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ABSTRACT Automatic detection of the pectoral muscle in mammograms is widely used in computer-aided
diagnostic (CAD) systems for breast cancer. The pectoral muscle region has some prominent features such as
the upper corner position, high density, and triangular shape. But, these features may be distorted due to the
masses, artifacts, skin folds, and overlapping tissues, and other reasons. Despite recent developments in CAD
technology, accurate detection of distorted pectoral muscle images remains a challenging task. In this study,
we proposed an automatic method that uses a divided topographic representation to detect distorted pectoral
muscle boundaries. After the preprocessing stage, firstly an isocontour map is generated and then divided into
horizontal blocks. The contours of the pectoral muscle boundary in the blocks often reveal specific patterns
in terms of location, geometric and topological features. We developed a new segmentation algorithm,
rule-based contour detection (RBCD), to detect these specific patterned isocontours. The method applied to
two datasets consisting of 84 and 201 mammogram images from MIAS and Inbreast databases respectively.
Besides, some distorted pectoral muscle samples selected from these datasets were used to further analyze
the performance of the proposed method. The mean False-Positive and the mean False-Negative rates of the
proposed method for MIAS and Inbreast datasets were 0.92%, 1.26%, and 2.34%, 1.15%, respectively. The
quantitative and qualitative results for the distorted pectoral muscle samples show that the proposed method
outperformed the compared methods.

INDEX TERMS Distorted pectoral muscle, horizontal blocks, specific patterned isocontours, topographic

representation.

I. INTRODUCTION

Approximately 2.1 million women’s breast cancer cases were
diagnosed worldwide in 2018 [1]. Breast cancer among
women diagnosed in the USA ranks second to the can-
cer death cases [2]. Mammography technique is frequently
used for diagnosing breast cancer at an early stage. It uses
low-energy X-rays to create a 2D image called a mammo-
gram from a 3D breast. Since this technique mainly aims
to allow the clear visualization of most of the breast tis-
sue, a mammogram is typically taken from different views
such as mediolateral oblique (MLO) and craniocaudal (CC).
The MLO view shows the maximum amount of breast and
pectoral muscle tissue. Because the breast and the pectoral
muscle are adjacent to each other, the percentages of their
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appearance on the MLO mammogram are also proportional
to each other. The appearance of the pectoral muscle is one of
the most effective criterion showing correct positioning [3].
Many computer-aided diagnosis systems for breast cancer
have been developed in the literature. Most of these CAD
systems need the breast and pectoral muscle regions to be
segmented from mammograms before the classification of
breast cancer [4]. Therefore, detection of the pectoral muscle
is a functional preprocessing step commonly used in these
systems [5]. The pectoral muscle in the MLO mammogram
is the main landmark with some distinctive features, such
as the upper corner position, high density, and triangular
shape. Therefore, this region is usually used as a reference
in the registration, 3-D reconstruction, and comparison pair
process [6]. Since the intensity and texture of the pectoral
muscle resemble that of the suspect regions, most of the CAD
systems removed this region [7]. Also, the presence of this
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FIGURE 1. Some examples of the mammograms the mammograms with the distorted pectoral muscles (a) mdb 33
(b) mdb 34 (c) mdb 36 (d) mdb 39 (e) mdb 40 (f) mdb 68 (g) mdb 98 (h) mdb 109 (i) mdb 75 (j) mdb 110
(k) mdb 115 (I) mdb 123. (m) 20588680 (n) 50994354 (0) 24065707 (p) 22580732.

region adversely affects the breast tissue density quantifica-
tion methods for the breast tissue [7]. As a result, the accurate
detection of the pectoral muscle is a crucial step to improve
the performance of the CAD systems. For this purpose, many
automatic pectoral muscle detection methods have been pro-
posed in the literature.

Some pectoral muscle features such as size, contrast,
shape, and texture may vary depending on the anatomy of
the muscle, the patient’s position during image acquisition,
artifacts, skin folds, overlapping tissues, and others. Although
the features of the pectoral muscle are usually prominent,
they can sometimes be unusually distorted for the reasons
mentioned. Fig. 1 shows some examples of the mammogram
images with distorted pectoral muscles taken from the MIAS
Database and Inbreast Database [8]. Specific names of these
images in the databases are given in the legend of the figure,
respectively. The most common types of distorted pectoral
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muscles are summarized below and are also labeled for the
mammograms shown in Fig. 1.
« The overlapped pectoral muscle Fig. 1 (a) - (h), (m) - (p).
o The multi-layered pectoral muscle. Fig. 1 (b), (d), (e),
®. @, M), (), (o).
o The low-contrast pectoral muscle Fig. 1 (a), (d), (e), (h),
@, ().

o The small-sized pectoral muscle Fig. 1 (h), (i), (p).

