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ABSTRACT This study aims to reveal dynamic brain networks during speech perception. All male subjects
were presented five English vowel [a], [e], [i], [o], and [u] stimuli. Brain dynamics were decoded using
multivariate Gaussian hidden Markov model (MGHMM), which trained on spatiotemporal patterns of
broadband multivariate event-related potential amplitudes to identify distinct broadband EEG microstates
(MS), microstate source imaging, and microstate functional connectivity (µFC). Obtained results showed
fluctuated cortical generators and µFC in eight microstates throughout the perception. Microstate source
imaging revealed involvements of bilateral (left-side dominance) posterior superior temporal cortex (TC),
inferior frontal gyrus (IFG), and supramarginal regions in perception. Precentral cortex where primary motor
cortex located was also significantly activated. These regions were early appeared at 96-151 ms (left-side
dominance) and at 186-246 ms (left hemisphere only) after the stimuli onset. Results from µFC revealed
significant increases in delta (2.5-4.5 Hz), theta (4.5-8.5 Hz), alpha (12.5-14.5 Hz), beta (22.5-24.5 Hz),
low gamma (30.5-32.5, 38.5-40.5 Hz) but decreases in high gamma (42.5-46.5 Hz) bands in perception.
Increased FC were observed mainly at; (1) microstate segments 34-95 ms (MS2) and 96-151 ms (MS3) in
early stages, (2) microstate intervals 186-246 ms (MS5) and 297-449 ms (MS6) in subsequent stages of
perception. We found that stronger statistical FC differences in perception at TCs, with respect to left IFG
(Broca’ area), left TC, and precentral areas. Furthermore, by conducting a comparative protocol measuring
FC distinction degree, we showed performance improvements of 8.01% (p-value = 0.0162), 14.41% (p-
value = 0.006) when compared MGHMM to well established Lehmann-based modified K-means, Atomize
and Agglomerative Hierarchical Clustering and 8.791% (p-value = 0.0097) over the combination of K-
means and sliding window methods, respectively. This study indicates the usefulness of EEG microstates to
investigate broadband brain dynamics in speech perception. The current findings based on male subjects
would be generalized more by future studies with a larger appropriate sample size including female
subjects.

INDEX TERMS Speech perception, EEG microstate, source imaging, microstate functional connectivity,
MGHMM.

I. INTRODUCTION
Speech perception is a process by which sounds of the spoken
languages are heard, interpreted and understood. Researches
in the speech perception aim to reveal dynamic mechanisms
recruited in the brain from acquisition, comprehension to
production of speeches [1]–[3]. The neural processing of
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the spoken language has been hypothesized to occur in a
multistage process coordinated by a chain of the established
cortical regions [4].

As processing of speeches represents multimodal units that
map what is heard with how to produce the sound, neuronal
organizations may not be limited to auditory-perceptual tem-
poral area alone, but instead, may be linked to a set of neu-
ronal circuits [5]–[8]. A neuroimaging review [7] concluded
that frontoparietal cortices which include the ventral motor
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and somatosensory cortices reflect phonological information
during spoken language perception. Extensive reviews [9]
indicated associated roles of central and posterior parts of the
middle and inferior temporal gyri and the posterior inferior
frontal gyrus in retrieval of lexical information in the context
of language comprehension. Hemodynamic fMRI [10] and
event-related potential (ERP) [11] studies have reported that
translation of declarative language information from hear-
ing to long-term memory increased neuronal activity in a
large number of areas, including the prefrontal, temporal,
anterior cingulate, and cerebellar areas. Recently, the con-
cept of dual-stream, proposed by neurolinguistics and neu-
roanatomists, where ventral (sound to meaning) and dorsal
(sound to action) brain areas process information synergis-
tically, has been used to study speech perception [2], [12].
The dorsal stream, which involves structures in the poste-
rior frontal lobe and the posterior dorsal-most aspects of
the temporal lobe and parietal operculum, is responsible for
translating acoustics into articulatory representations in the
frontal cortex essential for speech production. The ventral
stream, which involves structures in the superior, middle,
and anterior portions of the temporal cortex as well as the
ventrolateral prefrontal cortex, is responsible for comprehen-
sion. The dual-stream is perhaps the most influential model
for language processing in the literature. Despite the wealth
of studies using neuroimaging, neural generators, functional
associations, and especially dynamic specifications recruited
by perception process are not yet fully understood due to a
lack of appropriately analytic methods, especially the lack
of sophisticated dynamic models [13] as introduced in this
study.

Brain is a dynamic network of discrete sub-regions of the
functionally specialized neurons. Hence, one should not only
investigate where (cortical sources) such functionality occurs,
but also examine when (neuronal dynamics) and in what
engagements (functional connectivity) the brain is activated
when studying speech perception [8], [11]. ERP, which offers
excellent temporal resolution, is a powerful tool to decode
rapid dynamic patterns using EEGmicrostate concept that are
transient, quasi-stable (∼80-120 ms) and distinct patterns of
broadband EEG. Brain dynamic studies suggest that global
pattern of brain can be described as being composed of a
time sequence of decomposable EEG microstates [14], [15].
Goals of EEGmicrostate approach are to provide informative
dynamics associated with sequences of discrete information
processing evoked by presentations of stimuli [16], offering
a novel way to understand brain dynamics in cognitive tasks,
especially multistage language processing.

Traditional approaches to study dynamic FC (dFC) in EEG
utilize clustering-based segmentations of time-varying FC
matrix into ‘FC-states’ using: (1) sliding windows [17]–[20]
and (2) K-means [17], [21]–[25]. However, despite encour-
aging findings, these methods encounter critical issues; that
is the former appears limited since strategies for select-
ing reasonable windows remain unsolved [17], [20]. The
latter utilized K-means to cluster the time-varying FC

matrices [23] or FC graphs [24], [25] and topological fea-
tures [26], [27] which assume that the network is static in
one state at a time and the states vary across times. For
instance, Allen et al. [23] introduced a data-driven method
applied on resting-state fMRI to identify ‘FC-states’. Simi-
lar clustering-based strategies applied to M/EEG recordings
were performed by Jamal et al. [28], Dimitriadis et al [26],
[27], [29]–[33]. Alternatively, in recent studies [27], [30],
[32], [33] the neural-gas clustering algorithm has been used
to detect the connectivity patterns in M/EEG data and proved
to be an effective approach for reproducibility. Also using
clustering-based approaches on dynamic FC matrices,
Mheich et al. [25] (scalp data) and Hassan et al. [24] (source
data) identified the ‘FC-states’ using EEG cognitive tasks.
Despite the usefulness of the K-means method, it has several
critical cons. First, K-means requires appropriate selections
of clusters at initialization steps. However, choosing a proper
number of clusters can be difficult particularly in case the
data is dynamic and prior knowledge is unknown. K-means
method also starts with random choices of cluster centers and
therefore it may yield different clustering results on different
iterations, which leads to inconsistent results.

