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ABSTRACT Optimization of power management of nanogrid based on short-term prediction of PV power
production and consequent EV charging/discharging is proposed. Goal of power management is to reduce
time-based electricity cost and total delay. To achieve the goal, efficiency in the combined use of PV power
and EV charging/discharging power is important. Unlike the PV power used ahead of costly grid power and
entirely dependent on weather condition, timing of EV charging/discharging depends on power management
scheme. In order to find out the timing for EV charging/discharging, short-term prediction of PV power
production is considered as a key contributor. When PV power production is predicted to decrease in short-
term, e.g., 10minutes, discharging power of EVs can compensate the loss and, when predicted to increase
in short-term, EVs are charged to capitalize on the gain. Short-term prediction of PV power production
is performed by long short-term memory (LSTM) network trained and validated by dataset of PV power
production over 1 year. In addition, variation of outdoor temperature in relation to indoor temperature is
factored in to determine the timing for EV charging/discharging. Our work is comprehensive in that various
electric appliances as well as PV source and EVs are taken into account for power management of nanogrid.
Simulation results show the cost benefit obtained from the short-term prediction of PV power production
and consequent EV charging/discharging while managing peak demand below maximum allowed level.

INDEX TERMS Power management, nanogrid, peak load shifting, PV power, LSTM network.

I. INTRODUCTION
Recently, nanogrids gain growing popularity due to their
flexibility in design, implementation, and control. Nanogrids
with various electric appliances can be defined as kW
scale smart grids that can combine different power sources
with the help of IT technology. They often use expandable
DC power sources for possible reconfiguration of electric
vehicles (EVs), energy storage system (ESS), and electric
appliances. Typical DC power source for the operation of
nanogrids is photovoltaic (PV) panels [1]. To control the
power consumption of various electric loads, peak-shaving,
peak load shifting, and other management techniques are
utilized.With the presence of various electric loads andmixed
power source, grid and PV panels, it is difficult to achieve
power balancing between demand and supply. To achieve
power balancing requires efficient power allocation over
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electric loads, which represents the optimal matching of
demand to supply from the viewpoint of electricity cost [2].
Topologies of nanogrids with distributed power sources
enable ancillary services such as voltage support by reactive
power injection, fault recovery aids supported by devices
with built-in intelligence, reduction of power losses, and
enhancement of local network power quality [3]. In order to
improve the reliability and resilience, distributed nanogrids
can be integrated with grid-forming energy storage [4].
The distributed and decentralized nanogrids can resolve
more directly and more efficiently the issue of power
balancing between local power demand and local power
supply. As a result, the costs of utilities for building
grid infrastructure that can provide low cost electricity are
reduced [5], [6]. Therefore, distributed nanogrids can be
beneficial for consumers and utilities.

The electric loads in a nanogrid include electric appliances,
ESS, and EVs. Optimal power management in response
to the demand of these electric loads is presented in [7].
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In DC nanogrids, the electric loads are DC type and electric
appliances can be classified into shiftable and non-shiftable
ones. In case of shiftable appliances, scheduling is allowed
when the instantaneous power consumption of the nanogrid
is excessively high. Of these electric appliances, heater,
ventilation fan, and air-conditioner (HVAC) operate to control
temperature, humidity, and CO2 quality of the household.
Operation of HVAC with renewable sources for securing
living comfort has been investigated in the literature [8].
The heater and air-conditioner consume relatively high power
as compared to other electric appliances. Because of the
high power consumption of HVAC, other high power electric
appliances might not be used simultaneously with HVAC
even though those are non-shiftable appliances [9]. The
change of the instantaneous power consumption of electrical
appliances located in a nanogrid is basically determined by
the behavior of residents, which can be modeled by the data
on probabilistic use of electric appliances [10] in conjunction
with resident location [11], [12].

The adoption of EVs is being encouraged due to envi-
ronmental issues. The EVs have a substantial impact on
the operation and scheduling of electric appliances when
integrated into the nanogrid as a new type of load [13].
On the other hand, the batteries of the EVs can be utilized
as ESSs delivering power to nanogrids at peak hours of
load demand. The vehicle-to-grid (V2G) technology, which
implements bidirectional power flow between EVs and grid,
can be applied for efficient nanogrid power management.
The V2G configuration can be adopted to increase the
performance of nanogrids measured in terms of reliability,
stability, efficiency, and economic feasibility [14]–[18].
In addition, the EV as an ESS enables the grid to optimize
the use of renewable energy which is inherently intermittent
and unpredictable [19]. The dynamic EV charging can
thus increase economic efficiency and make higher use of
renewable energy for nanogrid operation [20]. The vehicle-
to-home (V2H) technology, which is a subordinate concept
of V2G, represents that the EV is connected to a home
grid for charging and discharging by onboard or offboard
bidirectional charger [21].

Enrollment of EVs is being incentivized as an important
measure to reduce the CO2 emission and air pollution inmany
countries such as Korea [22]. To perform power management
in conjunction with EVs, modeling of EV charging and
discharging is required. In [23]–[25], the Markov chain is
used to capture and simulate the vehicle use pattern. In [26],
an EV charging model with a Markov chain is based on
the time-of-use rate and state of charging (SOC) curve.
Optimization of EV charging and discharging based on
electricity cost is described in [27] with a V2G configuration.
Due to the relatively high charging/discharging power of an
EV, its charging pattern may affect significantly the overall
electric load profile of nanogrid. Therefore, it is important to
develop the EV charging/discharging model accounting for
stochastic car travel behaviors and charging needs. PV power
production in conjunction with EV charging/discharging is

considered as an effective way to accommodate eco-friendly
power management [28]. Similar to the use of PV power for
various applications [29]–[31], PV-assisted charging station
for EVs have been studied [32], [33]. To ensure efficient use
of PV power, prediction of PV power production is helpful,
since predictive power management can take future operating
condition(s) into account for improved results.

To this end, artificial neural networks such as long
short-term memory (LSTM) [34] network can be adopted.
The LSTM network has been used for various applica-
tions [35], [36]. According to the forecasting horizon,
the forecasting model can be categorized into three cate-
gories: short-term forecasts upto one week, medium-term
forecasts from one week to one year, and long-term forecasts
over one year. In this work, the short-term forecast of
PV power production is considered for nanogrid power
management. However, the methodology making use of the
LSTM network remains valid even when the mid-term or
long-term forecast is used for power management. Similar to
the forecasting of PV power production, forecasting of EV
charging demand is investigated by big data technology [37].

The demand response (DR) program can be described as
an incentive to make lower use of electricity when the market
rate of electricity or demand for electricity is high [38].
In response to the DR, shiftable electric appliances can be
scheduled within the maximum allowed delay. Likewise,
scheduling of EV charging is made, following the DR
program [39], [40]. Optimal scheduling of EV charging to fill
the valleys in the electric load profile is investigated in [41].
The DR strategy with a bi-directional energy exchange
between EV and ESS in V2G configuration is investigated
in [40], [42], [43]. Optimized power management is con-
sidered in this paper as the optimization process leading to
the lowest electricity cost as well as the minimum delay
of the scheduling of shiftable appliances [44]. For such
multi-objective optimization, the genetic algorithm (GA)
[45], [46] can be used. In general, the objectives of opti-
mization for home energy management can be load profile
optimization, cost minimization, revenue maximization, loss
minimization, and system reliability optimization [47].