A few review studies [5], [7], [9], [10] in the automatic
detection of pectoral muscle provided a systematic and com-
prehensive overview of many methods in this field. These
studies widely reviewed the advantages and disadvantages of
these methods. Although many methods have been developed
in this area, most of them have not addressed the challenging
task, which is the accurate segmentation of the distorted pec-
toral muscle. In this study, it is aimed to develop an automatic
and robust method in order to overcome this challenge.
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Many studies for CAD of breast cancer first detected the
pectoral muscle and then removed it to reduce the FP ratio of
their method. Most of these studies [10]—[13] did not evaluate
the performance of their methods for the distorted pectoral
muscle images. Some masses can be seen in the pectoral
muscle boundary, as far as we know, there is no study that
takes into account such masses when removing the pectoral
muscle region. Unfortunately, these masses can be ignored
while performing pectoral muscle removal.

Some studies in this field mainly consist of two consecutive
processes; roughly initial estimation and then detection of the
pectoral muscle. [14]-[18]. A straight-line was mostly used
for the estimation process. Kwok et al. [14] estimated the
straight-line by Hough transform and then refined it by the
cliff detection algorithm. Kinoshita et al. [15] applied Hough
transform on Probable Texture Gradient (PTG) map of the
image instead of intensity map used by Kwok et al. [14], and
followed by block averaging with the aid of approximated
line. Kinoshita et al. [16] used Radon-domain information
for the detection of straight-line candidates with a high gra-
dient and then selected the longest straight-line candidate
to detect the pectoral muscle edge. Bora [17] et al. used
an average gradient, position, and shape based on features
of the pectoral muscle for the straight-line estimation pro-
cess. For the detection process, they modified the cliff detec-
tion algorithm proposed by Kwok e al. [14]. In order to
roughly estimate the pectoral muscle region, Yin et al. [18]
Maitra et al. [19] and Asgari Taghanaki et al. [20] defined a
rectangle and some specific shapes based on geometric rules,
and used as a iterative threshold method for the detection
process. These studies used some constraints based on geo-
metric and anatomical features of the image in the estimation
process. To the best of our knowledge, the initial estima-
tion process of the distorted pectoral muscle boundary is a
challenging task. Furthermore, incorrect estimation adversely
affects the subsequent steps.

Ferrari et al. [21] proposed two methods based on the
Hough transform and the Gabor wavelets. The first method
used the straight-line hypothesis based on geometric and
anatomical constraints for the initial estimation process.
The second method used the Gabor wavelet filter bank to
overcome the limitation of the straight-line hypothesis. The
salience of the pectoral muscle boundary was enhanced by
using some specially designed Gabor filters. They computed
magnitude and phase of the image using a vector summation
procedure and obtained the magnitude value of each pixel
propagated depending on the direction of the phase. They
detected the genuine pectoral muscle edge using the resulting
images. They selected a dataset consisting of 84 MLO mam-
mograms from the MIAS (Mammographic Image Analysis
Society, London, U.K.) database to measure the performance
of these methods. In this study, two radiologists detected the
pectoral muscle boundary using some image enhancement
processes and further reading techniques. They calculated
the percentage of false-positive (FP) and false-negative (FN)
pixels using the ground truth detected by the radiologists.
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The mean FP and FN rates of these methods were 0.58%,
5.77%, and 1.98%, 25.19%, respectively. Most studies used
this dataset and ground truth in the quantitative evaluation and
comparison process.