To avoid abovementioned limitations caused by K-means
clustering, various advanced directions to track fast changes
of FC networks (FCNs) have recently been introduced. For
example, resting-state EEG FCNs were revealed using syn-
chronization likelihood analysis and evolutionary cluster-
ing [34], tensor decomposition-based [35], and principal
component analysis (PCA)-based [36] approaches. Novel
approaches that use ERP segmentation, followed by dynamic
time warping and quality threshold clustering, to track
dynamic patterns of FC in task-based EEG was intro-
duced [21]. However, dynamics rely on the ERP segmenta-
tion process that adopted pre-determined ERP components
and therefore the generalization cannot be applied precisely.
More importantly, the studies therein did not investigate the
relations of EEG microstate connectivity networks and brain
network dynamics. Then, it raises the questions of whether
or not the EEG microstate networks can be relevant to pro-
vide insightful brain dynamics coordinated in cognitive tasks.
In addition, what is certainly unavailable in the existing litera-
ture is a reliable localization and connectivity of the neuronal
sources generating these different EEG microstates, that is,
the cortical regions that are synchronized with each other
during each of these microstates [37].

In recent work [22], we proposed a novel framework
to decode microstate FC (µFC) patterns from broadband
ERP data using the multivariate Gaussian hidden Markov
model (MGHMM) and this approach has been proved to
provide several significant advantages over the traditional
ones in extracting the true brain dynamic activities. First,
MGHMMmethod trains the multivariate data using Bayesian
variational learning to automatically reveal an optimum clus-
tering number of hiddenmicrostates. This strategy overcomes
the limitation of the existing methods, in which the plans for
selecting the optimum number of clusters remain ambiguous,
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FIGURE 1. Overall framework to study microstate cortical organizations,
µFC in speech perception using broadband EEG. (a) ERP response to
speech stimuli. (b) EEG microstate decomposed from ERP data using
MGHMM. (c) 68-ROI Desikan-Killiany atlas. (d) microstate source imaging
using weighted Minimum Norm algorithm (wMNE). (e) µFC using
imaginary of coherence (Icoh).

especially for K-means clustering and time sliding window.
Second, MGHMM uses Viterbi decoding algorithm learned
from the training phase to compute the state sequence to
identify the most likely microstate that an observation vector
at a time belongs to. This automatic segmentation using mul-
tivariate analysis solves the limitation of the pre-determined
ERP segmentation performed by univariate analysis method
as indicated in [21]. Third, with this new direction, one can
be able to investigate the relations of EEG microstate con-
nectivity and brain network dynamics that cannot be studied
with existing methods. Fourth, by using EEG simulation and
realistic recordings, we proved that MGHMM outperformed
the existing approaches in revealing ‘true’ dynamic FC net-
works in EEG cognitive task. Lastly, to our knowledge, this is
the first study introducing the new concept of microstate FC
(µFC) in understanding the brain dynamics in EEG cognition
tasks including speech perception.

Given this gap in the existing literature, in this study
we investigate EEG microstates, microstate-guided source
localizations and microstate-guided µFC patterns dynami-
cally underlying the speech perception using broadband EEG.
Our work is based on the assumption that the broadband
source localization and connectivity are oriented by the esti-
mated EEG microstates at the sensor level representing that
broadband EEG. Fig. 1 depicts the overview framework of

this study. First, EEG signals were recorded from the male
healthy subjects when they heard the vowel (perception
condition) stimuli and mute (zero volume) sound (base-
line control condition). The number of broadband EEG
microstates underlying the perception process was decoded
from multivariate grand-averaged ERP amplitude data using
MGHMM method. We then employed weighted Mini-
mum Norm Estimate (wMNE) to specifically map each
of estimated broadband microstate topographies into each
of source-space representations. FCs were estimated using
imaginary part of coherence (Icoh) which was introduced to
overcome volume conduction effects and reveal the ‘true’
connectivity. µFC were obtained by averaging the FC across
time segments where the existence of corresponding broad-
band EEG microstates on the sensor level, which are esti-
mated by MGHMM method, is expected. To validate our
approach on studying the brain dynamics, we constructed a
comparative protocol that we compare sensor-based connec-
tivity distinction degrees estimated by MGHMM with that
of well-established methods including K-means and sliding
window combination that estimates the dynamic ‘FC-states’.
The comparisons also included Lehmann-based Atomize and
Agglomerative Hierarchical Clustering (AAHC) and modi-
fied K-means methods that estimate microstate-guided func-
tional connectivity [14], [38]. This research is among the first
reports, we believe, to investigate dynamic cortical organiza-
tions and functional interactions on the basis of broadband
EEG microstates that are revealed in the speech perception.

II. MATERIAL AND METHODS
A. EEG DATA ACQUISITION
1) PARTICIPANTS
Eleven healthy native Korean volunteers (all males; graduate
students; mean age: 28.25±2.71; range: 26-32) who were
well known to English language participated in this experi-
ment. Their English proficient levels, in overall, were above
either TOEIC score of 750 or IELTS score of 6.5 with recog-
nized certificates. None of the participants had major neuro-
logical or hearing diseases, and all were right-handed naïve
to the experiment. The clinical evaluation was performed
by two experienced psychiatrists in our research group. All
participants gave the written informed consent, and the exper-
imental paradigm was approved by the Institutional Review
Board (IRB) of Gwangju Institute of Science and Technology
(GIST), Gwangju, South Korea. The approval process of the
IRB complied with the declaration of Helsinki.

2) EXPERIMENT PROTOCOL
Fig. 2 describes schematic sequences of the experiment
paradigm. The participants were each seated in a comfort-
able armchair and wore earphones (Etymotic research, Inc.,
IL 60007, U.S.A) providing speech stimuli. For percep-
tion condition, five English vowel stimuli; /a/, /e/, /i/, /o/,
and /u/ were randomly and equally presented for one sec-
ond while for baseline control condition a mute sound
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FIGURE 2. Schematic sequence of experiment protocol. The EEG data
were acquired for two conditions: 1) perception condition when the
subjects heard five English vowels /a/, /e/, /i/, /o/, and /u/, and
2) baseline control condition when the subjects were at resting-state.

was provided. Above five stimuli were recorded using Gold-
ware software (GoldWave Inc., St. John’s, Newfoundland,
Canada), while the source audio was acquired online from
Oddcast’s (www.oddcast.com/home/demos/tts/).

At beginning of each trial, a one-second beep sound was
presented to prepare the participants for perception, which
was followed by the onset of the target stimulus. A 2 sec fixed
inter-stimulus interval (ISI) was set between trials and a cross
mark appeared on screen at exact time when the participant
was to perceive speech stimuli. The experimental paradigm
was designed with e-Prime 2.0 software (Psychology Soft-
ware Tools, Inc., Sharpsburg, PA, USA). The EEG data were
continuously recorded using a HydroCel Geodesic Sensor
Net with 64 electrodes, Net Amps 300 amplifiers, and Net
Station software package (ver. 4.5.6, Electrical Geodesics,
Inc., Eugene, OR, USA). The sampling rate was set at
1000 Hz. Each subject performed five sessions; each session
consisted of 10 trials per stimulus, resulting in 60 trials for
each stimulus and 300 trials for each subject. A 1-minute
resting time was provided between sessions and the total time
required for each subject was approximately 15 min.