In this paper, predictive power management for nanogrids
with the PV power source to reduce the electricity cost is
presented. The proposed scheme can be divided into two
stages: prediction and scheduling. In the prediction stage,
the PV output is forecasted using a time series model learned
by the LSTM network. In the scheduling stage, the EV
charging/discharging and scheduling of shiftable electric
appliances are determined based on the result of the first
stage. The LSTMnetwork predicts PV power production over
time to coordinate EV charging/discharging and operations of
other electric appliances in a way that total electricity cost and
total delay of scheduling are to be simultaneously minimized.
Due to PV power used as a primary power resource and high
charging/discharging power of each EV, the main concern of
power management is the interrelation between PV power
and EV charging/discharging.
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The main contributions of this paper are as follows.
• Multi-objective optimization to minimize electricity

cost and total delay simultaneously is presented for power
management of nanogrid with PV source and EV as
secondary power sources. Short-term prediction of PV power
production and consequent EV charging/discharging are
proposed for operation of PV source and EV.
• Cost-effective method for EV charging/discharging is

proposed. EV charging/discharging to reduce electricity cost
is dependent on trend of PV power production and temporal
HVAC operation, as well as level of total power consumption.
Therefore, EV charging/discharging conditions consist of
policy-based condition involving PV power production and
emergency-based condition associated with total power
consumption.
• Optimization framework fit to power management of

nanogrid with PV source and EV is presented. Within
the framework, EV discharging based on short-term PV
power production occurs at the time zone associated with
significantly reduced electricity cost and total delay.
• Comprehensive work involving various electric appli-

ances, including HVAC, provides methodology of the predic-
tive power management for nanogrid with PV panels in V2H
configuration.

Entire power source consists of grid power, PV power,
and EV discharging power. Goal of power management
of nanogrid is to reduce daily electricity cost quantified
by DR program and total delay. Daily electricity cost is
charged only to grid power. Therefore, it is important to
reduce total amount of grid electricity consumed over a day
and consume grid power in a cost-effective way. For this
purpose, multi-objective optimization for power management
of nanogrid is presented, taking EV charging/discharging
depending on short-term prediction of PV power production
and instantaneous HVAC operation into consideration.

Since PV power and EV discharging power can be used
as secondary power sources, timely use of them is very
important for reduction of electricity cost and total delay.
While PV power production entirely depends on weather
condition, timing for charging/discharging of EV can be
controlled. Another important aspect of EV is that it has to
be charged before discharging as secondary power source.
When being charged, the EV is another electric appliance
consuming electric power provided by grid or PV source.
When being discharged, the EV can help reduce total power
consumption. Therefore, timing for charging/discharging of
EV should be controlled in a way that i) peak power
consumption can be reduced below maximum allowed level
and ii) daily electricity cost is decreased as compared
to conventional charging/discharging solely based on the
consideration of peak power consumption.

Based on typical pattern of PV power production and
outdoor temperature variation over a day, downhill trend of
PV power production is matched with the time zone around
peak outdoor temperature causing large power consumption
of HVAC. Operation of HVAC takes large portion of total

power consumption. Therefore, rate of electricity is high
over the time zone around peak outdoor temperature. As an
alternative secondary source, discharged power of EV over
the time zone can compensate the loss of PV power in
downhill trend of PV power production and achieve reduction
of electricity cost. However, exact time of peak PV power
production right before the downhill trend is hard to estimate
and there are local minima and maxima causing erroneous
decision on trend. From this reason, more practical condition
for EV discharging is the relation of PV power production
PWPV

LSTM (n + 1) predicted in short-term by LSTM network
to current PV power production PWPV (n). When the PV
power production is in downhill trend, i.e. PWPV (n) >

PWPV
LSTM (n + 1) in most of time, permitting PWPV (n) <

PWPV
LSTM (n + 1) occasionally, EV can compensate the loss.

On the other hand, when the PV power production is in
uphill trend, i.e. PWPV (n) < PWPV

LSTM (n + 1) in most of
time, allowing PWPV (n) > PWPV

LSTM (n + 1) occasionally,
EV is charged to capitalize on the gain. Considering rate
of electricity and accumulated total delay in peak hours,
EV discharging together with PV power in peak hours should
be beneficial for optimal power management.

With EV being charged, grid power and PV power are
consumed for electric appliances including EV and schedul-
ing of shiftable electric appliances and EV charging becomes
important for cost-efficient power management. On the other
hand, when EV being discharged, grid power, PV power, and
EV discharging power are consumed for electric appliances
and scheduling of shiftable electric appliances is important
for cost-efficient power management. Operation of HVAC
depends on control mode specified by resident location
and target temperature and use of specific shiftable and
non-shiftable appliances is determined by resident behavior
characterized by Markov chain model.

This paper is organized as follows. In Section II,
the Markov chain model for resident behavior and random
initiation of EV charging described by charging probability
are explained. Section III provides details of the short-term
predictive power management based on the LSTM network.
Section IV presents simulation results obtained with four
different settings of nanogrid operation and Section V
concludes this paper.

II. MODELING OF NANOGRID OPERATION
The Jeju island in Korea initiated its project for the carbon-
free island by 2030 with the main focus on the deployment of
large-scale smart grids as shown in Fig.1(a) [22]. The project
for carbon-free island aims at the development of business
models by making use of smart grids employing renewable
sources like PV panels and wind turbines. The smart grids use
advanced metering infrastructure, ESS, energy management
system for residences and offices. The operational concept
of smart grids in Jeju island based on renewable energies
can be adopted for nanogrids. Figure 1(b) shows the config-
uration of a grid-connected nanogrid consisting of 3 houses.
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Peak rooftop of each house is covered with PV panels and
each house is taken as a sub-nanogrid. An ESS denoted
as ‘‘Battery’’ in Fig.1(b) is installed for the nanogrid to
mitigate the intermittency of PV power production. Power
conditioning systems such as DC/DC converters and PV
panel inverters are to provide quality controlled DC power
to electric appliances. Individual operations of electric
appliances are controlled by the controller and instantaneous
power consumption of each electric appliance is monitored
by the smart meter and reported to the controller.

FIGURE 1. PV power production: (a) smart grids operated by PV power
and wind power; (b) nanogrid employing PV panels [9]. The battery in
(b) represents an ESS and can be replaced with the batteries of EVs.

In this work, nanogrids similar to the one in Fig. 1(b) are
used. The nanogrid consists of houses equipped with PV
panels for PV power production. Each house has 4 rooms
where the shiftable and non-shiftable electric appliances
are installed and connected to an EV charging/discharging
system to form a V2G/V2H configuration. The nanogrid
controller can communicate with electric appliances, EVs,
and PV panels for power management. The resident behavior
is stochastic in that he/she randomly transits between adjacent
rooms and probabilistically uses an electric appliance in the
room, where he/she locates, over every ten minutes. The
HVAC determining the level of living comfort in each room
can be activated in a controlled scenario.

The Markov chain model used for the modeling of
resident’s behavior regarding location and use of specific
electric appliances is presented in Fig.3(a-c). The probability
of a transition from the previous state to the current state

depends only on the previous state as following

tij = Pr ob(ot = vj|ot−1 = vi),

i, j = 1, 2, 3, 4 tij > 0 and
4∑
j=1

tij = 1 (1)

where tij is the transition probability from state vi to state vj.
Here, each state corresponds to a room and transition between
adjacent rooms occurs at the beginning of every 10 minute
time interval. When i = j, the resident stays in the same room
over another 10 minutes. Figure 3(a) shows the floor plan of
each house of the nanogrid. The R1, R2, R3, R4 indicate room
numbers and only the room with the number R1 has paths
to all other rooms. The resident probabilistically chooses an
electric appliance immediately after transition and uses it
over 10 minutes. There exist 9 shiftable and non-shiftable
electric appliances, other than HVAC, installed in indi-
vidual rooms with their specific power ratings: TV(non-
shiftable)/130W and iron(shiftable)/1.23kW in R1, washing
machine(shiftable)/242W and hair dryer(shiftable)/1kW
in R2, audio(shiftable)/50W and computer(non-shiftable)/
255W and vacuum cleaner(shiftable)/1.07kW in R3,
microwave oven(shiftable)/1.04kW and rice cooker
(shiftable)/1.03kW in R4. The non-shiftable HVAC
(heater/1.16kW, ventilation fan/60W, and air-conditioner/
1.2kW) is installed in every room. Probabilistic use
of specific electric appliance is described by emission
probability. The emission probability pei,j shown in Fig.3(c)
can be expressed as