A few studies in this field modified some region grow-
ing algorithms to detect the pectoral muscle. Initial seed,
size restriction, and some constraints were mostly used
for the stopping criteria. However, these methods may
yield erroneous results when the contrast between the pec-
toral muscle and the surrounding tissue is overlapped.
Ma et al. [22] detected the pectoral muscle based on adap-
tive pyramids (AP) and minimum spanning trees (MST).
These methods yielded erroneous results for multi-layered
and small-sized pectoral muscle. Camilus et al. [23] applied
watershed segmentation to detect the pectoral muscle region
candidates. They used these candidates in their proposed
merging algorithm. However, their results were sensitive to
both over segmented region candidates and the merging cri-
terion. Li et al. [24] employed homogeneous texture and
high-intensity deviation features of the image for the estima-
tion process identify the initial pectoral muscle edge. They
issued the Kalman filter to refine the ragged initial edge.
Chen et al. [25] used first a shape-based enhancement filter
and selected candidate seed points to initial estimation. But,
the selection of these points is a laborious task for the dis-
torted pectoral muscle.

Wei et al. [26] mainly aimed to detect the boundary of
obscure pectoral muscle in MLO mammograms. They first
partitioned the pectoral muscle and then used different thresh-
old values for each partition. They used the Hough transform
to refine these tentative boundaries belonging to each parti-
tion. However, the determination of the threshold values is
a challenging task for distorted pectoral muscle examples.
Therefore, the error in the first step may directly affect the
other steps. This study presented some performance results
on the distorted pectoral muscle examples that were only
obscured. However, they did not deal with different types of
distorted pectoral muscle examples.

Hong et al. [27] proposed a method based on a topographic
representation called an isocontour map generated by the
multi-scale approach in order to delineate salient regions
such as the pectoral muscle, the breast boundary, nipple,
and suspicious tissues. The isocontours of a salient region
generally form a dense quasi-concentric pattern of contours.
Therefore, the boundary of the salient region can be easily
represented by a last outer contour from the isocontour map.
Hong et al. [27] used only the nesting depth of the consecutive
contours to measure the salience of the suspicious region.
They did not comprehensively deal with the detection of the
pectoral muscle boundary. However, they claimed that the
pectoral muscle boundaries could be easily detected with this
method since their anatomic properties were distinctive.

In our study, a new segmentation algorithm called a
rule-based contour detection (RBCD) algorithm is proposed
for the detection of the pectoral muscle boundary. This algo-
rithm uses the isocontour map generated by the multi-scale
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FIGURE 2. The block diagram of the proposed method.

approach to effectively reveal the distinguishing features of
the pectoral muscle boundary. The relationship between the
consecutive contours of the pectoral muscle usually shows
specific patterned contours having the distinguishing features
based on location, geometry, and topographic information.
But, these features can sometimes be unstable and inefficient
due to the distortion effects mentioned above. In this study,
it was aimed to detect the distorted pectoral muscle boundary
with high accuracy. Therefore, we divided the isocontour map
into small horizontal blocks to eliminate the distortion effects.
Consequently, distorted parts and robust parts are separated
into different blocks and so the features of the contours of
the robust parts become more stable and efficient. Even if
the boundary is a curve, the contours of the robust parts can
be represented by straight-line. Besides, our method does not
need any predefined region, straight-line prediction, restric-
tions, or any suppositions, used in some previous studies.
To the best of our knowledge, there is no other study in
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the literature which has these advantages for the distorted
pectoral muscle.

The rest of this paper is organized as follows. Section II
presents a block diagram of the proposed method. Each stage
of the block diagram is explained in its subsections. The
experimental results and the discussions are presented in
Section III and IV. The last, Section V concludes the study
and presents a projection for further studies about this topic.

Il. PROPOSED METHOD

The block diagram of the proposed method is presented
in Fig. 2. As seen from this figure, it consists of six stages.
In this block diagram, the outputs of all stages for the sample
mammogram image are shown next to the corresponding
block, respectively. Each stage is described in detail below.

A. PREPROCESSING
Some common databases such as the MIAS, Inbreast, DDSM,
and IRMA have often been used to evaluate the performance
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of CAD systems in the literature. The sizes of the images
in these databases can vary due to the different brands and
specifications of the medical imaging devices that acquire
them. In the proposed method, since the image is divided
horizontally into blocks, the images at different heights cause
both the block height and the values of the features to be
extracted to be variable. Therefore, at this stage, we first
performed a size normalization using a scale factor. The
height of the images in the MIAS database is 1024 pixels
and is the smallest compared to the height of images in the
other databases. Therefore, we chose this value as a refer-
ence height for the size normalization process. For the size
normalization process, we used the scale factor calculated by
dividing the reference height by the height of the image.

