t), xj(t)) as Wij(t) for brevity.
Similarly to [38], [39], consider the following Lya-
punov function for the system second-order multi-agent
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system in (7),

V (t) =
∑
i∈V

∑
j∈Ni

α̃eTji (t)eji(t)+
∑
i∈V

eTi (t)νi(t)

+
1
2

∑
i∈V

(eTi (t)ei(t)+ ν
T
i (t)νi(t))

+
1
2α

∑
i∈V

(αi(t)− α̃)2 +
1
2

∑
i,j∈V

Wij, (10)

where eji(t) = ej(t) − ei(t). In view of Schur complement
theory [49], the Lyapunov function V (t) can be rewritten by

V (t) =
∑
i∈V

∑
j∈Ni

α̃eTji (t)eji(t)+
1
2

∑
i∈V

[
ei(t) νi(t)

]
×

[
1 1
1 1

] [
ei(t)
νi(t)

]
+

1
2α

∑
i∈V

(αi(t)− α̃)2

+
1
2

∑
i,j∈V

Wij, (11)

which means that the Lyapunov function V (t) is positive
definite from (5)-(7).

For i 6= j, the derivative of V (t) can be obtained as follows

V̇ (t) = 2
∑
i∈V

∑
j∈Ni

α̃eTij (t)ėij(t)+
∑
i∈V

(
ėTi (t)νi(t)

+ eTi (t)ν̇i(t)
)
+

∑
i∈V

(
eTi (t)ėi(t)+ ν

T
i (t)ν̇i(t)

)
+

1
α

∑
i∈V

(αi(t)− α̃)α̇i(t)+
1
2

∑
i,j∈V

(∂W T
ij (t)

∂xi(t)

× ẋi(t)+
∂W T

ij (t)

∂xj(t)
ẋj(t)

)
≤ 2

N∑
i=1

N∑
i=1

α̃eTij (t)νij(t)+
1
2

( N∑
i=1

eTi (t)e(t)

+ 3νTi (t)νi(t)
)
+

N∑
i=1

(
ei(t)+ νi(t)

)T
×

(̃
f (ei(t), νi(t))− αi(t)

N∑
j=1

`ij(ej(t)+ νj(t))

− bi(ei(t)+ νi(t))−
∂W T

ij (t)

∂xi(t)

)
+

N∑
i=1

(αi(t)− α̃)

×

N∑
j=1

(
eji(t)+ νji(t)

)T(
eji(t)+ νji(t)

)

+
1
2

N∑
i=1

N∑
j=1

(∂W T
ij (t)

∂xi(t)
ẋi(t)+

∂W T
ij (t)

∂xj(t)
ẋj(t)

)
, (12)

where νji(t) = νj(t)− νi(t).
Let e(t) = [eT1 (t), . . . , e

T
N (t)]

T and ν(t) = [νT1 (t), . . . ,
νTN (t)]

T . It follows from the definitions of e(t), ν(t) and L

that
N∑
i=1

N∑
j=1

α̃eTij (t)νij(t) = α̃e
T (t)(L⊗ In)ν(t),

N∑
i=1

(
ei(t)+ νi(t)

)T(
αi(t)

N∑
j=1

`ijej(t)+ biei(t)
)

= (e(t)+ ν(t))T ((αi(t)L+ B)⊗ In)e(t),

and
N∑
i=1

(
ei(t)+ νi(t)

)T(
αi(t)

N∑
j=1

`ijνj(t)+ biνi(t)
)

= (e(t)+ ν(t))T ((αi(t)L+ B)⊗ In)ν(t).

Using Assumption 1 and Lemma 1, one has the following

N∑
i=1

(
ei(t)+ νi(t)

)T
f̃ (ei(t), νi(t))

≤

N∑
i=1

(‖ei(t)‖ + ‖νi(t)‖)(ϕ‖ei(t)‖ + φ‖νi(t)‖)

≤

N∑
i=1

(
2ϕ + φ

2
‖ei(t)‖2 +

ϕ + 2φ
2
‖νi(t)‖2). (13)

From the definition of ∂Wij(t), it is easy to verify that

∂Wij(t)
∂xi(t)

= −
∂Wij(t)
∂xj(t)

=
∂Wji(t)
∂xi(t)

= −
∂Wji(t)
∂xj(t)

,

which implies that

N∑
i=1

νTi (t)
N∑
j=1

∂W T
ij (t)

∂xi(t)

=
1
2

N∑
i=1

νTi (t)
N∑
j=1

(∂W T
ij (t)