li∑
j=1

pei,j = 1, pei,j > 0 (2)

where i = room number and j = index of the
appliance in the room i and li = number of electric
appliances in the room i. The probabilistic use of each
electric appliance over time is determined by the Korean
time-use survey (KTUS) data [10] obtained by the Korea
Power Exchange with 500 residences. Figure 4 shows the
temporal use of 12 electric appliances, e.g., 9 shiftable and
non-shiftable electric appliances plus 3 HVAC appliances.
The data of probabilistic use are transformed into emission
probabilities that determine which electric appliance will be
used for 10 minutes. For instance, the probability of watching
TV at 8 PM is 0.27 and the probability of using an iron
at 8 PM is 0.03, according to the KTUS data. Therefore,
the conditional emission probabilities of watching TV and
using iron, on the condition that the resident is present in room
R1, are 0.27/(0.27+0.03) and 0.03/(0.27+0.03), respectively,
where 0.27+0.03 is the normalizing sum for the room R1.
Therefore, the resident behavior during 10 minute time
interval consists of transition (between rooms) followed by
the use of the electric appliances in the room that the resident
enters at the beginning of the 10 minute time interval. The
operation of HVAC can be set to depend on resident location.
When the operation of HVAC is controlled according to
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resident location, differentiated(tight) operating condition of
HVAC is applied for the room, where the resident is located,
as shown in Fig.3(a). For instance, in the summer, the target
temperature of the room with the resident can be set lower
than those of other rooms. Similarly, another component
determining living comfort, the air quality measured by
CO2 density in the room, can be controlled according to
the resident location. When the resident enters a room in
the beginning of a time interval, according to the transition
probability of Markov chain model, target temperature and
target CO2 density are adjusted, following the operation
scenario of HVAC for the room where the resident is located,
and HVAC initiates operation to meet the target temperature
and target CO2 density. If target temperature and target CO2
density are already met before resident entrance, HVAC is
in idle mode. The HVAC in a room without the resident is
also operated when the target temperature and target CO2
density for the room without resident are not met. When
the target temperature and target CO2 density for the room
without resident are close to those for the roomwhere resident
is located, living comfort of the resident is maintained
regardless of temporal transition of resident location.

FIGURE 2. Charging probability pc (nh) (%) of an EV over a day. The sum
of charging probabilities is 100%.

Charging probability of EV in TABLE 1 indicates the
probability(%) of an event that an EV initiates charging in
the beginning of each hour. The EV is charged before being
discharged for reduction of total power consumption. For
a nanogrid consisting of 3 houses, 3 EVs are connected in
V2H configuration. When the time for initiation of charging
is taken as a random variable, 3 random variables of 3 EVs
are independent and identically distributed. The charging
probability listed in TABLE 1 can be graphically shown
as Fig.2. Probability mass at k hrs represents charging
probability over 1 hour time zone starting from k hrs.
Charging probability is obtained from 6,080 EVs registered
in Jeju Island. The EV connected to the charger can take
three different modes: charging mode, discharging mode, and

idle mode. When it is in charging (discharging) mode, it is
charged(discharged). Random initiation of EV charging can
be modeled by charging probability pc(nh). Time-varying
pc(nh) in % obtained from the EVs registered in Jeju Island,
Korea is specified in TABLE 1. It is seen in TABLE 1 that
the charging probability pc(nh) is the highest at around 6 PM
when the resident returns from work.

TABLE 1. Charging probability pc (nh) (%) of an EV varying over one day.
The sum of charging probabilities is 100%.

III. PREDICTIVE POWER MANAGEMENT
Predictive power management consisting of PV power
production predicted by the LSTM network and consequent
power management by the genetic algorithm (GA) [45]
is presented. Global optimization minimizing electricity
cost over the entire time interval, e.g., 24hrs in this
work, is impractical due to the following reasons. Firstly,
the specific time of EV charging/discharging is unknown at
the current time interval. Secondly, realized uses of electric
appliances subject to emission probabilities in the future of
the day are unknown at the current time interval. Therefore,
optimization for the current time interval provides locally
optimal results valid with given operating conditions. Each
operating condition can be taken as a parameter affecting
power management. Two operating conditions are principally
considered in this work for power management, due to
their relatively high power level. PV power production
significantly affects the power supply of the grid. When
PV power, which is the primary power used ahead of grid
power, is sufficient, the electricity cost incurred by grid
power consumption is low. It is legitimately assumed that the
operating cost of PV panels is 0. Hence, the level of PV power
production in the current time interval and beyond is a critical
concern. EV charging/discharging is also very important
for efficient power management, due to the large power
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FIGURE 3. Operating condition of HVAC according to resident location
and Markov chain model for resident behavior: (a) operating condition of
HVAC according to resident location; (b) transition probability for resident
location; (c) emission probability for using an electric appliance in each
room.

consumed/provided by the EVs. Since EVs are another power
source when discharging, timely control of EVs contributes
to reduction of time dependent electricity cost. Considering
that EV modes are determined by power budget as well as
PV power production, it is important to take (near) future PV
power production into account for the choice of EV mode.
If future PV power production is successfully predicted
and taken into account for power management, consequent
predictive power management can provide enhanced results
of power management.

In this section, a multi-objective optimization framework
for power management is presented and details of the LSTM
network for prediction of PV power production are described,
followed by methodology on how to choose EV modes based
on predicted PV power production.

A. MULTI-OBJECTIVE OPTIMIZATION BY GA FOR POWER
MANAGEMENT
The type of optimization for presented power management
is multi-objective optimization. Multi-objective optimization
involves simultaneous minimizations or maximizations or
mixed optimization of multiple objective functions that are

FIGURE 4. Temporal use of TV, iron, hair dryer, washing machine, audio,
computer, vacuum cleaner, microwave oven, rice cooker, air-conditioner,
heater, and electric fan on weekdays [10].

dependent on a set of constraints [48]. The goal is to solve
complex optimization problems by simultaneously consid-
ering potentially conflicting objectives. Many real-world
engineering challenges involve several objectives such as
cost, performance, and reliability. In this paper, the GA
is used to solve multi-objective optimization relevant to
nanogrid power management. Technical details of the GA are
referred to [45].

Due to the availability of specific technical information
of electric appliances in nanogrid, power management of
individual electric appliances is possible with the nanogrid.
The objective functions of nanogrid power management
are the electricity cost associated with grid power con-
sumption and the scheduling delay of shiftable electric
appliances and EV charging/discharging. Power management
for the nanogrid is associated with the DR program and
EVs can be classified as shiftable appliances. From this
standpoint, the multi-objective optimization can be expressed
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as follows

minimize electricity cost at the n− th time interval

= minEC(n)

= min[PW (n)− PWPV (n)] ∗ C(n)

= min[
M∑

EV=1

PWEV (n) ∗ OEV (n)

+

N nano
A∑
a=1

PWa(n) ∗ Oa(n)− PWPV (n)] ∗ C(n)

= min
OEV (n),EV=1,..,M ,Ok (n),k=1,..,S

×


M∑

EV=1

PWEV (n) ∗ OEV (n)

+

S∑
k=1

PW shiftable
k (n) ∗ Ok (n)

 ∗ C(n)

+



N1∑
i=1

PWHVAC
i (n) ∗ Oi(n)

+

N2∑
j=1

PW non−shiftable
j (n) ∗ Oj(n)

−PWPV (n)


∗ C(n)

minimize Total delay at the n− th time interval

= minTotal_delay(n)

= min
OEV (n),EV=1,..,M ,Ok (n),k=1,..,S


M∑

EV=1

OEV (n) ∗ dEV (n)

+

S∑
k=1

Ok (n) ∗ dk (n)


(3a)

subject to
M∑

EV=1

PWEV (n) ∗ OEV (n)

+

N nano
A∑
a=1

PWa(n) ∗ Oa(n)− PWPV (n)

 < PWmax

dEV (n) ≤ dEV ,max EV = 1, ..,M

dk (n) ≤ dShiftable,max k = 1, . . . , S (3b)

where PW (n) is the total power consumption and PW (n) −
PWPV (n) is the grid power consumption and PWmax is
the maximum power consumption allowed by the grid and
C(n) is the rate of electricity based on the DR program and
PWPV (n) is the PV power production. The PWEV (n),PWa(n)
are the power consumption of the EV-th EV, a-th appliance
(S shiftable appliances, N1 non-shiftable appliances other
than HVAC, N2 non-shiftable HVAC), respectively. The
OEV (n),Oa(n),Ok (n) are the on-off switching functions
of the EV-th EV, a-th appliance, k-th shiftable appliance,
respectively. Note that N nano

A = S + N1 + N2.

