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ABSTRACT In recent years, scarce water resources became one of the main problems that endanger
human species existence and the advancement of any nation. In this research, smart water meters were
implemented, distributed, and installed in a regional area in Cairo while data were collected at uniform
intervals then sent to the cloud instantly. The solution paradigm uses an Internet of Things (IoT) based on
micro-services and containers. The design incorporates real-time streaming and infrastructure performance
optimization to store data. A second layer to analyze the acquired data was used to model water consumption
using Long Short-Term Memory (LSTM). The designed LSTM is validated and tested to be utilized in
the forecast of future water demand. Moreover, two alternative machine learning methods, namely Support
Vector Regression and Random Forest commonly utilized in time series forecasting applications, were used
for a comparative analysis of which LSTM has proven to be superior. The proper integration of the system
elements is the key to the proposed system success. Based on the success of the designed system, it can be
applicable on a national scale. That can enable the optimal management of consumers’ demand and improve
water infrastructure utilization. The proposed paradigm presents a testbed for various scenarios that can be
used in water resources management.

INDEX TERMS Water smart meters, time series, resources management, IoT, LSTM, micro-services.

I. INTRODUCTION
The smart water metering systems have just begun to gain
momentum as water utilities started to use real-time data
acquisition that can be stored and used in data analytics to
save the scarce water resources in an optimal way [1]. One
of the most crucial research directions supporting that trend
is advanced metering infrastructure (AMI) that can offer a
remote connection between water utilities [2]. However, the
communication itself can take many forms, such as power
fiber optics, cellular transmission, and broadband communi-
cation, among others [3]. In a smart water metering system,
data can communicate between smart meters and water util-
ities with the support of analytical software architecture to
take proper decision regarding certain actions to monitor and
control the water supply in the system or to issue appropri-
ate alerts to warn consumers or guide them to reduce their
consumptions [4]. It can also predict distinctive patterns in
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water consumption for a future forecast. Due to the complex
nature of the water system which includes pumping stations,
reservoirs, and consumer services. Accurate prediction could
help manage water utilities to avoid problems that arise in the
times of peak consumption or water leakage [5].

In deploying a smart water metering communications net-
work, proper technology for data transmissions must be used.
As there is a diverse number of options that differ in cost,
popularity, reliability, scalability, and security, among other
indicators, choosing the proper architecture and communica-
tion technologies can present a barrier to water utilities.Water
utilities integration needs to be planned carefully to ensure
the durability of the communications network [2]. Extensive
research has been done for electricity consumption mod-
elling, which has significant differences [6]–[8]. However,
electricity metering can offer measurements of higher granu-
larity and accuracy compared to water metering devices [9].
Moreover, energy consumption patterns are much more rec-
ognized and sometimes can be fixed, compared to the variable
water patterns [10]. For example, the energy consumption of
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most household devices can be directly calculated through
their technical characteristics, which is not possible for show-
ers as an example, even in the same household [11], [12].

The technology of the Internet of Things (IoT) has been
utilized in various applications and is identified as one of
the main factors of success for Smart Cities. Nowadays,
in the IoT, data and its understanding are getting more impor-
tant and remain the main concern rather than the objects
that generate these data. To achieve data understanding,
exchanging, and sharing for both information and knowl-
edge, these objects need a lightweight and novel platform
for the future provisioning of IoT services. The Web of
Objects (WoO) is supported by inter-operable micro-services
and the granularity of heterogeneous objects as well as vir-
tualization through virtual objects composites. To implement
the IoT of cross-domain applications, Jarwar et al. introduced
a WoO enabled inter-operable micro-services architecture
and demonstrated the implementation using a use case [13].
Moreover, the IoT dynamic environment behavior requires
them to be able to evolve and scale over time, adopting
novel technologies and various requirements. Micro-service
architecture style has recently gained significant popularity
in many fields due to the challenges in building large-scale,
complex, and distributed applications and platforms on the
Web. Krylovskiy et al. applied the micro-service architecture
paradigm to design a Smart City IoT platform [14]. They
suggested various benefits using their paradigm as compared
to the other architectures’ approaches.

Pau et al. showed that the power systems evolution using
the smart grid paradigm is highly dependent on the distri-
bution grids modernization [15]. They suggested that using
new technologies, infrastructures, and applications is cru-
cially required. Their research presented a smart metering
infrastructure with a large set of possible services directed
to the management and automation of distribution grids.
Their architecture was based on a cloud solution, which
facilitates the communication between the smart meters
and the distribution grid services interface. Because a large
number of applications can be implemented on the cloud,
the focus was on enabling the automatic reconfiguration of
the grid using a real-time distributed state-estimation algo-
rithm. Kamienski et al. studied the Irrigation for agricul-
ture which is considered the main consumer of fresh water
worldwide [16]. The intensive use of technology could be
useful to optimize the use of water, improve the crops qual-
ity and reduce the energy consumption. Kamienski and his
colleagues claimed that even though, the IoT and other asso-
ciated technologies are the normal choices for smart water
management applications, there is still a debate about how
appropriate those choices are in real world scenarios with
the on-site pilots’ deployment. Also, the platforms develop-
ment of IoT-based applications should be suitable to different
climates, crops, and countries. They proposed IoT based
approaches and methods for smart water management in the
precision irrigation domain and demonstrated their use in
Spain, Brazil, and Italy. They presented two pilot studies

based on a proposed architecture and scenario development
process.