∂xi(t)
+
∂W T

ij (t)

∂xi(t)

)
=

1
2

N∑
i=1

N∑
j=1

(∂W T
ij (t)

∂xi(t)
νi(t)+

∂W T
ij (t)

∂xj(t)
νj(t)

)
. (14)

Based on the matrix decomposition theory, there is a uni-
tary matrix H such that HTLH = 3 holds, where 3 =
diag{0, λ2(L), . . . , λN (L)}, H = [H1, . . . ,HN ] and H1 =

1TN /
√
N . Let z(t) = (HT

⊗ In)e(t) and y(t) = (HT
⊗ In)ν(t),

where z(t) = [zT1 (t), . . . , z
T
N (t)]

T and y(t) = [yT1 (t), . . . ,
yTN (t)]

T . Thus, it follows from the equations in (9)-(14) that

V̇ (t) ≤
N∑
i=1

(
2ϕ + φ + 1

2
‖ei(t)‖2 +

ϕ + 2φ + 3
2

‖νi(t)‖2)

− α̃eT (t)((L+ B)⊗ In)e(t)− α̃νT (t)
× ((L+ B)⊗ In)ν(t)

=

N∑
i=1

[(2ϕ + φ + 1
2

− α̃λ1(L+ B)
)
‖zi(t)‖2

+

(ϕ + 2φ + 3
2

− α̃λ1(L+ B)
)
‖yi(t)‖2

]
< 0. (15)
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In addition, for i 6= j, it is easy to deduce that

lim
‖xi(t)−xj(t)‖→r+

Wij(t) = ∞,

lim
‖xi(t)−xj(t)‖→r+

∂Wij(t)
∂xi(t)

= ∞.

That is, the collision avoidance is ensured. This completes the
proof.

Theorem 1 studies the formation control problem of the
second-order multi-agent system without time delay in (8).
Note that the matrix L+B is a positive definite matrix, since
the Laplacian matrix L is the positive semi-definite matrix
and the matrix B is a positive definite diagonal matrix. Now,
time delay is considered in the following theorem.
Theorem 2: Suppose that Assumption 1 and τ 6= 0 hold.

The formation control and collision avoidance of the second-
order multi-agent system in (8) are achieved, if there is a
positive parameter α̃, such that the following condition holds,

ϕ̂ − α̃λ1(L+ B) < 0, (16)

where the matrix B = diag{b1, . . . , bN }, ϕ̂ = φ+ ϕ+ τ/2+
3/2, and λ1(L+B) is the smallest eigenvalue of matrixL+B.

Proof: Consider the following Lyapunov function for
the system second-order multi-agent system in (7),

V (t) =
∑
i∈V

∑
j∈Ni

α̃eTji (t)eji(t)+
∑
i∈V

eTi (t)νi(t)

+
1
2

∑
i∈V

(eTi (t)ei(t)+ ν
T
i (t)νi(t))

+
1
2α

∑
i∈V

(αi(t)− α̃)2 +
1
2

∑
i,j∈V

Wij(t)

+

∑
i∈V

ϕ + φ

2

∫ t

t−τ
(eTi (θ )ei(θ )+ ν

T
i (θ )νi(θ ))dθ

+

∑
i∈V

∫ τ

0

∫ t

t−θ
(eTi (ϑ)ei(ϑ)+ ν

T
i (ϑ)νi(ϑ))dϑdθ.

Based on the similar discussions of (11), the above Lyapunov
function is positive. Then, for i 6= j, the derivative of V (t) can
be obtained as follows

V̇ (t) ≤ 2
N∑
i=1

N∑
i=1

α̃eTij (t)νij(t)+
1
2

N∑
i=1

(
eTi (t)ei(t)

+ 3νTi (t)νi(t)
)
+

N∑
i=1

(
ei(t)+ νi(t)

)T
×

(̃
f (ei(t − τ ), νi(t − τ ))− αi(t)

N∑
j=1

`ij(ej(t)

+ νj(t))− bi(ei(t)+ νi(t))−
∂W T

ij (t)

∂xi(t)

)
+

N∑
i=1

(αi(t)− α̃)
N∑
j=1

(
eji(t)+ νji(t)

)T(
eji(t)

+ νji(t)
)
+

1
2

N∑
i=1

N∑
j=1

(∂W T
ij (t)

∂xi(t)
ẋi(t)

+
∂W T

ij (t)

∂xj(t)
ẋj(t)

)
+
ϕ + φ

2

N∑
i=1

(
eTi (t)ei(t)