The 1st term in (3a) indicates electricity cost caused by
the power consumption of EV. When switching function
OEV (n) = −1, the EV discharges(provides) electric power
and contributes to reduction of electric cost. When switching
function OEV (n) = +1, the EV is charged, consuming
electric power like an electric appliance. With OEV (n) = 0,
the EV is in idle mode. Charging/discharging condition of an
EV is mathematically expressed in (5b). The 2nd term in (3a)
indicates electricity cost caused by the power consumption
of shiftable appliances. These two terms are to be minimized
to minimize the electric cost. Electric cost associated with
the remaining 3 terms in (3a) cannot be minimized by
multi-objective optimization. They are given according to
resident behavior(non-shiftable appliances), HVAC control
mode, and PV power production. Total delay in (3a) consists
of scheduling for EV charging/discharging and shiftable
appliances. Goal of scheduling is to minimize total delay.
The switching function OEV (n) is set by (5a) or (5b) prior
to the use of it for (3a) and (3a). However, when the
OEV (n) in conjunction with other switching functions in
(3a), (3a) violates the constraint occasionally, theGA(Genetic
Algorithm) changes its value to one of other two possible
values.

The scheduling delays of the EV-th EV charging and
use of the k-th shiftable appliance, defined as dEV (n)
and dk (n), respectively, are increased by 1 when the EV
charging or use of the shiftable appliance is delayed to the
next time interval and becomes 0 when actually charged
or used. Scheduling delay is measured for each request.
Therefore, multiple requests for specific shitable appliance
are associated with their respective delays. Since the EV
charging and use of the shiftable appliance can be requested
multiple times, dEV (n) and dk (n) in (3a) represent the sum
of individual delays measured for each EV and shiftable
appliance, respectively. The entire EV charging process of
an EV is decomposed into distinct partial charging processes
over different time intervals, each representing a request for
10 minute charging. Each partial charging over 10minutes is
independently scheduled just like a shiftable appliance. For
instance, when the first partial charging of the EV-th EV
at the n-th time interval is postponed to the next interval,
the dEV (n + 1) is increased by 1. If the first partial charging
is postponed again at the (n+ 1)-th time interval, dEV (n+ 2)
will be increased by 3 due to 2 of the first partial charging and
1 of the second partial charging. The delay of the first partial
charging becomes 0 ahead of the second partial charging
when the EV-th EV undergoes a partial charging. When
an EV is discharged at the n-th time interval, e.g., partial
discharging, according to the value of switching function
OEV (n), an additional partial charging process associated
with a delay is considered created at the time interval. It is
because full charging requires one more partial charging to
make up the lost energy due to partial discharging. Total
number of partial charging processes of an EV required for
full charging, therefore, depends on its initial SOC and the
number of partial discharging processes before full charging.
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The sum of individual delays measured for each EV should
be less than or equal to dEV ,max and the sum of individual
delays measured for a shiftable appliance should be less than
or equal to dShiftable,max.

Electricity cost function EC(n) composed of individual
costs of EVs and electric appliances should be minimized
to decrease electricity cost. Total delay at the n-th time
interval Total_delay(n) consisting of EVs and shiftable
electric appliances should also be minimized to complete
delayed uses as soon as possible. Therefore, simultaneously
minimizing these two objectives is a conflicted optimization
and the result of the optimization is a trade-off solution
between marginally optimal solutions. The power generated
by PV panels is used before the grid power to lower the
electricity cost EC(n). When the total power consumption is
lower than the PV power production, remaining power can be
used to charge EV(s).

The indoor/outdoor temperature and CO2 concentration
are related to HVAC control. The indoor temperature
T rin(n+ 1) and CO2 concentration COr2 in(n + 1) of the r-th
room at the (n+ 1)-th time interval are determined according
to the operation of air-conditioner in summer (or heater in
winter) and ventilation fan, which are given in relation to
T rin(n) and CO

r
2 in(n) at the n-th time interval, respectively,

as follows [49]

T rin(n+ 1)

=

[
T rin(n)+ 0.0145OrVF (n)[Tout (n)− T

r
in(n)]

−0.378OrAC (n)+ 0.0195[Tout (n)− T rin(n)]

]
(4a)

COr2 in(n+ 1)

= COr2 in(n)+ 1.075OrVF (n)[CO2 out (n)− COr2 in(n)]

(4b)

where Tout (n) indicates the outdoor temperature at the
n-th time interval and CO2 out (n) represents outdoor CO2
concentration at the n-th time interval and OrVF (n), O

r
AC (n)

are Oi(n) of a ventilation fan, air-conditioner, respectively,
installed in the r-th room.

B. LSTM NETWORK FOR PREDICTION OF PV POWER
PRODUCTION
Recursive neural network (RNN) is a special kind of feed-
forward neural network which is useful for modeling time-
sensitive sequences. At each time, the RNN receives input
from the current example and also from the hidden layer
of the previous state. The output is calculated for the given
hidden state at that time stamp. The hidden state acts as
the memory of the RNN. It holds information on previous
data that the network has seen before. Because of the
connection between sequential states, the output at each
time is indirectly associated with all the previous inputs.
In long-range sequences, the simple RNN architecture suffers
from a vanishing gradient problem that causes the RNN
to forget important information over the chain. The LSTM
network addresses this problem by re-parameterizing the
RNN. The main idea of the LSTM network is introducing

three gates (forget gate, input gate, and output gate) to control
the data flow in the RNN. Figure 5 shows the architecture of
LSTM network for prediction of PV power production. It is
noted that the Markov chain model in Fig.3 is not related to
use of the LSTM network. As shown in Fig.5(a), the LSTM
network consists of the LSTM layers, fully connected layers,
and the output layers. The LSTM layers are built up with
interconnected LSTM cells, each composed of the three
gates as depicted in Fig.5(b). The forget gate scales down
the internal state of the cell before adding it as input to
the cell through the self-recurrent connection of the cell,
therefore adaptively forgetting or resetting the cell’s memory.
The input gate controls the flow of input activations into
the LSTM cell and the output gate controls the output flow
of cell activations into the neighbored and connected cells.
As a result, the structure of the LSTM network prevents
the vanishing gradient of the long-term dependencies. The
detailed architecture shown in Fig. 5 follows the one proposed
in [34].

FIGURE 5. Architecture of LSTM network: (a) LSTM layers and fully
connected feed-forward layers; (b) LSTM cell.