An additional research by Jarwar et al., discussed the
objects from data management infrastructure, various energy
generation, and consumption terminals [17]. However, they
emphasized that the acquired data is only useful when it is
available on-time for services that extract meaningful infor-
mation to achieve intelligent decisions. The micro-services-
based data analysis, data caching, data processing, data
virtualization, and data ingestion methods can be applied to
enhance energy efficiency, management services provision-
ing, and data availability across different buildings. WoO
offers mechanisms for data aggregation, abstraction, and
ingestion with virtual objects and composite virtual objects
using scalability, ontologies and availability of services
with micro-services. Their research proposed the utiliza-
tion of data processing micro-services modelling to improve
data availability while exposing services capabilities with
micro-services. They presented a semantic web agent based
on an ontology for linking, availability, re-usability, and
enhancement of services, data-objects, and micro-services.
The authors presented a use case to evaluate their paradigm,
which included data collection from different sources and
processing and provision of various BEEMS. They mimicked
the enhanced data availability for BEEMS using a use case
scenario.

Moreno et al. emphasized that one of the most frequent
and costly natural disasters that affect humankind is flood-
ing [18]. Their developed architecture was based on the
Message Queuing Telemetry Transport (MQTT) protocol,
with security and encryption mechanisms, to send real-time
data packages from fixed nodes to a server. The accessibility
of data could be managed through graphical representations
and customizable queries, to allow for flood analysis and
prediction systems. Kamienski et al. explained that fresh
water smart management for precision irrigation is essen-
tial to increase crop yield and decrease the involved costs
while contributing to environmental sustainability [19]. The
technologies utilization offers a means to provide the precise
amount of water needed for plant irrigation. They demon-
strated the suitability of the IoT for smart water management
applications, although the different technologies integration
is needed for a successful system. The developed project
using smart water management platform based on IoT for
precision irrigation in agriculture applied in four pilot studies
in Europe and Brazil. The results showed that the system
requires the re-engineering of some components and spe-
cially designed configurations to provide higher scalability
with less computational resources. Therefore, the amount
of forward-planning is considered the main obstacle in the
adoption of many water utilities’ solutions. While the ulti-
mate objective is to focus on predicting the aggregate water
consumption of urban areas populations.

In this research, the problem of data acquisition for short-
and long-term water consumption was studied to help in
forecasting and management. Moreover, a smart water meter
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with the ability to send data to the cloud was designed,
while a complete architecture solution for data acquisition
in real-time was proposed. Data were aggregated to be ana-
lyzed further based on micro-services and machine learning
techniques in an expandable and secure manner with high
performance, considering the big data involved in the pro-
posed system. The proposed system was divided into two
layers; the first layer is for data acquisition and aggregation,
while the second layer is for water demand forecasting using
machine learning techniques that predicts water demand for
different regions of households. The rest of this article is
organized as: In section II, a related work is presented with
recent developments in the field of water demand prediction
based on AI techniques and cloud services. In section III,
a full description of data acquisition, the proposed LSTM
prediction, and the micro-services architecture are briefly
explained. In section IV, the solution architecture design
and evaluation are presented. Section V explains the results
achieved by aggregating data collected from distributed smart
meters, design and evaluation of the water consumption pre-
diction model using LSTM. While section VI presents the
conclusion and the potentials of the proposed paradigm for
water consumption acquisition, water demand prediction, and
water demand management.

II. RELATED WORK
Water development and saving efforts have lately focused
on increasing user-consumer awareness by devising interven-
tion scenarios that aim at educating users about their con-
sumer behavior and guide them to reduce their consumptions.
Research on data mining and machine learning techniques
were recently used for short-term water consumption pre-
diction and pattern recognition and on intervention methods
that exploit these techniques to inform consumers and stim-
ulate behavioral changes [20]. Besides, companies are cur-
rently investing in water monitoring devices that are installed
on household bathroom faucets and measuring real-time
water consumption, for online statistics and sending alerts
to the consumers [9]. These interventions and alerts require
that individual short-term consumption to be predicted as
accurately as possible and in real-time so that they can be
compared with future planned consumptions [21].

Several Artificial Intelligence techniques have been
utilized by water demand forecasting over the last decades.
In a recent study by Ghalehkhondabi et al., they have investi-
gated the research done during the period between 2005 and
2015 related to water demand forecasting based on Artificial
Intelligence. They found that Fuzzy models, metaheuristic
optimization, Artificial Neural Networks, and Support Vec-
tor Machines were the most commonly used techniques.
They postulated that Artificial Neural Network was the most
prominent method used in water demand forecasting. How-
ever, they concluded that it is still difficult to choose any
method as the winner among other methods [22]. Even
though, Artificial Intelligence methods and their hybrid were
applied in water demand forecasting, researchers indicated

that further contribution is yet to be made to achieve a better
water demand forecasting [23].

Muhammad, and Feng investigated several artificial intel-
ligence techniques such as support vector machine, artificial
neural networks, fuzzy logic, and extreme learning machines
as well as hybrid models and Autoregressive Integrated Mov-
ing Average (ARIMA) in urban water demand forecasting.
They concluded that artificial intelligence methods showed
superiority especially Artificial Neural Networks for short-
term water demand forecasting [24].