3) PREPROCESSING
Preprocessing of EEG data was performed with Field-
trip [39], a toolbox for EEG analysis compatible with
MATLAB (2017b; MathWorks, Inc., Natick, MA, USA).
First, an IIR notch filter (Butterworth; order: 4; bandwidth:
59-61 Hz) was applied to remove power line noise. The raw
continuous EEG signals were then filtered by a 0.5–46.5 Hz
zero-phase shift band-pass filter to remove baseline drift and
high-frequency artifacts before the EEG data were averagely
re-referenced. Afterwards, EEG were segmented into 0.8 sec
time-locked epochs with 0.2 sec pre-stimulus baseline plus
0.6 sec post-stimulus. Four ocular channels monitored ver-
tical and horizontal eye movements/blinks from the outer
canthi and left infraorbital ridges and were excluded before
further analysis. To remove electro-oculography (EoG) and
electro-cardiography (ECG) artifacts, the independent com-
ponent analysis (ICA) using the ‘runICA’ algorithm which
comes as a built-in tool in Fieldtrip was applied to the
preprocessed data. Artifact epochs were removed manually

FIGURE 3. Hierarchical architecture of the MGHMM consists of
state-space HMM model (a) and multivariate Gaussian observation
model (b).

after visual inspections of each component by an expert neu-
ropsychiatrist. Next, we reconstructed the time-series using
the artefact-free independent components. In addition, the
epochs whose signals amplitudes exceeded ±100 µV were
excluded. After this process, a total of 2164 out of 3300 trials
remained for further analysis. Next, the grand-averaged ERPs
for speech perception condition were calculated. Finally,
we normalized the ERP data to remove the effects of pre-
stimulus interval (0.2 sec).

4) REGIONS OF INTEREST
An average 15000-voxel cortex was parcellated into a
Desikan-Killiany atlas [40] with 68 anatomical regions of
interest (ROI) in Brainstorm [41] (Fig. 1c). These ROIs are
considered to be the source-space nodes for computing FC.
Detail of language-related ROIs in Desikan-Killiany atlas is
provided in Appendix Table 2.

B. EEG MICROSTATES DECOMPOSED BY MGHMM
Our proposed MGHMM method (Fig. 3) was used to train
patterns of multivariate ERP amplitude data for microstate
decomposition [22]. An observation gt representing mul-
tivariate Nsensor × 1 ERP at time t is generated by a
hidden state ht which gets one of K possible states.
P(ht |ht−1) is the probability of achieving the state ht , which
is conditionally dependent only on its immediate previous
state ht−1. Observed gt is dependent only on the current
state ht but independent of other observations, denoted as
P
(
gt | ht

)
. Collectively, the true posterior distribution of T

hidden states h = {h0, · · · ,ht , · · · ,hT } and observations
G= {g0, · · · ,gt , · · · ,gT can be presented as follows:

P (h,G, θ ,A)

= P (h0 |π0)
∏T

t=1
[P(ht |ht−1,A)P(gt |ht , θ )]P(θ)P(A)

(1)

In (1), A is K × K state transition probability matrix.
θ = {θ1, · · · ,θk , · · · ,θK }with θk = {µk ,

∑
k} characterizes

the observation model for the state k which is a multivariate
Gaussian distribution expressed as P

(
gt | ht = k, θ = θk

)
=

P
(
gt |µk ,

∑
k
)
, where µk is the mean and

∑
k is the K ×K

covariance matrix of the Gaussian distribution. The initial
state probability vector, π0, has elements π0k = P(h0 = k)
that satisfy

∑
k π0k = 1. In addition, P(θ) and P(A) are non-

informative priors.
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An unsupervised Bayesian variational inference method
was performed to learn model parameters. Principles of
Bayesian learning is based on iterative minimization of
Kullback-Leibler divergence (KL-divergence) between the
true posterior probability in (1) and an analytical approxima-
tion [42], [43]. Conceptually, KL-divergence minimization
process with respect to the model dimension leads to the most
probable model size.

EEG microstate decomposition from ERP data using
MGHMM was illustrated with three subsequence steps [22].
First, a strategy for the model dimension selection revealed
an optimum number of the hidden microstates. Second,
once the state dimension was determined, the converged
KL-divergence at the optimal state dimension was estimated.
We decoded the state sequence (st ) using the Viterbi algo-
rithm to identify the most likely state (k) that a multivariate
vector, gt ∈ G (G: observation matrix), belongs to as follows:

st = maxP(ht = max
k

k|gt ) (2)

Third, we smoothed microstate topologies with temporal
window of 30 ms by eliminating microstates that occurred
continuously for less than 30 ms and reassigning them to
one of the neighboring microstates, which obtained highest
spatial correlation [38]. Further details of EEG microstate
decomposition on spatiotemporal multivariate ERP ampli-
tude data using MGHMM as well as the mathematic expla-
nations of above equations can be referred to our recent
paper [22].

C. EEG SOURCE IMAGING
Let G = {g1, · · · ,gt , · · · ,gT be a Nsensor × T } matrix
that represents the multivariate EEG signals at Nsensor elec-
trodes over all T samples. The broadband EEG potential
is expressed as a linear combination of a lead field matrix
L = {l1, · · · ,lp, · · · ,lP} and the current dipole source time-
series = {s1, · · · ,st , · · · ,sT } as follows:

G = L · S+ E (3)

In (3), L represents an Nsensor×P matrix obtained by solv-
ing a forward problem, given the distributed source model.
P (15000 voxels) is the number of active sources with fixed
positions and orientations. E is the Nsensor × T measurement
noise corrupted to EEG data.

One popular neuroimaging approach to solve ill-posed
(P�N ) inverse problem is the weighted Minimum Norm
Estimate (wMNE). Basically, the wMNE algorithm compen-
sates for the tendency of classical MNEs to favor weak and
surface sources [24]. This is done by introducing a P × P
weighting matrixWS to the estimated sources:

ŜwMNE = (LTWSL+ αI)
−1
LTWSG (4)

where matrix WS regulates the solution by diminishing the
bias inherent to MNE solutions. Typical selection ofWS is a
diagonalmatrix derived from the lead fieldmatrixLwith non-
zero elements inversely proportional to the norm of the lead

field vectors. In addition, the value α is calculated relative
to signal to noise ratio between the post-stimulus and pre-
stimulus intervals [24].