A typical mammogram consists of mainly two distinct
regions such as the exposed breast region and the unex-
posed air background (non-breast) region. Furthermore, it can
contain some objects such as a black band region, some
labels, opaque markers, and artifacts. One of the aims of this
stage is to determine the exposed breast region by deleting
these objects. In this method, a coordinate system was used
for the location features of the pectoral muscle boundary.
Mammogram images are toward the right or left side for
the left breast or right breast. This situation changes the
direction of the coordinate system. In this study, the left
MLO mammogram image was rotated to the right side to use
the same standard coordinate system in both directions. For
the purposes outlined above, we used five consecutive steps,
which were detailed in our previous study [28]. These steps
are size-normalization process, thresholding, morphological
operations, cropping, and rotation.

It is necessary to suppress insignificant details in the
isocontour map so that the contours become continu-
ous and smooth. Some studies used the median filtering
process [29]-[31] to preserve the sharpness of the edges
while suppressing these details. For these purposes, we used a
5 x 5 median filter. The image (mdb 40) and the preprocessed
image are shown in Fig. 3 (a) and (b), respectively.

B. GENERATION OF THE ISOCONTOUR MAP

The multi-scale approach is mostly used for the detection of
the salient tissues in medical images. This approach gener-
ates an isocontour map called a topographic representation.
This map consists of contours created by points with the
same value according to the intensity value parameter. The
multi-scale approach has some advantages as defined below
according to the conventional ones;

1) The intensity variance of a medical image, which may
vary by some imaging conditions, becomes invariant in
terms of the isocontour map.

2) The isocontour map usually leads to continuous mor-
phological edges.

3) A salient region on the medical image appearing
distinctive against the surrounding background usu-
ally includes a dense quasi-concentric pattern of
isocontours.
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(a) b)

FIGURE 3. (a) mdb 40 mammogram image, and (b) The preprocessed
image.

4) The relationship between sequential the contours can
be comprehensively examined on the isocontour map.

The proposed method in this study was designed by taking
inspiration from the method in Hong et al study [26]. They
used the relationship between consecutive contours of the
salient regions such as mass, nipple, and pectoral muscle.
As a result of the anatomical structure of a pectoral muscle,
its isocontours are usually distinguished from the isocontours
of the other tissues by the features of the position, salience,
and geometric. Therefore, in this study, we used an isocontour
map of the mammogram to detect the pectoral muscle bound-
ary. A compact and connected region is denoted by R (¢),
where the intensity is higher than a given intensity “#” in
the image. The isocontour I' (#),which is a simple curve for a
given level “¢” from the image is defined by the boundary of
the region R (¢). Connected regions R (/) and an isocontour
map M (I) for the image / with N denoted by the number of
quantization levels is given by

RI)={R@)|i=1,2,...,N} (1)
MI)y={T)|i=1,2,...,N} 2)
= toin + (= D Ar Ap = 2 "3

N -1

An isocontour map formed by a multi-scale approach con-
sists of any I'(#) at intensity #; which is the intensity range of
between the minimum intensity #,,;, and the maximum inten-
Sity t,qy in according to the N. Because the main purpose of
this study is accurate segmentation in the distorted pectoral
muscle regions, a fine-scale isocontour map which consists
of all I'(#;) for the intensity range of between #,,;, and f,4x
has been used. The number of quantization levels is described
below;

N = tyax — tin + 1, Ar=1 (4)

The isocontour map of the image named “mdb 40 is
shown in Fig. 4 (a). In this study, intermediate-scale iso-
contour maps were preferred for the better selection of the
relationship between the contours shown in these figures.
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(@) (b)

FIGURE 4. (a)the isocontour map of mdb 40 and (b)) the blocks of the
isocontour map of mdb 40.

These contours usually have some prominent features
depending on location, geometric, and topographic infor-
mation. These features may not always be stable and effi-
cient due to the distortion effects mentioned above. As can
be seen from Fig. 4, the boundary cannot be represented
by a single continuous contour. In other words, there may
not be patterned contours that point to the entire pectoral
muscle boundary. Therefore, accurate detection of
pectoral muscle boundary is a hard task for the distorted
pectoral muscle examples.