Papageorgiou et al. proposed a time series prediction
hybrid approach based on Fuzzy Cognitive Maps and Artifi-
cial Neural Networks. Their proposed method aimed to select
the interconnections and attributes for time series prediction
following the training stage. They compared the proposed
approach prediction with real data of daily water demand to
validate the model performance [25].

Shabani et al. proposed a Support Vector Machine model
based on the polynomial kernel function to predict monthly
water demand in a use case city in Canada. They aimed to
assess phase space reconstruction before the input variables
combination design. They concluded that their approach
could achieve satisfactory lag time which in turns improve
the support vector machine model performance [26].

Recently, cloud computing services became an integral
part of any modern system among both corporations and indi-
viduals because of its vast and flexible facilities. Therefore,
the huge computing demand can only be met by the cloud
computing infrastructure which can lead to an ever-growing
complexity to meet both quality of service and service level
agreement [27]. Narayanan et al. proposed an underground
water distribution system based on an IoT architecture that
is integrated with Fog computing. To achieve that design
in a smart city, the authors forecasted the customers water
demand. They used ARIMA to predict the daily demand for
a period of three months in their case study. Afterwards,
the water distribution system based on an IoT architecture
was designed using hydraulic engineering to distribute water
with minimal losses [28].

The related work even though offers many soft computing
methods for predicting water demand, it lacked the possibility
to accurately model short-term water demand. Moreover,
many of the current research aim to forecast the overall future
water consumption instead of granular water demands. The
literature failed to offer means for fully integrated systems
with online training and the possibility to incorporate cloud
services that can manage water demands based on regions
and using advanced and flexible methods that can adapt
to the ever-changing water demand behavior of individual
users. Therefore, Proof of concept needs to be proposed for a
national scale system that offers a layered infrastructure that
can be expanded to utilize the full ICT capabilities.

III. METHODOLOGY
This section describes the general methods and techniques
used in the model design, data acquisition, preparation, and
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evaluation of the solution architecture. The steps used to
describe the proposed two-layer water demand prediction
system are shown in figure 1. While the next subsection
explains in detail the design and implementation of the
smart water meter, followed by an explanation of time series
prediction techniques, the proposed neural network model,
alternative machine learning techniques, regression accu-
racy metrics, and the benefits of micros-services architec-
ture to provide useful possible processing and management
solutions.

FIGURE 1. A flowchart that describes the steps of the proposed two-layer
water demand prediction system.

A. SMART WATER METERING
The methodology is focused on an autonomous measuring
unit that is used with sensors to monitor water consumption
along with GPS information. The design prototype for the
smart water meter shown in figure 2, is composed of a micro-
controller connected to the internet through a Wi-Fi module,
a water flow sensor and a GPS sensor [29], [30].

Station, Wi-Fi access point, and microcontroller are all
features that can be found in the nodeMCU Dev board. That
combination of features made the development board a ver-
satile tool for both IoT applications and Wi-Fi networking.
Moreover, it can also be used as an access point, station host a
webserver, or upload and fetch data toMQTT brokers through
the internet. Therefore, it was chosen to interact with both the

FIGURE 2. Detailed Design for the smart water flow meter; (a) ESP8266
12E NodeMCU, (b) water flow sensor G1/2’’, and (c) adafruit ultimate GPS.

GPSmodule and the water flow sensor. The water flow sensor
consists of a water rotor, a hall-effect sensor, a water rotor,
and a plastic valve body. The sensor operates when water
flows through the sensor rotor causing it to roll. The rotor
speed changes with the water flow and the corresponding
hall effect sensor accordingly changes the output. The water
sensor can sense a range of water starting from 1 m3/min
up to 29 m3/min with a sensitivity of 1%. The GPS module
is built using the MTK3339 chipset which can track up to
22 satellites with a built-in antenna and a receiver sensitivity
of -165 dBm tracking). While the GPS module can also make
10 location updates per second suitable for high sensitivity
and high-speed tracking or logging applications. Also, it has a
very low power consumption of only 20 mA when the update
rate ranges from 1 to 10 Hz with a position accuracy less than
3 m. The water smart meter was validated by measuring the
water flow of several predetermined water quantities with the
corresponding time duration to determine the accuracy for
each meter which was found to be below 2% of the measured
quantity.

Because this research is based on collecting water con-
sumption data from different households distributed among a
neighborhood in an urban area, a selection for suitable points
to install the smart meters were predetermined to evenly
cover as many houses as possible [1]. Therefore, distributed
smart meters were installed across 20 households in a region
located inMaadi district in Cairo, according to themap shown
in figure 3 with blue markers.