Figure 6 shows a sample of daily PV power production of
a nanogrid with maximum achievable production 6kW. Since
PV power production is important for power management,
variation of PV power production should be taken into
account. When temporal trend of PV power production rises,
more electric appliances are likely to consume power in
current and next time intervals. In case of EVs, the EV
mode is likely to be charging, rather than discharging. For
predicting the PV power production, the LSTM network
with 6 LSTM layers and 2 fully connected layers is
proposed as shown in Fig.5(a). Input data applied to the
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FIGURE 6. Samples of daily PV power production of a nanogrid consisting
of 3 houses and daily variation of outdoor temperature in the summer
season in Korea.

first LSTM layer are PWPV (n − i), where i = 0, . . . , 5.
The number of LSTM layers and the number of input data
to the first LSTM layer are determined by trial-and-error
method. Prediction performance of PV power production
measured by root-mean-squared-error is among the best with
6 input data and 6 LSTM layers. The root-mean-squared-
error(RMSE) of PV power production obtained with 1 year
PV power production dataset is about 9% with 6 inputs
of the input layer(first LSTM layer) and 6 LSTM layers.
Occasionally, prediction error becomes upto 14%. Similar
level of prediction performance of the LSTM network is
reported in [50]. The 9% represents 0.5kW for the nanogrid
consisting of 3 houses and capable of 6kW PV power
production. The prediction error becomes higher with bad
weather conditions such as cloudy days and rainy days,
as noted in [51]. The number of LSTM layers and the
number of input data to the input layer are determined by
trial-and-error method like other works [52] dealing with
LSTM network. When the number of LSTM layers is not
properly set, inherent parameters of the LSTM network grow
or shrink exponentially and eventually become inadequate
for the training data. It is found that for 6 LSTM layers
prediction performance measured by RMSE value is the best
with the number of inputs 6 when the range of the number
of inputs is 5∼15. More input data and/or more LSTM layers
are found to give a marginal impact on the improvement of
prediction performance. During supervised learning of the
LSTM network with historical data of PV power production,
the desired output datum of the LSTM network for predictive
power management is the PV power production in the next
time interval PWPV

LSTM (n + 1). During validation and testing
PWPV

LSTM (n + 1) will be predicted PV power production.
It is noted that the number of present and past inputs
PWPV (n− i) determines the range of past samples accounted
for predicted PWPV

LSTM (n + 1). Dropout is applied to fully

connected layers to prevent local optima in the prediction of
PWPV

LSTM (n + 1). Values of the initial learning rate, dropout
rate, and gradient threshold are hyperparameters tuned for
the prediction performance and these for simulations are
presented in Section IV. The structure of an LSTM cell is
shown in Fig.5(b) corresponding to the input PWPV (n − 4)
Note that the LSTM cell in Fig.5(b) is rotated as much as
90◦ in counter-clockwise direction as compared to that in
Fig.5(a) and the cell state c2 and hidden state h2 in Fig.5(b) are
evaluated according to relevant processing steps. The tanh(·),
σ (·) in Fig.5(b) represent a hyperbolic tangent function,
sigmoid function, respectively. Details of the processing steps
are referred to [53].

C. EV CHARGING AND DISCHARGING WITH PV POWER
The EV modes of the EV-th EV can be described by
the switching function OEV (n). When the EV modes are
determined by the grid power consumption PW(n)-PWPV (n)
and SOC, they can be typically presented by the OEV (n) as
follows

OEV (n)

=


−1 (discharging)

if (PW (n)−PWPV (n)>PWmax)
and (SOCEV (n) > SOCmin)

1 (charging)
if (PW (n)−PWPV (n)<PWmax)

and (SOCEV (n) < SOCmax)
0(idle) otherwise

(5a)

where SOCEV (n), SOCmin, SOCmax represent the SOC at
the n-th time interval, minimum allowed SOC of the
EV, maximum allowed SOC of the EV, respectively, and
SOCEV (n) is always adjusted between SOCmin and SOCmax .

FIGURE 7. Total power consumption of HVAC, shiftable, and non-shiftable
electric appliances and time zones for EV charging, discharging, and idle
modes according to the switching conditions in (5a), (5b). PW max = 7kW.

Figure 7 shows power consumption of all electric appli-
ances, excluding EVs, of the nanogrid consisting of 3 houses.
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TABLE 2. Operating conditions of simulations.

It is noted that the peak power consumption in Fig.7 is
due to large power consumption of HVAC caused by high
outdoor temperature. When pattern of temporal use shown
in Fig.4 is changed to some extent, representing different grid
loading, it is expected that profile of total power consumption
with the same HVAC operation plan is not significantly
changed. It is because the scheduling of shiftable appliances
consuming electric power much more than non-shiftable
appliances can distribute power consumption of them over
time. Part of total power consumption PW(n)(=PV power
consumption+GRID power consumption) is offered by PV
panels and the rest is supplied by the grid. Variation of
power consumption of electric appliances, other than EVs,
is determined by the resident behavior characterized by
the Markov chain model and KTUS data. Figure 7 also
shows the rate of electricity specified by a DR program.
The DR program initiated by the Korea Electric Power
Corporation (KEPCO) applies $0.05/kWh over the time
period of 23:00∼09:00, $0.1/kWh over the time periods of
09:00∼10:00, 12:00∼13:00, 17:00∼23:00, and $0.18/kWh
over the time periods of 10:00∼12:00, 13:00∼17:00 [22].
Peak of total power consumption is seen to occur at around
16hrs, which corresponds to high rate of electricity. Based on
the distribution of power consumption over time in Fig.7 and
the conventional EV charging/discharging policy in (5a),
the peak load is reduced by EV discharging (with occasional
charging) around 20hrs following EV charging. Note that
the main purpose of EV discharging in (5a) is to reduce
grid power consumption PW (n) − PWPV (n), which is not
free. On the other hand, rate of electricity is rather low
during 17hrs-23hrs, representing that the conventional EV
discharging policy is not cost-effective. Without PV power
production, peak grid power consumption at 20hrs would
shift to around 16hrs and cost reduction becomes more
significant with EV discharging. Therefore, the switching
function OEV (n) should be modified in the presence of PV
power.

In order to reduce electricity cost in the presence of
PV power, different EV charging/discharging policy is
established. The total electricity cost over 24hrs is more
efficiently reduced by executing EV discharging over time
zones 10:00∼12:00, 13:00∼17:00, where the PV power

production is decently high as seen in Fig.6. Since PV
power production is considerably high over the time zones
of high electricity cost, the EV charging/discharging policy
can take advantage of the pattern of PV power production.
For predictive power management with the LSTM network,
the switching function OEV (n)is modified as follow

OEV (n)

=



−1 (discharging)

f {(PW (n)−PWPV (n)>PWmax)
and (SOCEV (n) > SOCmin)}

or {(PWPV (n) > PWPV
LSTM (n+ 1))

and (Tout (n) > Tin,tar )
and (SOCEV (n) > SOCmin) }

1 (charging)

if (PW (n)−PWPV (n)<PWmax)
and (SOCEV (n) < SOCmax)

and (PWPV (n)<PWPV
LSTM (n+ 1)

or Tout (n) < Tin,tar )
0 (idle) otherwise

(5b)

where Tin,tar represents required indoor temperature, e.g.,
temperature in rooms, effective to all rooms where the
resident is not located. The Tin,tar is achieved by proper
HVAC operation. For simplicity of notation, PWPV

LSTM (n+ 1)
is used in (5b) as the predicted PWPV

LSTM (n + 1). Charging
condition in (5b) is tighter than the charging condition
in (5a) whereas discharging condition in (5b) is more
relaxed as compared to the discharging condition in (5a).
Therefore, the switching function OEV (n) in (5b) is more
inclined to discharging, which is beneficial for reduction
of electricity cost. The first condition of EV discharging
(PW (n)− PWPV (n) > PWmax) and (SOCEV (n) > SOCmin)
indicates emergency-based EV discharging while the second
condition (PWPV (n) > PWPV

LSTM (n + 1)) and (Tout (n) >
Tin,tar ) and (SOCEV (n) > SOCmin) represents policy-based
EV discharging. The first condition of EV discharging is
already taken into account by the constraint of the GA.
The trend of PV power production can affect the switching
function OEV (n), because falling PV power production, i.e.,
PWPV (n) > PWPV