D. FUNCTIONAL CONNECTIVITY METRIC: ICOH
We employed imaginary part of the coherence (Icoh) method
to assert brain FC. The complex coherence between two
time series can be defined as the cross spectrum divided
by the product of the two power spectra. Its mean over all
frequencies can alternatively be computed via the mean over
time of the corresponding analytical signals [44]:

C =
〈A1A2ei1θ 〉√
〈A21〉〈A

2
2〉

(5)

where A1 and A2 are amplitudes, and 1θ is the instanta-
neous phase difference (Hilbert transform) of the two time
series. Absolute coherency is Magnitude-squared Coherence
(MsC). MsC is a well-established metric of linear associa-
tion between two signals at certain frequencies. However,
MsC is known to be sensitive to volume conduction that
leads to spurious zero-lag interactions not attributed to neural
sources [45]. Imaginary part of coherency (Icoh) is derived
as:

Im{C} =
〈A1A2sin1θ〉√
〈A21〉〈A

2
2〉

(6)

As Icoh was introduced to address volume conduction
issue [46] by capturing the part of synchronization that occurs
with a non-zero time lag, it is only sensitive to signals
that are time-lagged to each other and therefore isolates the
part of coherency which necessarily reflects true interaction.
FC measures were performed and analyzed using Matlab
(The MathWorks Inc., Natich, MA) on the 68 scout Desikan-
Killiany time series for computation efficiency since FCs on
15000-voxel cortex demand enormous computations. Before
FC computation, each ROI time series was obtained by aver-
aging all voxels, which laid in the corresponding ROI. FCs
were employed on each EEG frequency between 0.5 and
46.5 Hz (23 segments of 2 Hz bandwidth with 50% overlap).
µFC were obtained by averaging the FC across time intervals
where the existence of corresponding EEG microstates was
decomposed. Values for Icoh range from 0 to 1. A zero Icoh
value indicates a complete absence of synchrony between
two brain time series while a value of 1 specifies perfect
synchronization.

E. STATISTICAL ANALYSIS
Statistical analyses to compare significant differences of (1)
EEG microstates, (2) microstate cortical imaging, and (3)
microstate FC between two conditions (perception- and
baseline control conditions) were assessed by two-sample
t-test via Monte Carlo permutation in a nonparametric model
in Matlab. Specifically, the statistical differences between
the two conditions for each EEG microstate and microstate
source imaging intervals were performed on microstate

146774 VOLUME 8, 2020



N. T. Duc, B. Lee: Decoding Brain Dynamics in Speech Perception Based on EEG Microstates Decomposed by MGHMM

FIGURE 4. Illustrations of the clustering-based approaches using
K-means and sliding window to retrieve the dynamic ‘FC-states’.

topographies (electrode pairs) and on 15000-voxel cortex
(voxel pairs), respectively, while the statistical differences of
microstate FC were performed on 68 cortical ROIs at each
frequency bins (23 bins). We employed the nonparametric
permutation t-test (randomization test) for statistical anal-
ysis as it does not require data to be normally distributed
and allows testing for multiple data types. The number of
randomizations for permutation test was set to 1000 times.
For all of inputs, the corrected significant level (corrected
p-values) were obtained using false discovery rate (FDR, p
<0.05) method for multiple comparison [41].

F. COMPARATIVE METHODS
To validate the efficacy of MGHMM approach on studying
brain dynamics, we compare it with long-established meth-
ods using K-means clustering and time sliding window as
illustrated in Fig. 4 and presented in the followings [24], [25]
(see [22] for further details of the comparative protocol):
• K-means clustering: This method aims to cluster the
T connectivity matrices C = {C (t) , t = 1, . . . ,T }
into a number of static ‘FC-states’ with the follow-
ing three-step process. First step is initialization which
randomly determines K clusters Ck

= {C̄k , k =
1, . . . ,K } from C. The greedy-search algorithm was
performed to identify the most optimal K within the
range K = [212], k ∈ [1,K ]. Second step is allocation
which computes the spatial correlation sCorr(t) between
C (t) with selected matrix C̄k . sCorr(t) ranges from 0

(uncorrelated) to 1 (fully-correlated). Thus, each of FC
matrix C (t) was allocated to the cluster C̄k for which
the spatial correlation sCorr(t)was maximized as: Ĉk

=

{C (t) : sCorrk
C(t),C̄k

≥ sCorrh
C(t),C̄h

∀h, k ∈ [1,K ]}.
We adapted global explain variance (GEV) [38] to allo-
cate C (t): GEVK

=
∑K

k=1 GEV
k with GEV k

=∑T
t=1 sCorrC(t),C̄k · λC(t),C̄k , where λC(t),Ĉk = 1

if C (t) ∈ Ĉk , otherwise if C (t) /∈ Ĉk , then λC(t)0,Ĉk =
0. Last step is updating which means at each iteration
(t ∈ [1, . . . ,T ]), the new set of clusters C̄k are re-
computed and updated. For each K ∈ [2, 12], allocation
and updating steps are repeated 100 times, the highest
GEV leads to the optimum cluster set (K = 8).

• Time sliding window: Given a series of dynamic FC
matrices C = {C (t) , t = 1, . . . ,T } across times,
this method utilized a temporal sliding-window to clus-
ter the time-varying patterns. We used a window size
of 80 time points (80 ms with the sample rate of 1
kHz) and there are no strides between consecutive
windows. We then averaged the FC matrices within
a specific window to obtain a FC matrix that repre-
sents for a functional stationary ‘FC-state’. Collectively,
M = 8 functional networks, same as those identified by
MGHMM and K-means, were investigated in the speech
perception.

The comparative protocol also includes microstate-guided
functional connectivity based on classical EEG microstate
analysis algorithms. EEG microstate analysis was performed
using EEGLAB microstate plugin, which can be found at
www.thomaskoenig.ch. EEGLAB microstate plugin is a free,
graphical user interface designed toolkit and developed by
Koenig et al. [47] for the identification and quantifications
of EEG microstates in time-series EEG data. In this work,
we used the two classical methods that appear in most of
the current literature [48], i.e., modified K-means cluster-
ing and Atomize and Agglomerative Hierarchical Clustering
(AAHC) [14], [38], to extract a microstate sequence repre-
senting for the broadband EEG data. The EEG microstate
analysis approach is based on the observation that the Global
Field Potential (GFP) periodically achieves local maxima and
that EEG microstates are defined at these maxima [48]. The
optimal number of EEG microstate clusters is determined
through a cross-validation strategy with Global Explained
Variance (GEV) criterion. For each algorithm, we set the
number of clusters from 2 to 12 and the optimal number of
clusters is the one that best explains the variances in each
cluster. The minimum peak distance between microstates
is set to 30 ms. Using these algorithms, EEG topographies
can be assigned with microstate labels by competitive fitting
based on spatial correlation, leading to a microstate sequence
to represent the EEG data. Further details of AAHC,modified
K-means algorithms, and experiment setups can be further
provided in [14], [38], [48] and at www.thomaskoenig.ch,
respectively. The temporal windows for each microstate
FC are set to be aligned with the time intervals, where
the existence of the estimated EEG microstate is expected.
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FIGURE 5. The results of microstate segmentation in speech perception
EEG data using MGHMM algorithm. (a) the grand-averaged ERP
responded to speech stimuli (perception condition). (b) model-dimension
selecting strategy. (c) KL-divergence convergence at the optimum
eight-microstate. (d) Viterbi sequence decoding and projected t-values on
topographies showing statistical differences between perception
condition and baseline control condition at each EEG microstates.
(e) corrected t-value dynamics of electrodes.