B. TIME SERIES REGRESSION
Water demand prediction is considered a use case from time
series prediction. Time series modelling is an active area of
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FIGURE 3. Smart water flow meters’ distribution in the pilot study indicated by blue markers and generated by
Scribble Maps (http://www.scribblemaps.com).

research that has attracted a lot of attention recently. The
main objective of time series modelling is to collect and
analyze past time series observations to develop a suitable
model which describes the basic pattern of the time series.
The model is used to predict future values for the time series.
The Autoregressive Integrated Moving Average (ARIMA)
is considered one of the most popular and frequently used
stochastic time series models that captures a suite of dif-
ferent standard temporal structures in time series data [31],
[32]. ARIMA model has subclasses of other models, such as
Moving Average (MA) which uses the dependency between
an observation and a residual error from a moving average
model applied to lagged observations [33], the Autoregres-
sive (AR) which uses the dependent relationship between an
observation and some number of lagged observations [34],
and Autoregressive Moving Average (ARMA) model that
combines bothMA andAR [35]. The adoption of the ARIMA
model is due to the simplicity to represent varieties of time
series as well as the possibility to associate the Box-Jenkins
methodology that suggests an iterative three-stage approach
to estimate ARIMAmodel’s numerous parameters and hyper-
parameters for optimally building the model [36], [37]. How-
ever, these models are assumed to be in a linear form,
which is not suitable for many situations. To overcome this
limitation, a few non-linear stochastic models have been

proposed [38], [39]; however, the implementation process
is not simple or straight forward as the ARIMA models.
On the other hand, Holt Winters extended the idea of simple
exponential smoothing by comprising the forecast equation
and three smoothing equations; one for the level, one for
the trend, and one for the seasonal component, with cor-
responding smoothing parameters which results in accurate
predictions for univariate time series data [40]. Recently, the
use of artificial neural networks (ANNs) in the domain of
time series forecasting has attracted increasing attention [41].
The main benefit of ANNs is their capability of non-linear
modelling when applied to time series prediction, without
any a prior knowledge about data statistical distribution [42].
The time series model is formed based on the given dataset
using adaptive techniques. Due to these features, ANNs are
naturally self-adaptive and data-driven [43].

A breakthrough in time series forecasting occurred with
the recent advances in cloud computing and the ability to
solve very complex mathematical formulations over many
servers as well as streaming and storing data across multiple
locations which opened the way for Deep Learning Neural
Networks (DLNNs) to be practically used to solve highly
complex problems. DLNNs can be used to solve pattern
classification problems and can be applied to other fields
such as regression, function estimation, signal processing,
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and time series forecasting problems [44], [45]. The main
advantage of DLNN is the ability to achieve better training
data generalization. DLNN adds the ability to model the
sequence dependence complexity among the input variables
compared to regression predictive modeling. A special type
of DLNN called recurrent neural networks is designed to han-
dle sequence dependence. To elaborate on the deep learning
methods for tuning the coefficients involved in the Holt’s
Winter method, Recurrent Neural Network (RNN) is able
to learn prediction from sequences of data and a variance
of RNN called Long Short-Term Memory (LSTM) is able
to learn from even longer sequences of data. Others have
used SVM regression as an alternative machine learning tech-
nique for time series forecast [46]. However, a few recent
comparative research studies have favored LSTM over SVM
regression regarding the accuracy of both methods [47]–[49].

C. LONG SHORT-TERM MEMORY
RNN is a category of Artificial Neural Networks that can
learn long term dependencies that is useful when the network
needs to retain information over long time periods. That
means it can handle successive sequence of events in which
the understanding of each even is based on previous events.
Moreover, the deepest the RNN, the longer the memory
period and consequently better capabilities can be achieved.
However, RNN has its limitation because of the vanishing
gradient problem due to its architecture restriction to long
term memory capabilities. Therefore, a special type of RNN
namely LSTM are designed to solve those problems to allow
it to retain information for longer periods of times.

LSTMs have the ability to maintain a constant error that
allows them to recursively learn through both time and layers.
Additionally, as seen in figure 4, LSTMs use a special type of
cells called gated cells that can store information in a different
way compared to the RNN and allow to read from them. Each
cell can make a decision by its own regarding the informa-
tion while closing and opening their cells to execute those
decisions. The LSTMs architecture are like chains allowing
them to contain information over long time periods to solve
problems that RNN might fail to solve.

LSTM consists of three main parts including; a type of
gates called input gates that can add information to the cells;
a type of gates called forget gates that allow to remove
information when they are not necessary anymore; and a third
type of gates called output gates responsible for selecting and
outputting the necessary information. The compact forms of
the LSTM unit equations for the forward pass are:

ft = σg(Wf xt + Uf ht−1 + bf ) (1)

it = σg(Wixt + Uiht−1 + bi) (2)

ot = σg(Woxt + Uoht−1 + bo) (3)

c∼t = σh(Wcxt + Ucht−1 + bc) (4)

ct = ft o ct−1 + ito+ c∼t (5)

ht = ot o σh(ct ) (6)

where ho = 0, co = 0 the initial values, the subscript t is
the time step, and the operator o represents the Hadamard
product.
xt is the LSTM unit input vector; ft is the LSTM unit forget

gate’s activation vector; ot is the LSTM unit output gate’s
activation vector; ct is the cell state vector; it is the LSTMunit
input/update gate’s activation vector; ht is the output vector of
the LSTM unit; c∼t is the cell input activation vector; and W is
the bias vector parameters and weight matrices which need
to be learned during training. The Activation functions σg
and σh are sigmoid function and hyperbolic tangent function
respectively.

The LSTM neural network uses deep learning to address
the problems associated with the time series complexity in
large architectures [50].

D. ALTERNATIVE ML REGRESSION METHODS
There are several alternative machine learning methods that
are commonly used in time series forecasting as reported in
the recent related literature. Among those methods is Support
Vector Regression that is proposed for estimating the contin-
uous function of training datasets. It is able to model complex
nonlinear relationships by using an appropriate kernel func-
tion that maps the input into higher dimensional feature space
and transforms the nonlinear relationships into linear forms
Since previous studies endorsed the significance of the RBF
kernel, it was used also in this work for the development of
the SVR [51].