− eTi (t − τ )ei(t − τ )+ ν
T
i (t)νi(t)

− νTi (t − τ )νi(t − τ )
)
+

N∑
i=1

(
τ (eTi (t)ei(t)

+ νTi (t)νi(t))−
∫ t

t−τ
(eTi (θ )ei(θ )+ ν

T
i (θ )

× νi(θ ))dθ. (17)

Using Assumption 1 and Lemma 1, one has the following

N∑
i=1

(
ei(t)+ νi(t)

)T
f̃ (ei(t − τ ), νi(t − τ ))

≤

N∑
i=1

(‖ei(t)‖ + ‖νi(t)‖)(ϕ‖ei(t − τ )‖

+φ‖νi(t − τ )‖)

≤

N∑
i=1

ϕ + φ

2
(‖ei(t)‖2 + ‖ei(t − τ )‖2

+‖νi(t)‖2 + ‖νi(t − τ )‖2). (18)

Similar to (15), based on the matrix decomposition theory,
there is a unitary matrix H such that HTLH = 3 holds,
where 3 = diag{0, λ2(L), . . . , λN (L)}, H = [H1, . . . ,HN ]
and H1 = 1TN /

√
N . Let z(t) = (HT

⊗ In)e(t) and y(t) =
(HT
⊗ In)ν(t), where z(t) = [zT1 (t), . . . , z

T
N (t)]

T and y(t) =
[yT1 (t), . . . , y

T
N (t)]

T . Moreover, it is easy to check that the
last term in satisfies−

∫ t
t−τ (e

T
i (θ )ei(θ )+ ν

T
i (θ )νi(θ ))dθ ≤ 0.

In this case, it is not hard to obtain that

V̇ (t) ≤
1
2

N∑
i=1

(
(1+ τ + 2ϕ + 2φ)‖ei(t)‖2 + (3+ τ + 2ϕ

+ 2φ)‖νi(t)‖2
)
− α̃eT (t)((L+ B)⊗ In)e(t)

− α̃νT (t)((L+ B)⊗ In)ν(t)

=
1
2

N∑
i=1

[(
(1+ τ + 2ϕ + 2φ)− α̃λ1(L+ B)

)
×‖zi(t)‖2 +

(
(3+ τ + 2ϕ + 2φ)− α̃λ1(L+ B)

)
×‖yi(t)‖2

]
< 0. (19)

In addition, for i 6= j, it is easy to know that

lim
‖xi(t)−xj(t)‖→r+

Wij(t) = ∞,

lim
‖xi(t)−xj(t)‖→r+

∂Wij(t)
∂xi(t)

= ∞.

Thus, the proof is completed.
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Remark 4: Note that the sufficient criteria in
Theorems 1 and 2 are presented by the algebraic conditions
instead of the terms of linear matrix inequalities. This means
that the sufficient criteria in Theorems 1 and 2 are easier for
calculation and simulation. Particularly, it can be anticipated
that the calculation of the obtained criteria only depends on
the size of matrixL+B if applying large-scale system. On the
other hand, in many works of pinning control, the number
of pinning nodes can be solved or optimized. However,
the best solution of pinning nodes cannot be solved in this
article. In our future works, we will attempt to investigate
this problem.
Remark 5: In views of Theorems 1 and 2, it has been

proved that for i ∈ V , all the states xi(t) and vi(t) approach to
x0(t)+di and v0(t), respectively. Thus, the control gainαi(t) in
(5) is convergent for all i ∈ V . Actually, it can be anticipated
that there exist two positive constants T0 and α̂, such that∫ t+T0
t

∑
i∈V χ

T
i (τ )χi(τ )dτ ≥ α̂I2N holds if all conditions in

Theorems 1 and 2 are satisfied, where χi(t) = [eTi (t), ν
T
i (t)]

T

and α̂ is a constant depended on α̃ in Theorems 1 and 2. At this
stage, α̃ > 0 can be regarded as a special case of persistent
excitation (PE) condition which has been investigated in
many adaptive problems. For more details of PE condition,
the reference [50] is recommended.
Remark 6: Note that the Lyapunov method plays an