Then, sensor-based FC associated with each broadband EEG
microstate is computed by averaging the FC across temporal
windows that correspond to the estimated EEG microstates
on the sensor level.

III. RESULTS
In what follows, we demonstrate usefulness of our framework
in decoding neuronal dynamics including EEG microstates
(MS), microstate source imaging, and microstate µFC net-
works that were commonly engaged in speech perception
process.

A. EEG MICROSTATES IN SPEECH PERCEPTION
Fig. 5 shows analytical results of microstate decomposi-
tion applied on the perception condition grand-averaged
ERP (Fig. 5a). We iteratively recorded the converged
KL-divergence computed with microstate dimensions from
2 to 12 (Fig. 5b) and an optimal number of eight microstates
(KL-divergence: 804.16; converged cycles: 25, Fig. 5c)
was found; namely MS1, MS2. . . and MS8. Afterward,
we performed Viterbi decoding on multivariate time series
(Fig. 5d). We emphasize that MGHMM algorithm with tem-
poral smoothing (size = 30 ms) decoded the perception-
condition ERP into eight optimum EEG microstates. Fig. 5d
shows t-value maps of corrected statistical differences
between perception- and baseline control conditions at each
EEG microstates. The highest t-values were obtained in

TABLE 1. Characteristics of decomposed eeg microstates.

MS3 which lasts from 95 ms to 151 ms and in MS5 which
lasts from 186 ms to 246 ms. The t-value maps clearly
indicated significant activations of bilateral temporal areas
(left-side dominance) at those microstates. Central and infe-
rior frontal areas were also significantly activated. By con-
trast, statistical analysis results determined that there were no
statistical differences on MS6 (247-296 ms) and MS8
(450-600 ms) between perception- and baseline control con-
ditions. Fig. 5e shows the corrected statistical t-value of each
electrode at each time point while grand-averaged numerical
characteristics of decomposed EEG microstates are provided
in Table 1.

B. MICROSTATE CORTICAL REPRESENTATION IN SPEECH
PERCEPTION
Fig. 6a-h show cortical mappings at the basis of EEG
microstates, while Fig. 6i presents themacrostate cortical rep-
resentation, which was averaged at all-time instants. We pro-
jected voxel-wise corrected significant t-values on the cortex.
In general, as presented in Fig. 6i, we demonstrate that for
mapping the acoustic spoken speech onto conceptual and
semantic representations, multiple language-relevant regions
were recruited. Firstly, we emphasize involvements of the
bilateral posterior superior temporal gyri (pSTG) and inferior
supramarginal gyrus (SG) with left-side dominance (Wer-
nicke’s area). Secondly, we observed the ventral processing
induced by the bilateral ventral prefrontal lobes and ante-
rior temporal gyrus (ATG includes temporal pole-TP). Third,
an important region incorporated during the task was the
bilateral inferior frontal gyrus (IFG) with left-side dominance
where the Broca’s area is located. Finally, our results revealed
involvements of motor cortices supporting the task.

We have seen language-relevant regions elicited by spo-
ken vowels at macroscale. However, questions have arisen
as to where and when neuronal organizations involved in
such tasks. Dynamic activities are revealed in Fig. 6a-h,
which present the source imaging of individual decomposed
EEG microstates (from MS1 to MS8), indicating transient
fluctuations of multi-stage activities from hearing to per-
ceiving and articulating. The earliest cortical stage (MS2:
34-95 ms) of speech perception primarily took place in
the left anterior middle and inferior temporal gyri (aMTG
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FIGURE 6. Results of microstate (a-h) and macrostate (i) cortical
presentations. The corrected statistical t-values were computed between
perception- and baseline control conditions at each microstate intervals
and projected on the cortex. IFG: inferior frontal gyrus. pSTG: posterior of
superior temporal gyrus. ATG: anterior temporal gyrus. MC: motor cortex.
Spt: Sylvian parieto-temporal.

and aITG), followed by the strongest activation (largest
t-values) interval in MS3 (96-151 ms) where the bilateral
pSTG (Wernicke’ area) and IFG (Broca’s area) regions with
left-side dominances. Our findings also revealed involve-
ments of bilateral motor cortices as well as aMTG and aITG
at MS3 segment from 96 to 151 ms after the onset of speech
stimuli. Next, we observed an inactivation interval at MS4
(152-185 ms) where the brain goes to the idle stage in which
no activated regions were shown and it remained inactivated
at subsequent microstate intervals (MS7 from 297-449 ms
and MS8 from 450 to 600 ms). In between, we observed
recurrences of pSTG, IFG, and aMTG with left-side dom-
inances at MS5 interval (186-246 ms). Constructed time
series of language-related regions, which showed significant
differences in perception as compared to baseline control,
are shown in Fig. 7. These significant areas are bilateral
middle temporal, superior temporal, transverse temporal, pars
opercularis, supramarginal ROIs.

C. MICROSTATE FUNCTIONAL CONNECTIVITY IN SPEECH
PERCEPTION
We present ROI-space microstate FC analyses coordinated
in speech perception. Statistical differences in Icoh-based
FC between perception- and baseline control conditions in
frequency bins are summarized in Fig. 8. Separate frequency
bins ranging from delta (0.5-4.5 Hz), theta (4.5-8.5 Hz),
alpha (8.5-14.5 Hz), beta (14.5-24.5 Hz), and gamma
(24.5-46.5 Hz) were analyzed. Results in Fig. 8 reveal sig-
nificant connectivity increases in delta (δ: 2.5-4.5 Hz), theta

FIGURE 7. Grand-averaged typical language-relevant ROI time series.
Each ROI time series was obtained by averaging all voxels, which laid in
the corresponding ROI. L = left hemisphere; R = right hemisphere.

FIGURE 8. Statistical analysis of Icoh-based FC between perception and
baseline control conditions in all ranges of frequency bands. Significant
differences are marked by stars where a ‘∗’ indicates 0.01< p-values
≤0.05, and ‘∗∗’ indicates p-values ≤ 0.01.

(θ1: 4.5-6.5 Hz, θ2: 6.5-8.5 Hz), alpha (α: 12.5-14.5 Hz), beta
(β: 22.5-24.5 Hz), low gamma (low γ1: 30.5-32.5, low γ2:
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FIGURE 9. Statistical analyses of µFC matrices between perception- and
baseline control conditions in all significant-difference frequency bands.
For clarity, non-significant Icoh are set to zero in the maps. Hot colormap
presents µFC increases while cool colormap represents µFC decreases in
perception.

38.5-40.5 Hz) and significant decreases in high gamma (high
γ1: 42.5-44.5, high γ2: 44.5-46.5 Hz) bands in the speech
perception process.