Random Forest is another successful regression technique.
It uses multiple learning algorithms for forecasting both clas-
sification and regression problems. RF combines the results
of decision trees trained by the ‘‘bagging’’ method. RF is
one of the most successful Artificial Intelligence techniques
among the current algorithms that use decision tree methods.
It can handle large number of input variables [52].

As the forest building progresses, it estimates the general-
ization error. Moreover, it is a superior method in estimating
the missing data while maintaining good accuracy. Besides,
it is a relatively fast method that can produce a forest of
decision trees for both regression and classification use cases.

E. REGRESSION MODEL ACCURACY METRICS
Root Mean Square Error (RMSE) is one of the main accuracy
measures which can estimate how accurate the model can
predict a certain response in regression problems. The RMSE
is the calculation of the square root of the residuals’ variance.
It can indicate the model fitting to the data and how close
those data to the model’s predicted values. The lower the
RMSE the better model accuracy.

On the other hand, Mean Absolute Error (MAE) represents
another accuracy measure specially if there are outliers in the
time series. It is the absolute value of the difference between
the actual value and the forecasted value. Therefore, MAE
estimates expected error from the forecast on average.

Another accuracy metric called the Mean Absolute Per-
centage Error (MAPE) is a widely used forecast accuracy
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FIGURE 4. LSTM neural network architecture.

metric, because of its benefits regarding interpretability and
scale-independency. However, MAPE has its limitation as
it produces undefined or infinite values if the time series
have zero or close-to-zero actual values. To solve that issue,
an alternative forecast accuracy measure called the Mean
Arctangent Absolute Percentage Error (MAAPE) is used in
this research. MAAPE has been developed to correlate with
MAPE. Hence, MAAPE rely on the slope as an angle, while
MAPE relies on the slope as a ratio. Therefore, MAAPE
can inherently preserve the MAPE philosophy and at the
same time overcome the problem that might be caused from
the division by zero using bounded influences for outliers
in a fundamental manner. That could be achieved through
considering the ratio as an angle instead of a slope [53].
Therefore, the results can be verified in a quantitative way
from the performance metrics of RMSE,MAE, andMAAPE.

F. MICRO-SERVICES MOTIVATION
The use of cloud computing is an essential constituent of IoT
as it is an IT paradigm that offers the ability of ubiquitous
access to shared pools of configurable system resources and
provides higher-level services that can be provisioned with
minimal management effort and time, often over the Internet.
Moreover, cloud computing is based on resources sharing
to achieve economies and coherence of scale, like public
utility [54].

On the other hand, when millions of objects commu-
nicate and exchange information between IoT applications
the single business logic will result in a highly complex
system. When the system is broken into small parts with
micro-services architecture; it can dispel the complexity of
the system [12]. Micro-services offer rapid development,
loose coupling, lightweight, scalability, Interoperability,
Single Task-Oriented, Broken Object Avoidance, Load

Balancing, Strong Modularization, Plug & Play, Decentral-
ized Governance, and Decomposability. Therefore, micro-
services are considered one of the most promising modern
technologies that can improve the cloud processing capabil-
ities. Containers is considered an efficient way to develop
and deploy micro-services which can be thought-out as an
operating system virtualization in which workloads can share
operating systems resources. Even though, they have been in
used just recently, they are widely adopted with an impres-
sive acceptance among business executives and IT profes-
sionals who are already using containers in mission critical
workloads. While the rest of the business executives and
IT professionals are making plans to incorporate the tech-
nology in their future systems. Moreover, containers can
succeed in services that virtual machines can fail to do in
the development environment [55]. Some of their distinctive
advantages are their ability to be launched or abandoned
instantly. Besides, they do not need an operating system
overhead in the container environment as opposite to the
virtual machine environment. Therefore, containers can be
considered a milestone that can play a vital role to simplify
the development transfer from one platform or environment
t another. However, as found in all technologies, there are
challenges associated with the container’s technology as most
container-based applications are stateless [56]. Although, this
is an issue for stateful applications, there are workarounds
to solve that problem. One possible solution is to provide
the reliable storage necessary to support stateful applica-
tions [57]. In addition, as with all platforms that deal with big
data, data security can be a major concern. However, many
attempts were proposed to solve those issues when containers
are deployed in critical areas [58].

One of the most important advantages of cloud com-
puting is its developer productivity. As mentioned above,
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developers can instantly start up their own cloud instances,
provision the component they want, and scale down and up
easily [59]. Moreover, containers can be an ideal technol-
ogy when developers need to shift their utilities between
private cloud, on-premises, and public cloud architectures.
Containers can be moved quickly and with minimal disrup-
tion because they are independent of the underlying operating
system and infrastructure. Many organizations use multiple
public clouds providers and can shift their workloads back
and forth, depending upon certain performance criteria such
as price special offers from the service providers. Therefore,
containers make this process simple, reliable, and economical
specially for building IoT applications [60].