LSTM (n + 1), can be compensated by EV
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discharging and rising PV power production leaves room
for EV charging. The indoor temperature in relation to
outdoor temperature can affect the EV mode, because the
HVAC is installed in every room and causes significant
power consumption. When the outdoor temperature is higher
than the target indoor temperature, the air-conditioner is on
and the EVs are more likely to be discharged. Therefore,
the condition Tout (n) > Tin,tar works like PW (n) −
PWPV (n) > PWmax in (5a) and often indicates peak total
power consumption. When comparing discharging condition
in (5a) with that in (5b), EV discharging condition in (5b)
occurs regardless of PW(n) relative to PWmax, representing
that excessive amount of powerPW (n)−PWPV (n) is supplied
by the EVs. The discharging condition in (5b) corresponds
to most 10 time intervals in the time zone 13:00∼17:00,
where the rate of electricity is high and the total power
consumption is decently large and PV power production is
in falling trend. Over the time zone 10:00∼12:00, power
consumption of electric appliances is not large and effectively
managed by the PV power, as seen in Fig.7. Thus, reduction
of electricity cost is less significant in this time zone. The EV
charging occurs if (PWPV (n) < PWPV

LSTM (n+1) or Tout (n) <
Tin,tar ), in addition to the charging condition in (5a). This
additional condition represents time zones before 12hrs
and (potentially) after 20hrs, as suggested by Fig.6. For other
cases of switching conditions, the OEV (n) is set to idle mode.
Thinner words in Fig.7 following ‘‘/’’ indicate less frequent
operation, as compared to the operation marked by thicker
words.

The OEV (n) obtained in (5b) is used as the OEV (n) in (3a),
(3a). When the OEV (n) in conjunction with other switching
functions in (3a), (3a) violates the constraint occasionally,
the GA changes its value to one of other two possible values.

IV. SIMULATION RESULTS
In this section, simulation results of the proposed power
management scheme and other schemes are presented.

A. SIMULATION SETUP
Daily variation of PV power production of a nanogrid
consisting of 3 houses and the daily variation of outdoor
temperature shown in Fig.6 are used for simulations. The
maximum achievable PV power production of rooftop PV
panels at each house in Fig.6 is 2kW. For some simulations
with the maximum PV power production at each house set
to 1kW, half the PV power production in Fig.6 is taken at
each time. Two types of nanogrids are used for simulations.
Smaller nanogrid consists of 3 houses and larger nanogrid
is composed of 10 houses. For the smaller nanogrid, PWmax

is set to 9kW and for the larger nanogrid PWmax is set
to 27kW, unless stated otherwise. Considering the power
ratings of electric appliances, including HVAC, and charging
rate of an EV, 9kW and 27kW of PWmax are considered
tight or moderately tight. The battery capacity of EV is
15kWh which is close to that of compact EV in the market.
The charging rate for each EV is either 3kW or 6kW and

EV charging/discharging efficiency is 90%. Since charging
rate 3kW or 6kW for the EV battery of 15kWh capacity
takes 5hrs or 2.5hrs for full charging, charging considered
in our work is a slow charging. The discharge rate is set to
0.33C(=1kW), considering the state of health, as indicated
in [54]. In simulations, depth of discharge (DOD) of EV is
within the range 10%∼20%. These numbers of discharge rate
and DOD fall into ranges suitable for state of health [54].
Due to the low discharge rate and low range of DOD,
adversary effect of EV charging/discharging on EV battery
is seen to be minor. Also, SOC range 20%-80% considered
in simulations does not correspond to undercharging and
overcharging that causes reduced lifespan of EV battery [55].
When discharging, all EVs with SOC allowing it discharge
at the same time, similar to the manner in [54]. The DR
program by the KEPCO is used for evaluation of electricity
cost. The details of simulations #1∼#4 are listed in TABLE 2.
As described in Section II above (2), the numbers of shiftable
appliances, non-shiftable appliances, HVAC appliances in
each house are 7, 2, 12, respectively. Thus, for instance,
the number of shiftable appliances S in the nanogrid of 3
houses is 7∗3=21. Two modes of HVAC operation are
considered. In HVAC-control mode, target temperature in
one of the 4 rooms in each house, where the resident is
located, is 23 degrees and the target temperature for other
rooms is 25 degrees, which represents the Tin,tar in (5b).
In no-HVAC-control mode, the target temperature in all four
rooms in each house is 23 degrees. Due to the large power
consumption of HVAC to keep the temperature in all rooms
at 23 degrees, PWmax is not set for the scheme relevant to
this mode. The outdoor CO2 concentration is set to 550 ppm
throughout the day and the target CO2 concentration in each
room is set to 500 ppm regardless of the resident location.
Since the power rating of the ventilation fan is much less
than that of air-conditioner, the adjustment of target CO2
concentration according to resident location does not make
a big difference in power consumption.

The training parameters of the LSTM network, shown
in TABLE 3, are as follows. The total number of training
epochs is 1000 and batch size is 200 and the ADAM [56]
optimization algorithm is used with learning rate 0.005,
gradient moving average 0.9, dropout rate 0.2, and gradient
threshold 1 [36], [57]. Inadequate learning rates might cause
an undesirable local minimum and overfitting. Dropout and
gradient are used to prevent the local minima. The dataset
of PV power production collected during 1 year is split
into 80 percent for training and 20 percent for validation.
Daily variation of PV production in Fig.6 is an entry of
the validation dataset. The parameters of the GA used for
the multi-objective optimization are crossover probability
0.8, mutation probability 0.01, the maximum number of
generations 100, and population size 100. The initial and
common SOC of EVs is assigned as 20%, corresponding
to deplete state of the battery. The initial SOC of EVs in
each simulation is set to common for all schemes. The
dEV ,max for full charging of an EV is set to 12hrs, just
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TABLE 3. Parameters related to training and validation of LSTM network.

like the constraint dShiftable,max on other shiftable appliances.
For each 10% increment of SOC, 2.5kWh charging is taken
necessarily. With a rate of charging 3kW, full charging,
corresponding to the SOC 80%, takes 5hrs when initial SOC
is 20%. Conditions on charging and discharging of EVs are
in (5a), (5b).

Simulation #1 is to see the effect of EV charg-
ing/discharging on nanogrid power management with
3 houses. Simulation #2 is to observe the effect of EV
charging/discharging on nanogrid power management with
10 houses. Simulation #3 is to see the effect of the level
of PV power production on nanogrid power management.
In simulation #4, different rates of EV charging are
considered for nanogrid power management. Since initial
charging according to charging probability should not occur
too late to complete within 24hrs full charging of EVs,
simulations providing successful completion of full charging
of all EVs by all schemes in 24hrs are only presented.
Note that the EVs of the proposed scheme corresponding
to (5b) discharge earlier than those of the conventional
scheme pertinent to (5a), as suggested in Fig.7. Therefore, the
conventional scheme always has more time for charging and
therefore highly likely more energy reserved for discharging.
The summary of the simulation results in terms of the
electricity cost is at the end of this section.

B. SIMULATIONS
Simulation #1: Effect of EV charging/discharging on the
operation of nanogrid consisting of 3 houses with PV power
production.

Figure 8 presents the power consumption according to
4 different power management schemes. The total power
consumption in Fig.8(a) represents grid power consumption
PW (n) − PWPV (n) in (3a). The maximum achievable PV
power production of rooftop PV panels of each house is
2kW. The PV power is used ahead of grid power and thus
the grid power is used only when PW (n)− PWPV (n) > 0.