Regarding dFC analyses, Fig. 9 shows dynamical signif-
icant connectivity between 22 language-relevant ROIs for
eight EEG microstate intervals decomposed by MGHHM
(see Fig. 5 and Table 1) in perception as compared to
baseline control conditions. dFC analyses were performed
only on frequency bands which led to significant differ-
ences between perception- and baseline control conditions as
revealed in Fig. 8. Only language-related ROIs (see details
in Appendix Table 2) that were significantly activated during
the speech perception (as found in section III.B) were used
for dFC analyses.
µFC statistical analyses between the perception- and

baseline control conditions at the eight decomposed EEG
microstate segments in the nine significant-difference fre-
quency bins (see Fig. 8) are given in Fig. 10. First, it is
clearly showing that perceiving the speech stimuli signif-
icantly increased FC at early temporal segments at MS1
(1-33 ms) in θ2 (6.5-8.5 Hz), α (12.5-14.5 Hz), low γ2
(38.5-40.5 Hz) and especially at MS2 (34-95 ms) in δ

(2.5-4.5 Hz), β (22.5-24.5 Hz), low gamma (low γ2:
38.5-40.5 Hz), and high gamma (high γ1: 42.5-44.5, high
γ2: 44.5-46.5 Hz) frequency band. In addition, we found that
speech perception process significantly increased functional
connectivity at MS3 interval (96-151 ms) in δ (2.5-4.5 Hz),
θ1(4.5-6.5 Hz), α (12.5-14.5 Hz), and low γ1 (30.5-32.5 Hz)
bands.

The increase FC were also found the significant increases
in perception at MS4 (152-185 ms) in θ2 (6.5-8.5 Hz), low
γ1 (30.5-32.5 Hz), low γ2 (38.5-40.5 Hz), at MS5 (186-

FIGURE 10. Statistical analyses of µFC between perception and baseline
control conditions at eight segmented microstate intervals. The analyses
were performed on only frequency bins at which the significant
differences in FC in speech perception were found in Fig. 8. Significant
differences are marked by stars where a ‘∗′ indicates 0.01< p-values ≤
0.05, and ‘∗∗′ indicates p-values ≤ 0.01. Numbers at x-axis represents for
subsequence microstates (MS1 to MS8).

246 ms) in δ, θ1, low γ1 bands and at MS6 (247-296 ms) in δ
(2.5-4.5 Hz), θ1(4.5-6.5 Hz), θ2(6.5-8.5 Hz), α

(12.5-14.5 Hz), β (22.5-24.5 Hz) and low γ2 (38.5-40.5 Hz)
for subsequent perception process. In addition, there were no
significant FC differences between two conditions in MS7
(297-449 ms) and MS8 (450-600 ms) in all frequency bands.

Illustrations of dynamic interactions in significant-
difference frequency bands at eight MS between
22 language-related ROIs when subjects heard speech stimuli
are provided in Fig. 11. It is obvious that the FC fluctuated
and the brain recruited different connected regions during the
perception process. We found that connectivity was mainly
distributed at temporal regions for all microstate segments.
Interactions also existed between left temporal areas and left
inferior frontal gyrus; left temporal areas and precentral areas
where primary motor cortex is laid on. In addition, we found
connections between supramarginal regions with precentral
regions.

D. PERFORMANCE COMPARISON RESULTS
KL-divergence was used as a comparative indicator to
evaluate the dynamic FC performance between µFC-based
MGHMM approach with the aforementioned ‘FC-states’-
based K-means and time sliding window approaches.
KL-divergence of two distributions, ℵ0 and ℵ1, is expressed
as follows:

DKL (ℵ0 | ℵ1) = 0.5[tr(
∑−1

ℵ1

∑
ℵ0
)+ (µℵ1−µℵ0 )

T

×

∑−1

ℵ1
(µℵ1−µℵ0 )+ ln(

det
∑
ℵ1

det
∑
ℵ0

)] (7)

where µℵ0 and µℵ1 are means of the distributions ℵ0 and ℵ1,
while

∑
ℵ0

and
∑
ℵ1

represent their corresponding covari-
ance matrices. In principle, higher values of DKL (ℵ0 | ℵ1)
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FIGURE 11. Connectograms of microstate FC in: (a) delta (δ: 2.5-4.5 Hz), (b) theta (θ1: 4.5-6.5 Hz), (c) theta (θ2: 6.5-8.5 Hz), (d) alpha (α: 12.5-14.5 Hz),
(e) beta (β: 22.5-24.5 Hz, (f) low gamma (low δ1: 30.5-32.5 Hz), (g) low gamma (low δ2: 38.5-40.5 Hz), (h) high gamma (high δ1: 42.5-44.5 Hz), and (i) high
gamma (high δ2: 44.5-46.5 Hz) bands. These frequency bands were shown significant differences in perception. Significant segments in perception
presented in Fig. 10 are grouped by green rectangles (0.01< p-values ≤ 0.05) and blue rectangles (p-values ≤ 0.01). Regions by numbers are provided in
Appendix Table 2. L = left hemisphere; R = right hemisphere; T = temporal region; W =Wernicke’s region; IFG = inferior frontal gyrus; C = central region.

mean greater statistical independences in covariance of FC
matrices, thus represent higher distinctive degrees of unique
dynamic FC patterns [22].

To evaluate MGHMM method on speech perception task
without ground truth, we computed KL-divergence between
µFC-based distributions as a metric to measure connectivity
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FIGURE 12. KL-divergence presentations of four comparative approaches.
An element in each matrix represents the distinction degree between two
inferred µFC shown in MGHMM, AAHC and modified K-means and
‘FC-states’ shown in K-means and sliding window combination methods.
Light yellow elements imply high distinction levels while dark blue ones
indicate low distinction degrees.

distinction between sets of estimated microstates (Fig. 12).
Theoretically, a larger KL-divergence indicates a greater
difference between two µFC patterns, which qualifies our
purpose. Overall, in terms of dFC segmentation qualification
shown in Fig. 13, we present mean and standard devia-
tions of KL-divergences of four comparative methods as
follows: 6.518 ± 2.091 for MGHMM, 5.945 ± 1.722 for
K-means and sliding window combination, 5.5794 ± 1.806
for Lehmann-based AAHC, and 5.996 ± 1.643 for
Lehmann-based modified K-means approach. These indica-
tors prove that our MGHMM approach outperforms the well-
examined K-means clustering combined with sliding window
(significant improvement with p-value = 0.0097 using two
sample t-test, 8.791% improvement) in terms of FC dis-
tinction qualification. In terms of microstate-guided func-
tional connectivity comparisons, our results show that the
performance by MGHMM approach is superior to those of
Lehmann’s approaches, particularly, 14.41% improvement
(p-value = 0.006) over AAHC, and 8.01% improvement
(p-value = 0.0162) over modified K-means methods.