IoT devices are composed of various sensors that can
generate many data points, which can be acquired at a high
rate. A simple temperature sensor may generate a few bytes
of data per minute, while a complex assembly station might
generate gigabytes of data in just few seconds. These huge
amount datasets are ingested into the data processing pipeline
for transformation, storage, querying, processing, and analy-
sis [61]. Each dataset is comprised of multiple data points that
represent specific measures. For example, a connected ven-
tilation, heating, and air conditioning system would provide
desired temperature, ambient temperature, air quality, humid-
ity, load, energy consumption, and blower speed measures.

In a large shopping mall, these data points are collected
frequently from hundreds of appliances. Since these devices
may lack the power to run the full TCP networking stack,
they may use other protocols like ZigBee and Z-Wave to send
the data to a gateway that can aggregate the data points and
process in the system [62].

MQTT is one of the most popular connectivity proto-
cols in IoT that is used in this research. MQTT is a very
lightweight messaging protocol that can operate with a con-
strained resource such as low memory, bandwidth links, and
processing capability for IoT devices. MQTT has been uti-
lized in various fields, including energy monitoring, smart
cities, healthcare, and so on. MQTT protocol is built on top of
TCP/IP protocol enabling IoT devices to connect to the Inter-
net. MQTT is a Client-Server messaging protocol. MQTT
consists of three components: publisher, subscriber, and a
broker [63].

IV. THE INFRASTRUCTURE ARCHITECTURE SOLUTION
The proposed solution starts with a Smart Water Meter as
the IoT device in the proposed paradigm which ‘‘talk’’ to
the cloud to send the water flow measurements and the GPS
information. When data is already in the cloud, the software
processes it and decides whether to perform an action without
the need for user intervention.

The IoT gateway plays an important role in the transla-
tion between sensors protocols, sensor data aggregation, and
sensor data processing before to be sent onward. Because
there can be several connectivity models, protocols, and
energy profiles associated with the dispersed nature of the

IoT systems, gateways are the means to control and manage
these complex environments.

However, for a higher throughput and lower latency,
an MQTT proxy was used to communicate with Cloud IoT
Core and publish telemetry events on behalf of bound devices
as was the scenario in this research.

The MQTT proxy pushes the collected data of water con-
sumption to an Apache Kafka cluster in docker containers,
where data can take multiple paths. Kafka is a distributed,
reliable and fault tolerant streaming platform which is best
suited for the proposed infrastructure. It is followed by
Apache Spark that consumes data from Kafka to perform
some analytics and build predictive models. Data points that
need to be processed in real-time go into the hot path in which
an LSTM neural network was previously taught to predict the
water demand. At the same time, water consumption can be
analyzed after acquiring them over a certain period. These
data points are collected and analyzed through a process that
takes the data processing pipeline cold path. The data points
are fed through the cold path for online training of the LSTM
neural network to update its parameter in an offline manner.
In this paradigm, it is important to track water smart meter
readings in real-time to correct the measured data. These data
points go through an Apache Spark cluster for almost real-
time processing, as shown in figure 5.

No matter which path that the data points will pursue,
they will finally be ingested by the Spark ML Pipeline
interface into the system. Apache Kafka is considered a
high-performance data ingestion layer dealing with huge
datasets. While, the data processing pipeline components
responsible for cold path and hot path analytics will act as
subscribers of Apache Kafka.

V. RESULTS AND DISCUSSION
A. DATA ACQUISION AND AGGREGATION
Themain purpose of data collection through the implemented
IoT system is to acquire enough data for further ‘‘machine
learning’’ processing stages. In the backend, the measured
data is being evaluated using a big data engine. This is
necessary since the amount of data is increasing enormously,
and there must be a backend with a large amount of pro-
cessing power and memory to process and correlate the
various measured quantities. The data in this research were
collected with consent from all the tenants and are installed
in a neighborhood in a superb located in Maadi district.
The acquired data contains drinking water consumption mea-
surements collected from 20 residential houses along with
their GPS information. The measured data included water
consumption information from distributed locations, where
water smart meters were installed. Data were collected during
the years 2017 and 2018 to be used in the offline stage
of inspection to discard erroneous measurements from the
datasets. As a result, there were 20 datasets taken over
12 months in such a way that avoided any inconsistencies
in the measurements. The sampling rate of which data was
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FIGURE 5. Abstract architecture for water consumption data prediction.

sampled was kept constant. Measurements were collected
every 10 min. That rate was synchronized among all smart
water meters to be aggregated every 10 mins or multiple
of that time duration. Therefore, the resulted data covered
a duration of 12 month-long, with 10 mins resolution that
reveals volumetric water consumption at participating house-
holds. Moreover, the aggregate dataset can be used to reveal
other features necessary for water demand management.
Figure 6 shows the aggregated water consumption for two
weeks, collected from different numbers of households. It is
obvious that the more households participating in the data
acquisition stage the better pattern of repeatability in the
aggregated data. We have used Apache Spark that is good
for finding some unexpected correlations in the acquired
data sets and can stream them simultaneously for machine
learning and batch processing. Moreover, it has an in-built
interactive mode and the execution occupations of 10 to
100 times quicker than Hadoop MapReduce. In addition,
Spark uses Resilient Distributed Datasets [63], which is the
reason behind its higher computational performance than
Hadoop. In addition, Spark can achieve real-time analytics
because of its streaming module which is known as Spark
streaming [64].