C. DIVISION OF THE ISOCONTOUR MAP INTO BLOCKS

Although the pectoral muscle contours in the isocontour map
usually have some distinctive features associated with their
locations, geometric and topographic structures, as a result
of the distortion effects mentioned above, these features may
not always be stable and efficient for the distorted pectoral
muscle. As can be seen from the isocontour map shown
in Fig.4 (a), there may not be any pattern indicating the
pectoral muscle contours, thereby the boundary cannot be
represented by a single continuous contour. Although the
pectoral muscle boundary can usually be in the form of a
straight-line, it can also occur in the form of a combination
of concave and convex shaped segments. For these reasons,
accurate detection of the pectoral muscle boundary is a hard
task for the distorted ones. In this study, to overcome this hard
task, we propose dividing the isocontour map into horizontal
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blocks. This approach has two essential objectives; distorted
contour parts are separated from the robust contour parts, and
even if the whole boundary contour is a curved line, the robust
contour parts become consecutive straight-line segments in
the blocks.

In this study, we conducted a series of experiments to
examine the relationship between the number of blocks and
the straight-line similarity. For this purpose, the segmentation
process by a straight-line representation for the number of
blocks 1,2,4, 8, 16, and 32 was performed and then the results
of this process were analyzed. In these experiments, we aimed
to determine the most suitable block number providing the
best optimization between process load and the segmentation
error. In these experiments, we used two datasets including
84 and 201 images from MIAS and Inbreast databases. These
datasets contain the pectoral muscle boundaries drawn by
expert radiologists for each of all images. The error analyses
were made assuming that these boundaries are the ground
truth. In order to quantitatively evaluate the performance of
the error analyses, we used some metrics such as FP and FN
rates. The FP is the ratio of the number of remaining pixels
outside the ground-truth region to the number of pixels in
the ground-truth region. Similarly, the FN is the ratio of the
number of not found pixels inside the ground-truth region to
the number of pixels in the ground-truth region. The pixels in
the detected region and the pixels in the ground truth region
are denoted D and R, respectively. These metrics are given by

IDUR| — |R]
FP=100x —— 5)
IR|
DUR|— D
FN = 100 x % (©6)

Equation 7 and 8 shows the mean of F/P and FN values for
N images, where superscripts m and i denote mean and the
index of image, respectively.
Y FP;
FPp =) — (N
i=1
N FN;
FNy, = ) — ®)

i=1

For the first experiment, we selected five images that have
especially curve-style pectoral muscle boundaries from the
dataset. Firstly, the number of blocks was selected as 1.
In other words, the division process was not performed. These
curved boundaries were represented by a single straight-line
for the segmentation process, and then the 7P, FP, and FN
regions were qualitatively calculated and shown by red, blue
and green colors in Fig. 5, respectively. As can be seen
from this figure, if the division process is not performed,
the segmentation error for a curved boundary is high when
it represented by the straight-line.

In the second experiment, the division process for the
number of 2, 4, 8, 16, and 32 blocks was performed on the
same images used in the previous experiment. The pectoral

147375



IEEE Access

H. Ture, T. Kayikcioglu: Accurate Detection of Distorted Pectoral Muscle in Mammograms Using Specific Patterned Isocontours

(a) (b) (c) (d) (e)

FIGURE 5. The segmentation error rate between the straight-line and the pectoral muscle curves without the division process on
(a)mdb 44 (b)mdb 75 (c)mdb 111 (d)mdb 112 (e)mdb 115. The TP, FP, and FN regions are shown in red, blue and green colors,

respectively.

boundary parts located in each of the blocks were represented
by a straight-line for the segmentation process. Then, all
FP and FN values were calculated for these block num-
bers for each image and shown by the blue and green bars
in Fig. 6 (a-e), respectively. As can be seen from these plots,
although the total error rates of the images for one block
are too high, as the number of blocks increases, the total
error rates decrease exponentially even if these boundaries
are curve-shaped. Besides, it is seen that the FP or the FN
values for the number of 16 or more blocks fall below 1%.

In the third experiment, the previous experiment was per-
formed for each of the images in two datasets. The FP,, and
FN,, values of the 1, 2, 4, 8, 16 and 32 blocks were calcu-
lated and shown in Fig.6 (f). As can be seen from this plot,
the FP,, and FN,, decrease below 1% for the number of 16 or
more blocks. We also observed in this experiment that the
evaluations obtained in the previous experiment were valid
for each image in the dataset.The results of these experiments
revealed the relationship between the number of blocks and
segmentation errors for the straight-line. In this respect, it is
appropriate to choose the number of blocks at least 16. It is
worth mentioning that the number of blocks more than 16 will
increase process load in the next stages without adding much
accuracy contribution.