IV. DISCUSSIONS
A. BRAIN DYNAMICS IN SPEECH PERCEPTION
State-of-the-art neuroimaging and machine learning in com-
putational neurosciences have offered novel strategies to
study brain mechanisms [49]–[52]. This article introduced
a new framework which, when applied to multivariate high

FIGURE 13. Distribution presentations of FC KL-divergence. In average,
MGHMM provides the largest distinction degree between estimated µFC
among four methods, reflected by the highest mean KL-divergence (green
dots) compared to those of K-means clustering and sliding window
combination computing ‘FC-states as well as those of Lehmann-based
AAHC and modified K-means methods. By using the two-sample t-test,
the results also show that KL-divergence distribution of MGHMM method
is significantly larger than those of the comparative methods (magenta
star: 0.0162> p-value > 0.0097).

temporal resolution EEG, revealed microstate source genera-
tors and functional connectomics coordinated in speech per-
ception. Our microstate decomposition algorithm,MGHMM,
adopted Bayesian variational learning, revealed optimal eight
EEG microstate segments in which each microstate repre-
sents for unique dynamic patterns (see Fig. 5 and Table 1).

We also revealed microstate language-relevant source
generators in perception process. This is among first EEG
studies to demonstrate microstate alternations of corti-
cal clusters during speech perception, as most existing
source-space approaches assumed stationarity. Unsupervised
classification of the multivariate ERP into quasi-stable inter-
vals with MGHMM has insights compared to any station-
ary source reconstruction methods. Here, such insights were
achieved by showing microstate segments when language-
relevant regions appear (Fig. 6a-h) which we cannot see in
macrostate scope (Fig. 6i). Generally, as shown in Fig. 6,
strongest activations (highest t-values) of bilateral pSTG,
IFG, and anterior MTG and ITG with left-side dominances
can be observed during MS3 (96-151 ms). The results are
consistent with previous studies and functionally referred to
phonological and lexical-semantic processing. Furthermore,
we found significant involvements of bilateral precentral
areas where the primary motor cortices are located. This
involvement may be due to the reflections from sounds to
articulation and the semantic action representation in speech.

We found that perceiving vowel stimuli significantly
increased connectivity in delta (2.5-4.5 Hz), theta (4.5-6.5,
6.5-8.5 Hz), alpha (12.5-14.5 Hz), beta (22.5-24.5 Hz), low
gamma (30.5-32.5, 38.5-40.5 Hz) but decreased connectivity
in high gamma (42.5-46.5 Hz) bands (see Fig. 8). In paral-
lel, increased FC were observed mainly in; (1) microstate
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segments 34-95 ms (MS2) and 96-151 ms (MS3) in early
stages of perception as well as (2) microstate intervals
186-246 ms (MS5) and 247-296 ms (MS6) in late perception
stages (Fig. 10).

As shown in Fig. 11, different brain regionswere connected
and the dynamic connections were observed throughout
the perception at different frequency patterns. For instance,
at beginning of speech perception from the onset of stimuli to
33 ms (MS1), delta band intra-connections between temporal
regions at left hemisphere and connections between bilateral
temporal regions were found. At MS2 (34-95 ms), there was
an information flow between left temporal cortex and left
inferior frontal cortex and information flowed between the
left temporal cortex and bilateral supramarginal areas. Then
from 96 ms to 151 ms at MS3, the connectivity between left
precentral and left inferior frontal areas as well as connections
between bilateral inferior frontal regions appeared. After that,
we observed the connectivity between the left temporal and
left inferior frontal areas in MS4 from 152 ms to 185 ms. The
bilateral inferior frontal connections, also the information
flow between left temporal and precentral region can be seen
in the time segment at 186-246 ms (MS5). As shown at
MS6 interval, the connections between left temporal and left
inferior frontal cortices were found. In addition, we observed
associations between right temporal and right supramarginal
regions.

The fundamental principle of dynamic FC studies in
neuroscience is to develop a method that perfectly parti-
tions time-varying FC patterns into a set of unique truth
‘FC-states’ in which a ‘FC-state’ represents for a unique brain
network incorporated the task. Without the ground truth FC
patterns, no one can be able to assure perfections of their
methods. In this study, we defined a comparative protocol that
measures the distinction levels of the independency between
extracted networks. We used KL-divergence as a metric to
measure such distinction degrees. As shown in the results,
our MGHMM method was able to detect the ‘true’ dynamic
networks in the speech perception as it significantly
outperformed the two long-established K-means and slid-
ing window methods which are used to estimate the
FC-states. Particularly, we showed performance improve-
ments of 8.791% (p-value = 0.0097) when compared to
K-means and time sliding window (see results in Fig. 12 and
Fig. 13). In addition, as seen in Fig. 12, our MGHMM
significantly outperformed the other two Lehmann’s based
AAHC (14.41% improvement with p-value = 0.006) and
modified K-means (8.01% improvement with p-value =
0.0162) approaches in estimation of microstate-guided func-
tional connectivity.

B. DYNAMIC FUNCTIONAL CONNECTIVITY VERSUS
SOURCE IMAGING
In this work, there is a critical concern toward differ-
ences between microstate source localization (Fig. 6) and
microstate FC networks (Fig. 11) coordinated in speech per-
ception. In general, both approaches led to identical results

regarding the significant involvement of bilateral temporal
and inferior frontal as well as primary motor cortices during
speech perception process. Regarding to dynamic findings,
both FC and source imaging results indicated that for speech
perception the brain mainly coordinated at microstate seg-
ments 96-151 ms (MS3) and 186-246 ms (MS5) as well
as no significant activities (neither source activations nor
connectivity) at microstate segments 297-449 ms (MS7) and
450-600 ms (MS8) after the onset of speech stimuli. How-
ever, our results revealed that, in both cases, the information
elicited from high temporal EEG were significantly different.
Intuitively, the fundamental difference is that cortical
generators determined regions with high activations, but com-
pletely omitted functional associations between them. In con-
trast, the brain FC approach only revealed regions that were
highly interacted regardless of their amplitudes. For instance,
microstate source localization showed modest activations in
microstate segments 34-95 ms (MS2) and 247-296 ms (MS6)
but microstate FC revealed significant connectivity in these
segments.

C. METHODOLOGICAL LIMITATIONS AND FUTURE
STUDIES
Our framework, the backbone of which is the EEG
microstate, offers a new direction to study dynamic charac-
teristics in speech perception. To achieve this, there are four
core components of the framework that warrant discussion:
(1) broadband EEG microstate decomposition – MGHMM,
(2) source mapping – wMNE, (3) FC metric – Icoh,
and (4) brain dynamic functional connectivity oriented by
the estimated broadband EEG microstates representing the
broadband EEG data.

First, regarding EEG microstate decomposition method,
the MGHMM was selected based on its successful
performance in previous task-based M/EEG cognitive stud-
ies [42], [43]. It should be borne in mind that three assump-
tions were made to successfully develop the algorithm:
i) independent Markov hidden variables, ii) multivariate
Gaussian observation model, and iii) independent hierar-
chical structures. To train model parameters, we employed
KL–divergence Bayesian variational learning. These assump-
tions, however, might be too unsophisticated to fully reveal
complexities underlying the brain dynamics. Therefore, more
advanced methods could be developed for elegantly mod-
elling complex time-varying EEG with excellent accuracies
and provide appropriate results for clustering ERP data into
quasi-stable EEG microstates and thus can be thought for
future studies [38].