B. WATER DEMAND PREDICTION
The LSTM network is a recurrent neural network that is
trained using Backpropagation. LSTM is used to address
difficult sequence problems in machine learning to achieve
optimal results. Instead of neurons, LSTM networks have
layers of memory blocks. A block consists of components
that make it outperforms a traditional neuron combined with
a memory for recent sequences. The block has gates that
manage both the block’s state and the output. It operates on an
input sequence and each gate within a block uses activation
units to control its triggering state, making the change of state
and addition of information flowing through the block to be
conditional [65]. LSTM can achieve adequate learning and
memory from one layer of LSTMs. Therefore, the use of
higher-order abstractions can be layeredwithmultiple of such
layers to achieve better performance [66].

LSTMs are sensitive to the scale of the input data, specifi-
cally when the sigmoid or tanh activation functions are used.
So, data were rescaled to the range of 0-to-1, prior to be
trained and tested [67]. With time series data, the sequence of
values is important. Therefore, the ordered dataset was split
into training and testing datasets with 70% of the observations
used to train the model, leaving the remaining 30% for the
model testing.

The optimal batch size depends on the task as it limits
the number of samples to be shown to the network before
weight is updated. This same limitation is imposed when
making predictions with the fitting model. One solution to
this problem is to fit the model using online learning. This
can be achieved by setting the batch size to a value of 1 while
updating the network weights after each training example.
This can have the effect of faster learning but can also add
instability to the learning process as the weights widely vary
with each batch. Therefore, we optimized both the number of
neurons in the hidden layer and the batch size in the offline
training stage then kept the number of neurons in the hidden
layer while selecting a batch size of 1 in the online training
and prediction stage. A mean squared error optimization
function is used for this regression problem with the Adam
optimization algorithm. The Adam optimization algorithm is
an extension to stochastic gradient descent that combines both
the root mean square propagation, and the adaptive gradient
algorithm [68]. The LSTM parameters, namely the number
of neurons in the hidden layer and the batch size, were found
to be 10 and 6, respectively using 10-fold cross-validation.
Therefore, the LSTMparameters chosen in the online training
and prediction stage are set to an input layer with 1, 2,
or 3 inputs, a hidden layer with 10 LSTM neurons or blocks,
and an output layer with a single value prediction. The LSTM
blocks used sigmoid activation functions and a batch size of 1
while the number of epochs was limited to 300 to decrease the
training time as there was no significant increase in the model
regression accuracy beyond that value.

Once the model has been trained using the training dataset,
the performance of the model could be estimated to give
metrics suitable for comparison. Then, the predictions were
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FIGURE 6. Aggregated Water consumption for two weeks based on:
(a) Two households, (b) 10 Households, (c) 20 Households.

inverted before calculating error scores to ensure that perfor-
mance is reported in the same units as the original data (m3).

Predictions are generated using the LSTMmodel and com-
pared with the testing dataset to get an indication of the

model performance. The predictions were shifted so that they
align on the x-axis with the original dataset. Figure 7 is
showing the original dataset in blue, the predictions for the
training dataset in orange, and the predictions on the unseen
testing dataset in green. The real aggregated datasets for 2,
10, and 20 households were used to model the water demand
prediction with 3 different LSTM architectures for each. The
first architecture uses one recent time step to make the pre-
diction for the next time step. The second architecture uses
two recent time steps while the third architecture uses three
recent time steps to make the prediction. It can be noticed that
the greater the number of aggregated households’ datasets,
the better the periodicity that can be captured by the LSTM
model. In addition, the third architecture with three recent
time steps performed a better job capturing the relation of
water consumption prediction inm3 and time in hrs. as will be
furtherly evaluated and assessed using the suitable accuracy
metrics.

Support Vector Regression and Random Forest were
trained on the same datasets while their corresponding mod-
els’ performance metrics were evaluated for the sake of com-
pleteness. SVRwas chosen for the comparative study because
of its popularity in the water demand forecasting as reported
in the related literature. While RF proved to be successful in
several time series applications. The SVR has used a radial
basis function kernel with a resulted accuracy performance
comparable to what has been achieved using LSTM. While
RF was outperformed by both LSTM and SVR methods.
However, LSTM always consider long term dependencies
and evaluate new value after understanding the whole series
pattern. Whereas SVR and RF consider each row as a sample
for training data and predict the outcome accordingly and will
not consider the previous patterns. Therefore, LSTM can be
superior in its deep learning capabilities while using large
sizes of datasets.

Support vector regression modelling was applied to the
dataset using the Gaussian RBF kernel. The three associated
hyperparameters are the penalty factor C , the insensitivity
parameter ε, and the Gaussian RBF function parameter σ .
The value of C acts as a regularization parameter such that
a very small C means a negligible penalty, while for a large
C , a penalty gets more important and SVR tries to fit the data.
The influence of ε affects the model complexity as for a very
small value of ε there is not enoughmargin to include the data
points and the SVR function tries to fit the data, but for a large
value of ε there is enough margin causing a tendency for the
model to get flat. On the other hand, a very small value of σ
means the kernel is more localized resulting in a tendency to
overfit, while a large value of σ makes ε less flexible. The
optimal hyperparameters used in this research to reduce the
10-fold cross-validation loss, were found using the Bayesian
optimization algorithm. The hyperparameters, namely, ε, and
σ were found after 1000 epochs to be 36.51, 0.021, and 0.083,
respectively.