The pectoral muscle always intersects with the vertical
edge of the mammogram image. The height of the pec-
toral muscle is the measure of the vertical distance between
the intersection and the starting point. Since this height is
unknown, the division process is performed vertically not
only on the pectoral muscle but on the entire image.As a
result, as the ratio between the height of the pectoral mus-
cle and the height of the image increases, the number of
blocks of the pectoral muscle increases. We decided to the
number of blocks according to the results of the distribution
of the pectoral muscle height by the image height. For this
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purpose, in the third experiment, this distribution analysis
shown in Fig. 7 was done for each image in the two datasets.
Although the height of the pectoral muscle varies from patient
to patient, as can be seen from this distribution, which is
similar to the Gaussian distribution, while a few of them are
very large or very small sized, most of them are medium
size. As a result, if the number of blocks is selected as 16,
the number of pectoral muscle blocks becomes about 8 for
most of them.

Besides, we observed that the distortion amount did not
exceed one-quarter of the pectoral muscle region. As a result,
if the number of blocks is selected as 16, the distorted parts
and the robust parts can be divided into different blocks,
even in small-sized pectoral muscles. In the preprocessing
stage, the resizing of the image height with 1024 pixels was
performed for all databases. As a result, the block height
is 64 pixels for the division process with 16 blocks. But,
we decided to use the block height as 50 pixels to provide at
least 16 blocks for small-sized breasts. The division process
with the blocks of 50 pixels height was performed on the
isocontour map shown Fig. 4 (a), the corresponding blocks
are shown in Fig.4 (b). As can be seen from this figure,
the distorted and robust parts were mainly separated into
different blocks. As a result of the division process, some
special patterned contours reveal for the robust parts. These
contours show some features related to their axis intersection
points, straight-line similarity, and topology of them. These
features will be explained in detail in the next step.

D. DETECTION OF CANDIDATE BOUNDARY SEGMENTS

In this study, a Rule Based Contour Detection (RBCD)
algorithm is proposed to detect specific patterned contours.
This algorithm, which uses the distinctive features described
below, is performed separately for each block, so distorted
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FIGURE 6. FP and FN values for the division process with 1, 2, 4, 8, 16, and 32 blocks on (a) mdb 44 (b) mdb 75 (c) mdb 111

(d) mdb 112 (e) mdb 115 (f) All images from the datasets.

pectoral parts do not adversely affect robust parts. How-
ever, some tissues resembling pectoral boundary segments
such as skin folds, artifacts, and breast border show specific
patterned contours. Therefore, this algorithm can sometimes
detect false boundary segments and also miss true boundary
segments. In addition to this algorithm, we also proposed
other algorithms to eliminate false boundary segments. These
algorithms will be explained in the next step.
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The first block for mdb 40 mammogram is shown in Fig.8
(a); some specific patterned contours belonging to skinfold,
breast boundary, and pectoral muscle can be seen in this fig-
ure. As a result, there can be one or more candidate boundary
segments in a block. The last outer contour of the specific
patterned contours that belongs a salient tissue represents the
boundary of this tissue. The RBCD algorithm is based on a
decision tree classification method using location, geometry,
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FIGURE 8. (a) First block of the isocontour map of mdb 40 (b) The specific
patterned isocontours (c) Boundary Candidates.

and topographic features of these contours. These features are
described in three sub-stages, respectively.

1) LOCATION FEATURES

As a result of the anatomical structure of the breast, the
pectoral muscle starts from the upper right of the prepro-
cessed mammogram image. Therefore, after the division pro-
cess, the contours of the pectoral muscle parts show some
location-based features. We defined these features with axis
intersection points. To extract them, firstly a coordinate sys-
tem is formed for a block, and then the contours are rep-
resented by an ordered sequence relative to these points.
A contour (C") of the pectoral muscle part for the mdb
40 mammogram image is shown in Fig. 9 (a). As can be seen
from this figure, (m) and (n) show the number of blocks and
the number of contours, respectively. The height and width
of the image, the top diagonal extreme point and the bottom
diagonal extreme point are denoted by h, w, tdp",and bdp™
shown in Fig. 9 (b), respectively. As can be seen in this figure,
trp)? is on the upper side of the block and brp] is on the
bottom side of the block except the last block. However, for
the last block brp" appears on the left side of the block.
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As a result of the correct position filming of the MLO
mammogram, the pectoral muscle boundary never reaches the
diagonal of the preprocessed image. The extreme points of the
contours are limited by the y-axis coordinates of the diagonal
which intersect the up and bottom side of the blocks. These
points are calculated by;

h

=1...— 9

" 50 ©)
50

tdp™ = w — Fw(m -1 (10)
50

bdp™ = w — - wm (1)