The ‘‘no-scheduling+no-HVAC-control’’ scheme represents
the power management in no-HVAC-control mode without
scheduling of shiftable appliances. The ‘‘scheduling+HVAC-
control’’ scheme indicates the power management in
HVAC-control mode with the scheduling of shiftable appli-
ances. With the ‘‘no-scheduling+no-HVAC-control’’ scheme
and ‘‘scheduling+HVAC-control’’ scheme, EVs are charged
up to 80% and do not discharge for power consump-
tion of electric appliances. The ‘‘scheduling + HVAC-
control + EV-ch/disch’’ scheme implies that the EVs are
charged/discharged according to the conditions in (5a), while
the ‘‘scheduling + HVAC-control + EV-ch/disch + LSTM’’
scheme represents that the EVs are charged/discharged
following (5b).

The peak load in the ‘‘no-scheduling+no-HVAC-control’’
scheme is higher than other cases because for this case the
target temperature of all rooms is 23 degrees, regardless of
resident location, and electric appliances are used without
any scheduling. The ‘‘scheduling+HVAC-control’’ scheme
represents that shiftable appliances are scheduled by the
GA and the HVAC is controlled to get 23 degrees in the
room where the resident is located and 25 degrees for
the other 3 rooms. The ‘‘scheduling+HVAC-control+EV-
ch/disch’’ scheme performs EV discharging to reduce
peak load at around 20hrs which corresponds to low
rate of electricity. The ‘‘scheduling+HVAC-control+EV-
ch/disch+LSTM’’ scheme for predictive power manage-
ment with LSTM network, however, executes EV dis-
charging around 15hrs when the rate of electricity is
high, thereby causing significant reduction of electricity
cost. It is seen in Fig.8(a) that the grid power consump-
tion can be 0 with the ‘‘scheduling+HVAC-control+EV-
ch/disch+LSTM’’ scheme, due to EV discharging process
in Fig.8(c). Due to different conditions on EV charg-
ing/discharging, two schemes show significantly different
total power consumption before 15hrs and around 20hrs.
Since PWmax 9kW with decent amount of PV power is
sufficiently large, the total delay incurred by scheduling of
shiftable appliances is negligible and thus the variation of
power consumption of S + N1 shiftable and non-shiftable
appliances according to each scheme is close to each other,
as shown in Fig.8(b). Unlike Fig.8(a), portion of power
consumption in Fig.8(b) comes from PV power. Therefore,
Figure 8(b) shows true power consumption of S+N1 shiftable
and non-shiftable appliances.

EV charging/discharging by the ‘‘no-scheduling+no-
HVAC-control’’ scheme in Fig.8(c) shows initiation of EV
charging according to charging probability. Initiation of
charging the first EV occurs at 10hrs, the second EV at 11hrs,
and the third at 13hrs, since stepwise increment of power
consumption of EV charging occurs at these timings. Simi-
larly to Fig.8(b), portion of EV charging power in Fig.8(c)
comes from PV power and the rest from the grid. It is seen
in Fig.8(c) that by the ‘‘scheduling+HVAC-control+EV-
ch/disch+LSTM’’ scheme the EVs are charged until 13hrs
and then discharged to save electricity cost, whereas by
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FIGURE 8. Operation of nanogrid consisting of 3 houses with PV power production 2kW/house: (a) grid power consumption; (b) power consumption
of electric appliances other than 3 EVs and HVAC; (c) charging/discharging; (d) power consumption of HVAC; (e) total delay. Negative power
consumption of EVs indicates discharging.
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FIGURE 9. Operation of nanogrid consisting of 10 houses with PV power production 2kW/house: (a) grid power consumption; (b) power
consumption of electric appliances other than 10 EVs and HVAC; (c) EV charging/discharging; (d) power consumption of HVAC. Negative power
consumption of EVs indicates discharging.

the ‘‘scheduling+HVAC-control+EV-ch/disch’’ scheme the
EVs are continually charged until 18hrs and discharged at
18hrs to reduce peak load. Most of the EV discharging
by the ‘‘scheduling+HVAC-control+EV-ch/disch+LSTM’’
scheme occurs before 15hrs and another one at 18hrs. Beyond
18hrs, no more EV discharging is observed, due to the time
constraint dEV ,max Due to EV charging after 15hrs, following
EV discharging, in the ‘‘scheduling+HVAC-control+EV-
ch/disch+LSTM’’ scheme, significant delay before full
charging is created. On the other hand, EV discharg-
ing and charging appear alternately from 18hrs by the
‘‘scheduling+HVAC-control+EV-ch/disch’’ scheme. This
alternate EV discharging and charging cause decreased total
delay. Though charging rate of an EV is 3kW, discharging rate
depending on instantaneous grid power consumption is not
in the unit of 3kW. It is because the grid power consumption

becomes 0 at that time even with discharging power less than
3kW. Due to the variation pattern of outdoor temperature
in Fig.6, the operation of the ‘‘no-scheduling+no-HVAC-
control’’ is relatively inactive over the range between 2hrs
and 8hrs after intensive cooling by the air-conditioners in
the early hours, as presented in Fig.8(d). Since the Markov
chain model is common to all schemes considered for this
simulation and HVAC is non-shiftable, variation of HVAC
power consumption in the ‘‘scheduling+HVAC-control’’
scheme is identical with those of the ‘‘scheduling+HVAC-
control+EV-ch/disch’’ scheme and ‘‘scheduling+HVAC-
control+EV-ch/disch+LSTM’’ scheme. The reduction of
power consumption of the HVAC by the control according to
the resident location is clearly demonstrated in Fig.8(d). Like
Fig.8(b-c), portion of power consumption in Fig.8(d) comes
from PV power and the rest from the grid.
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FIGURE 10. Operation of nanogrid consisting of 3 houses: (a) grid power consumption; (b) power consumption of electric appliances other than 3 EVs
and HVAC; (c) EV charging/discharging; (d) power consumption of HVAC.

Variation of total delay of shiftable appliances, including
EVs, is presented in Fig. 8 (e). Total delay is the objective
function in (3a). In case of ‘‘no-scheduling+no-HVAC
control’’ scheme, no delay occurs because there is no
scheduling. Total delay of proposed scheme with LSTM
network is the largest over 13-24hrs, due to significant EV
dischargingwhich requires full charging by 24hrs. Total delay
of conventional ‘‘scheduling+HVAC-control+EV-ch/disch’’
scheme is less than that of proposed scheme over 13-24hrs,
due to smaller amount of discharged energy according
to emergency-based discharging condition in (5a). Total
delay of ‘‘scheduling+HVAC-control’’ scheme that requires
EV charging only is close to that of ‘‘scheduling+HVAC-
control+EV-ch/disch’’ scheme, since discharged energy
of EVs with ‘‘scheduling+HVAC-control+EV-ch/disch’’
scheme is not large. Total delay of shiftable appliances with

the 3 schemes requiring scheduling is approaching maximum
around 17hrs due to large power consumption of HVAC.

As seen in Fig.8(a), the ‘‘no-scheduling + no-HVAC-
control’’ scheme often results in instantaneous grid power
consumption PW(n) well above the PWmax 9kW, whereas
the other three schemes are able to keep the grid power
consumption below PWmax throughout the day. Electricity
costs of grid power consumption over 24hrs are $12.32,
$13.53, $13.62, $17.59, when ‘‘scheduling + HVAC-control
+ EV-ch/disch + LSTM’’ scheme, ‘‘scheduling + HVAC-
control + EV-ch/disch’’ scheme, ‘‘scheduling + HVAC-
control’’ scheme, and ‘‘no-scheduling + no-HVAC-control’’
scheme are used, respectively.

Simulation #2: Effect of EV charging/discharging on the
operation of nanogrid consisting of 10 houses with PV power
production.
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FIGURE 11. Operation of nanogrid consisting of 3 houses with PV power production 2kW/house when rates of EV charging are 3kW
and 6kW: (a) grid power consumption; (b) power consumption of electric appliances other than 3 EVs and HVAC; (c) EV
charging/discharging; (d) power consumption of HVAC.