On the other hand, the RF regression hyperparameters
includes the depth of the trees in the forest. Deep trees tend
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FIGURE 7. LSTM prediction for different number of aggregated households water consumption over two weeks based on: (a). (b),
(c) Two households for 1, 2, and 3 inputs respectively, (d), (e), (f) 10 Households for 1, 2, and 3 inputs respectively, (g), (h),
(i) 20 Households for 1, 2, and 3 inputs respectively. The blue curve represents the actual dataset while the orange curve is the model
response based on the training dataset and the green curve is the model response based on the testing dataset.

TABLE 1. The RMSE in m3 for different LSTM neural networks that has 1, 2, and 3 inputs applied to aggregated datasets from 2, 10, and 20 households as
compared to support vector regression with the RBF kernel and random forrest.

to overfit, but shallow trees tend to underfit. When growing
the trees, the number of predictors to sample at each node
can range from 1 to all the predictors. Because the ensembles
with more learners are more accurate, the number of trees

in the ensemble needs to be tuned due to the tendency of
the Bayesian optimization to choose random forests contain-
ing many trees. Therefore, models containing many learners
were penalized, as the available computation resources is
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TABLE 2. The MAE in m3 for different LSTM neural networks that has 1, 2, and 3 inputs applied to aggregated datasets from 2, 10, and 20 households as
compared to support vector regression with the RBF kernel and random forrest.

TABLE 3. The MAAPE for different LSTM neural networks that has 1, 2, and 3 inputs applied to aggregated datasets from 2, 10, and 20 households as
compared to support vector regression with the RBF kernel and random forrest.

a consideration. To find the model achieving the minimal,
penalized, out-of-bag quantile error with respect to tree com-
plexity and number of predictors to sample at each node,
Bayesian optimization and 10-fold cross-validation were
used. The hyperparameters, namely the number of decision
trees, minimum sample split, maximum depth, maximum leaf
node, minimum samples leaf, and bootstrap sample fraction,
were found after 1000 epochs to be 127, 71, 14, 36, 224, and
0.17, respectively.

The different LSTM architectures, the SVR, and the RF
were evaluated using three different datasets (the aggregated
data of water consumption from 2, 10, and 20 households).
The models evaluation against RMSE, MAE, and MAAPE
accuracy metrics are summarized in table 1, table 2, and
table 3, respectively. The RMSE is noticed to be with higher
values than those of the MAE for the corresponding LSTM,
SVR, and RFmodels. However, both table 1 and table 2 could
support that LSTM and SVRwere comparable in their perfor-
mance. However, when it comes to all the architecture models
using all datasets, MAAPE is the right metric to use for the
overall comparison. The values of the MAAPE reflects better
performance with aggregated data from more households.
While LSTM with three inputs is a better architecture choice
that outperforms other models including LSTM with one and
two inputs as well as the SVR and the RF models.

VI. CONCLUSION
By leveraging Artificial Intelligence and Machine Learn-
ing, governments can forecast the networks’ and customers’

needs, automate preventative actions, and tailor their services
and products based on quantitative and qualitative measures.
Moreover, the IoT business opportunities are limitless as
grids and smart meters optimize resources, and remote mon-
itoring solutions increase the efficiency of water network.
In addition, analytics is considered an essential component of
every successful IoT application. Therefore, IoT technology
can provide insights in real time and empower intelligent,
data-driven decisions that improve the national welfare.

The smart water meters were installed to cover a neigh-
borhood that can represent water consumption in the pilot
study. Real-time streaming is critical for the system solution
for further processing and possible prediction necessary for
critical management situations. The paradigm used in this
research takes advantage of containers and micro-services
opposite to virtual machines cloud architecture to increase
performance and decrease cost on the national scale IoT
system used to collect water consumption data in a suburb in
Cairo as a pilot study. The proposed system can be expanded
to cover the whole country with sub models for different
regions and represent the first and second stage in a smart
water management system.

The pilot study offers a testbed for water consumption to
be incorporated in a water demand management system that
can be scaled up on a national scale with integrated services
taking into account security, cost, and scalability.

The main advantage of the two-layer paradigm is to col-
lect aggregated water consumption from different regions to
be used to achieve an offline consumption model based on
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time and region. That is followed by real-time prediction
over time for the water demand with an adaptive machine
learning paradigm. Based on the water demand prediction
a number of scenarios for both water utilities management
and consumer behavior management can be incorporated for
the ultimate goal of reduced water consumption. Also, this
research suggests a management system that needs to offer
quantitative measures for water demand reduction in peak
times, better water demand distribution, and lower water
consumption. In addition, it needs to measure the effect of
planned city development and expansion imposed on water
network infrastructure and performance.

Future directions need to tackle accurate simulation for
performance metrics related to the IoT cloud in order to
optimize the microservices integration for a better perfor-
mance. Another direction will be to add a monitoring service
to continuously measure the LSTM neural network perfor-
mance and any failing component in the system before it
can cause significant performance degradation. Moreover,
several recent meta-heuristic techniques can be combined
with LSTMs to optimize their hyperparameters to achieve a
higher performance.

DATA AVAILABILITY
All the acquired and analyzed water demand data collected
during this study are included in this article. The data are
accessible through the IEEE DataPort Open Access Data
Platform. The generated datasets of this study are available
from the corresponding author on request.
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