important role in the proof of Theorems 1 and 2. When
constructing these Lyapunov functions, the primary aim is to
consider the dynamic relationship among the parameters of
multi-agent system in (8). In this case, the first challenge is
how to apply a Lyapunov function that can reflect the system
delay τ , the control gains αi(t) and bi, and the topological
structure. Inspired by [3], [5], [33], [36], the Lyapunov func-
tions in the proof of Theorems 1 and 2 have been constructed.
Then, the second challenge is how to design an appropriate
potential field function of the avoidance control (7) into the
Lyapunov functions in the proof of Theorems 1 and 2. It is
worth highlighting that the derivative of the potential field
function Wij(t) between any pair of agents i, j will approach
to zero as time evolves. It means that the derivative of these
Lyapunov functions is always negative definite.
Remark 7: Recently, there are many leader-following con-

trol methods that have been considered for multi-agent sys-
tems [41]–[46]. Compared with these works, in this article,
the leader-following control method is designed for formation
control problem with collision avoidance and time delay.
In this control method, on one hand, the pinning and adaptive
control strategies have considered to achieve the specified
formation shape, and on the other hand, the relationship
among control parameters is shown. Moreover, a typical
potential field function has designed in this leader-following
control method. Although, this potential field function, as a
collision avoidance control law, is irrelevant to the leader,
it can be utilized for ensuring collision avoidance.
Remark 8: This article studies the formation control and

collision avoidance problem of second-order multi-agent

systems with time delay, where the time delay is modeled
by system delay. The main idea of this article is to construct
an appropriate Lyapunov function. This Lyapunov function
in Theorem 2 contains some relevant terms, where the inte-
gral items

∑
i∈V

ϕ+φ
2

∫ t
t−τ (e

T
i (θ )ei(θ ) + ν

T
i (θ )νi(θ ))dθ and∑

i∈V
∫ τ
0

∫ t
t−θ (e

T
i (ϑ)ei(ϑ)+ν

T
i (ϑ)νi(ϑ))dϑdθ are utilized to

deal with the time delay. In this case, this method focuses
more on the mathematical techniques, but may not reveal the
relationship among the parameters of system.

IV. EXAMPLE
Example 1: An example is given to show the formation

control and collision avoidance problem of a second-order
multi-agent system with four agents. The communication
graph is a globally coupled network, which is drawn in Fig.1.

FIGURE 1. The communication structure with 4 agents.

FIGURE 2. The relative positions xi1(t)− x0(t)− di1 and
xi2(t)− x0(t)− di2 of formation control and collision avoidance in
second-order multi-agent system.

The control gains are α = 0.81 and bi = 1 for all
i ∈ V . The nonlinear function is f (xi(t − τ ), vi(t − τ )) =
0.2 sin(xi(t − 2)) + 0.1vi(t − 2), which means that ϕ = 0.2
and φ = 0.1. Now, denote the desired position as a square
with side length 20, the minimum radius r of the avoidance
region is 3, and the radius R of the detection region is 70.
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FIGURE 3. The relative velocities vi1(t)− v0(t) and vi2(t)− v0(t) of
formation control and collision avoidance in second-order multi-agent
system.

FIGURE 4. The trajectories of all the agents under the formation control
law with collision avoidance.

FIGURE 5. The relative distances ‖xi1(t)− xj1(t)‖ and ‖xi2(t)− xj2(t)‖ of
formation control and collision avoidance in second-order multi-agent
system.

In this case, it is easy to check that λi(L + B) = 1, which
means that all of the conditions in Theorem 1 are satisfied if
choosing α̃ > 3. Therefore, the formation control of second-
order multi-agent system with four agents is ensured, and
the collision avoidance can be avoided. The relative positions
xi1(t)− x0(t)− di1 of all agents approach to zero in Fig. 2 as
well as the relative positions xi2(t)− x0(t)− di2 of all agents.

In Fig. 3, the relative velocities vi1(t)−v0(t) and vi2(t)−v0(t)
converge to zero. In Fig. 4, the position trajectories of all the
agents are drawn, it can be observed that all of the agents
approach to the desired position of the square. The relative
distances ‖xi1(t) − xj1(t)‖ and ‖xi2(t) − xj2(t)‖ are shown
in Fig. 5.

V. CONCLUSION
This article studies the formation control and collision
avoidance problem for a second-order multi-agent system
with time delay. To achieve the specified formation shape,
the leader-following control method utilizing the distributed
adaptive control law is considered. Then, a kind of potential
field function is applied to avoid the collision avoidance.
Based on the Lyapunov theory, two sufficient criteria are
obtained in terms of algebraic conditions such that the for-
mation control and collision avoidance of the second-order
multi-agent system are ensured. Subsequently, a numeri-
cal simulation is given to illustrate the effectiveness of the
obtained results. Our further works including formation con-
trol protocol with collision and obstacle avoidance will be
carried out.
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