Figure 9 presents the power consumption of 4 different
power management schemes in the nanogrid consisting
of 10 houses. The maximum PV power production of rooftop
PV panels of each house is also 2kW. This simulation
can emphasize the benefit, e.g., reduction of electricity
cost, obtained from the proposed scheme based on the
predicted PV power production. Figure 9(a) shows the grid
power consumption PW (n) − PWPV (n). It is also seen
in Fig.9(a) that EV charging according to ‘‘scheduling +
HVAC-control+ EV-ch/disch+ LSTM’’ scheme occurs over
the time zone before 13hrs, where most of the time zone
corresponds to low rate of electricity, and EV discharging
takes place around 15hrs, pertaining to high rate of electricity.
Similar to Fig.8(b), the variation of power consumption
of non-shiftable and shiftable appliances according to each
scheme is close to each other. Similarly to simulation
#1, operation of the HVAC depending on the resident
location allows more power to be consumed by other electric
appliances, which leads to more flexible power management
with the EVs. It is seen in Fig.9(c) that the EVs are kept
charged until 13hrs by the ‘‘scheduling + HVAC-control

+ EV-ch/disch + LSTM’’ scheme for discharging between
13-15hrs to save electricity cost. Figure 9(d) shows the
power consumption of HVAC. Electricity costs of grid
power consumption over 24hrs are $53.92, $57.96, $57.99,
$70.59, when ‘‘scheduling + HVAC-control + EV-ch/disch
+ LSTM’’ scheme, ‘‘scheduling + HVAC-control + EV-
ch/disch’’ scheme, ‘‘scheduling + HVAC-control’’ scheme,
and ‘‘no-scheduling + no-HVAC-control’’ scheme are used,
respectively.

Simulation #3: Effect of different level of PV power
production on the operation of nanogrid consisting of 3
houses.

Figure 10 shows the results of power management accord-
ing to different level of PV power production. The ‘‘schedul-
ing + HVAC-control + EV-ch/disch + LSTM2’’ and
‘‘scheduling + HVAC-control + EV-ch/disch + LSTM1’’
represent power management scheme ‘‘scheduling+HVAC-
control+ EV-ch/disch+ LSTM’’ with PV power production
2kW/house, 1kW/house, respectively. The ‘‘scheduling +
HVAC-control + EV-ch/disch + w/oPV’’ scheme represents
the ‘‘scheduling + HVAC-control + EV-ch/disch’’ scheme
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without PV production of houses. As shown in Fig.10(a), the
‘‘scheduling + HVAC-control + EV-ch/disch + LSTM2’’
scheme leads to the lowest power consumption in general
among the three schemes due to the increased PV power
production. The trends of power consumption of EVs, HVAC,
and other electric appliances are almost the same as shown
in Fig.10(b-d). Figure 10(c) shows that initiation of charging
the first EV occurs at 0hr, the second EV at 6hrs, and the
third at 15hrs. EV discharging during 13-15hrs in Fig.10(c)
by ‘‘scheduling+HVAC-control+ EV-ch/disch+ LSTM2’’
scheme can make PW (n) − PWPV (n) in Fig.10(a) 0 with
discharged power less than 3kW, due to sufficient PV power,
while the PW (n)−PWPV (n) in Fig.10(a) with ‘‘scheduling+
HVAC-control + EV-ch/disch + LSTM1’’ cannot be 0 even
with 3kW discharged power. The ‘‘scheduling + HVAC-
control + EV-ch/disch’’ scheme causes EV discharging
over short period of time after 20hrs, which is matched
with the decreased grid power consumption in Fig.10(a)
observed after 20hrs. Electricity costs for 24hrs are $10.3262,
$11.8360, $17.1448, when ‘‘scheduling + HVAC-control +
EV-ch/disch + LSTM2’’ scheme, ‘‘scheduling + HVAC-
control + EV-ch/disch + LSTM1’’ scheme, ‘‘scheduling +
HVAC-control + EV-ch/disch + w/oPV’’ scheme, are used,
respectively.

Simulation #4: Effect of different rate of EV charging on
the operation of nanogrid consisting of 3 houses with PV
power production.

Two types of EVs are considered in this simulation. The
first type of EVs has battery capacity requiring 2.5kWh for a
10% increment of SOC and the second type of EVs demands
5kWh for a 10% increment of SOC. For different types of
EVs, different charging rates 3kW and 6kW are considered.
Figure 11 presents the power consumption when the rates
of EV charging are 3kW and 6kW. For the ‘‘scheduling+
HVAC-control+EV-6kWch/disch+LSTM’’ scheme, rate of
EV charging is set to 6 kW and PWmax is 12kW, while in case
of ‘‘scheduling+HVAC-control+EV-3kWch/disch+LSTM’’
scheme, the rate of EV charging is set to 3 kW and the
PWmax is 9kW. As shown in Fig.11(a), the ‘‘scheduling+
HVAC-control+EV-6kWch/disch+LSTM’’ scheme makes
the grid power consumption PW (n) − PWPV (n) close
to the PWmax12kW from 15hrs, corresponding to high
electricity cost. EV discharging over the time zone between
13hrs and 15hrs makes the grid power consumption 0,
as seen in Fig.11(a). Figure 11(b) shows identical pattern
of power consumption of non-shiftable and shiftable
appliances until 7hrs. Power consumption of shiftable
appliances in the ‘‘scheduling+HVAC-control+EV-6kWch/
disch+LSTM’’ scheme is more delayed in general due to
double rate of EV charging that leaves less room for power
consumption of shiftable appliances. In Fig.11(c), EV charg-
ing is also continued until 13hr for discharging between 13hr
and 15hr. Although the rate of EV charging is changed, there
is no basic difference between the two schemes in power con-
sumption of non-shiftable HVAC, as seen in Fig.11(d). Due to
double rate charging between 9hrs and 13hrs and similar level

TABLE 4. Comparison of electricity cost according to power management
scheme.

of discharging from 13hrs to 15hrs, the ‘‘scheduling+HVAC-
control+EV-6kWch/disch+LSTM’’ scheme is not more
advantageous than the ‘‘scheduling+HVAC-control+EV-
3kWch/disch+LSTM’’ scheme. Electricity costs for
24hrs are $17.8071 with ‘‘scheduling+HVAC-control+EV-
6kWch/disch+LSTM’’ scheme and $13.4461 with
‘‘scheduling+HVAC-control+EV-3kWch/disch+LSTM’’
scheme.

TABLE 4 lists up electricity cost according to the power
management scheme. As seen in the table, the power
management involving EV discharging according to pre-
dicted powermanagement results in the lowest electricity cost
among the considered schemes. The reduction of electricity
cost by the efficient EV charging/discharging enabled by the
LSTM network is roughly 7%.

V. CONCLUSION
Predictive power management is considered in this paper
to reduce the electricity cost of nanogrid characterized by
V2G configuration and PV power production. In the proposed
scheme, the LSTM network is used to predict PV power
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production. According to the predicted PV power production,
EV mode is determined. EVs considered in this work act
like ESSs when they are discharged. If the predicted PV
power production as well as outdoor temperature in relation
to indoor temperature corresponds to the condition on EV
discharging, the EV can discharge to reduce the electricity
cost. It is shown that the EV discharging in predictive
power management occurs when the rate of electricity is
high and thus reduces electricity cost in the presence of
PV power. Since time intervals for EV charging are distinct
from those for EV discharging, EV charging is also affected
by the predicted PV power production. Considering the
power scale of EV charging/discharging relative to other
electric appliances, efficient EV charging/discharging is
critically important for nanogrid power management. From
this viewpoint, the proposed power management scheme
for nanogrid is expected to be useful for the reduction
of electricity cost. In simulations, the proposed power
management scheme is compared in terms of electricity
cost with other power management schemes. The results
of simulations show that the predictive power management
scheme achieves a significant reduction of electricity cost.
Particularly, it achieves a 5%∼7% reduction of electricity
cost as compared to other power management schemes,
which do not involve prediction of PV power production.
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