Second concern relates to source localization method –
weighted Minimum Norm. wMNE is a popular method of
inverse solution and has been demonstrated previously to be
particularly useful [24] in reconstructions of cortical signals.
The wMNE compensates for the tendency of theMNE, which
is based on a search for a solution with minimum energy
using L2 norms to regularize the inverse problem, to favor
cortical sources closer to the sensors. However, we do not
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rule out other inverse solutions, which could be substituted
for wMNE, and they would likely provide similar results.

Third, we used Icoh to measure FC between ROIs. This
method has been successful in elucidating FC networks at
each time instant. An advantage property of Icoh is that its
(non-vanishing) finite value cannot be caused by a linear
mixing of uncorrelated sources (‘volume conduction’) and
thus reflects ‘true’ interactions between two sources. How-
ever, Icoh is not yet a perfect measure of coupling since it
depends upon the strength of the coupling and the magnitude
of the phase difference [44]. Therefore, other approaches
such as phase lag index, Granger causality and phase lock-
ing value can provide different interpretations of functional
connectivity.

Fourth, in this work we assumed that the brain dynamic
functional connectivity are guided by the segmented broad-
band EEG microstates on the sensor level. On the source
level, we thus estimated functional brain networks by taking
the time points aligned with the temporal segments of every
microstate extracted by the multivariate MGHMM method.
For the comparative methods using Lehmann’s approaches
(AAHC andmodified K-means) the process to compute brain
networks was similar, however, the time points corresponding
to each estimated EEGmicrostate are different. This assump-
tion, however, might be too simple to reveal the ‘true’ dynam-
ics of the underlying brain networks. Therefore, subsequent
studies should be focused on estimation of brain dynamic
connectivity with the assumption that source activity orients
brain connectivity.

We demonstrated that common dynamic brain networks
induced by speech perception of all vowel stimuli may
be resolved into a set of stationary µFC patterns and the
framework was performed on the averaged data; i.e., grand
mean ERP (mean of ERPs). The advantage of this averaged
ERP is that it preserves common networks to all stimuli
and minimizes inter-vowel variability [11]. Indeed, previous
studies (speech perception using M/EEG) have noted that
the ERPs and source generators of vowels have commonali-
ties [4], [5], [8]. That is, ERP waveforms of each stimulus are
comparatively similar and the source generators are also rel-
atively close. Therefore, it is reasonable that the grand mean
ERP can preserve common EEG microstates; for instance,
significant activations in MS3 (95-151 ms). Note that in this
work, dynamics responding separately to each vowel were
not studied. There could be variations (ERPs’ amplitudes and
delays) in responses for individual vowels [11], which may
lead to different microstate cortical generators andµFCmod-
ulated by individual vowels. Therefore, considerably more
effort must be expended in this area, in order to comprehend
and interpret the dynamic specificities separately evoked by
each speech stimulus, which could be a potential direction
of our future studies. In addition, it is worth noting that
the experiment designed with only vowels (one of the two
principal classes of speech sounds) performed in this work
can be too simple to elucidate the complete characteristics of
speech perception. Subsequent studies can also be extended

by including more sophisticated human speech conditions,
thus, the full mechanism of human brain when perceiving the
human speech can be exposed.

It should be emphasized that we assume: i) there is
an anatomical and functional correspondence between sub-
jects (a template 3D cortex used as a source model) and
ii) transitions between decomposed EEG microstates occur
in a repeatable manner across subjects. However, we are
fully aware that there may be variability in the timecourse
of reconstructed sources and connectivity across subjects.
Given inter-individual variations in stationary source recon-
structions and connectivity [53], it is not surprising that
dynamic functional representations of neural oscillations also
exhibit relatively limited inter-individual differences. Ulti-
mately, in order to solve inter-subject variability, future works
must be done.

In this work, we only focused on analyzing the dynam-
ics of brain networks at the broadband manner. However,
the brain dynamics at bandpass level is apparently of interest
to fully reveal the neural mechanisms underlying the cogni-
tive task. Thus, in next studies we plan to estimate source-
level frequency-dependent functional brain networks using
MGHMM. These could be done by multiple approaches. One
approach is to source-localize the broadband EEG and run the
MGHMMon band-limited frequency source activity and then
estimate the dynamics of brain networks with the assumption
that the activity orients brain connectivity. Second approach
is to estimate source time-series in frequency band of inter-
ests independently and run the MGHMM on these bandpass
source time-series, and then estimate brain network dynamics
with the assumption that activity orients brain connectivity
independently at each frequency limit.

Last but not least, generalizability of the findings in this
study could be less powerful due to the small sample size
(eleven male subjects). In neuroscience community, it has
been claimed that small sample sizes reduce the replicability
of drawn conclusions. Thus, the current results need to be
generalized with a larger appropriate sample size in subse-
quence studies. Moreover, we only studied the time-varying
neural activities of the male subjects. However, the neural-
responded differences between males and females have been
reported at multiple levels [54]. Therefore, it would not be
surprised if results of female brain dynamics for speech per-
ception were different from the findings found in this study.
This leads to our future studies that would be directed toward
understanding human brain dynamics including both male
and female subjects as well as gender differences of neural
dynamic activities in speech perceptions.

V. CONCLUSION
In this work, we introduce a novel direction based on EEG
microstate to study brain dynamics during speech perception
by taking advantage of high temporal resolution of mul-
tivariate patterns in ERP data. Results suggested that the
brain coordinated eight distinct EEGmicrostates, upon which
microstate source localizations and functional networks were
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based, for sequential process of speech stimuli from hear-
ing to meaning and articulating. The results showed that
bilateral temporal, IFG, supramarginal, and precentral gyri
(left-side dominance) are not only significantly activated, but
also have information exchanges throughout speech percep-
tion. Importantly, our results indicated the main processing
occurred inmicrostate segments from 95 to 151ms and 186 to
296 ms after onset of stimuli. We also revealed the impor-
tance of delta (2.5-4.5 Hz), theta (4.5-6.5, 6.5-8.5 Hz), alpha
(12.5-14.5 Hz), beta (22.5-24.5 Hz), low gamma
(30.5-32.5, 38.5-40.5 Hz), and high gamma (42.5-46.5 Hz)
band connectivity in speech perception for the early per-
ception process at MS1, MS2, and MS3 and late perception
process atMS4,MS5 andMS6. Our quantitative comparisons
showed the significant outperformance (8.791% improve-
ment, p-values<0.0097) of MGHMM method over existing
K-means and sliding window combination method. Further-
more, the findings show that our MGHMM significantly out-
performed the other two Lehmann’s based AAHC (14.41%
improvement with p-value = 0.006) and modified K-means
(8.01% improvement with p-value = 0.0162) approaches
in estimation of microstate-guided functional connectivity.
However, it should be noted that these current results obtained
with a modest sample size should be extended in future with
a larger appropriate number of subjects that should include
female participants in order to achieve universal findings.
Thus, this work could be useful to provide a neurophysiolog-
ical reference for clinical studies related to deficits in speech
perception.

APPENDIX
See Table 2 here.

TABLE 2. 22 Language-relevant roi numbers (#) and names used in
microstate FC analyses in Fig. 11.
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