An ordered sequence denoted by C{"Nm contains con-
tours,which have sequential extreme points limited by below

equations.

trpht = 1...tdp™ (12)
brpy = 1...bdp™ (13)
Cl'y, ={Cl 1 1.2,...,Nu} (14)

2) GEOMETRIC FEATURES

As can be seen from the results of the experiments in the
division process, the straight-line similarity of the pectoral
muscle parts increases with this process. Therefore, in this
study, the amount of similarity to the straight-line was used to
determine the contours of the pectoral muscle parts. To mea-
sure straight-line similarity, the simplest and most commonly
applied linear regression form is the linear least-squares fit-
ting technique. Root Mean Square Error (RMSE) is one of the
frequently used statistical values for evaluating ’goodness of
fit’. The low RMSE value of a contour part indicates that it has
a high similarity to a straight-line. In this sub-stage, the axis
intersection angles are also calculated by representing each
contour with a straight-line. As a result of the anatomical
structure of the pectoral muscle parts, these angle values can
never rise above the correct angle. This straight-line repre-
sentation and an intersection angle for one of the sequential
contours are shown in Fig. 9 (a). The intersection angles
and RMSE of the contours in the sequence are respectively
denoted by;

RMSE("y = {RMSE)' |[n=1,2,...
oy, = {0 In=1,2,...

Nu) o (15)
Ny (16)

3) TOPOGRAPHIC FEATURE

In this study, a topographic representation is used in order to
delineate the pectoral muscle boundary. The isocontours of a
salient region such as the pectoral muscle, the breast bound-
ary, nipple, and suspicious tissues generally form a dense
quasi-concentric pattern of contours. Therefore, the area
between the sequential contours for the salient region is
considerably smaller than the other regions. For this purpose,
we analyzed the graph of change of area between sequential
contours. It is calculated with the formula below;

A’in’Nm:{A;’lnlnzl’z”"’Nm} (17)

VOLUME 8, 2020



H. Ture, T. Kayikcioglu: Accurate Detection of Distorted Pectoral Muscle in Mammograms Using Specific Patterned Isocontours

IEEE Access

axs
Y tdp*

X axis

First block (m=1) b
Pa

m
Ca1

Be0g,

p,\r'
Last block (m=M)

(b)

FIGURE 9. (a) The boundary candidate and the consecutive contours (b)The presentation of the diagonal limitation for the

pectoral muscle.

Algorithm 1 RBCD

Input: The ordered sequence of block “m”
Output: Candidate boundary segments of block “m”
Initialisation:
1: Find the specific patterned contours of tissues using the
decision rules.
2: Calculate the number of the specific patterned contours
of each tissue.
3: If the number is less than 5, eliminate the specific pat-
terned contours of the tissue.
4: Extract the last outer contours from the specific patterned
contours of each tissue.
5: Accept all last outer contours as the candidate bound-
aries.

4) RULE-BASED CONTOUR DETECTION

The RBCD algorithm consists of some decision tree rules
using the features defined above. As a result of the experi-
mental studies, the threshold values for the decision tree rules
that determine the boundaries of the pectoral muscle are listed
below.

RMSEY"y, =< 4pixels and 6"y < 90°
and A'l'me < 50pixel>  (18)

The specific patterned contours of the different tissues in
the ordered sequence are grouped separately for each of them.
The salience of any tissue can be measured by the number of
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specific patterned contours that belongs to the tissue. While
this number is big in a salience tissue, it is low in a subtle
tissue. Our experimental studies showed that there are at least
5 specific patterned contours in the pectoral muscle segment.
Therefore, the minimum number of specific patterned con-
tours was chosen experimentally as 5. The end contour of
specific patterned contours considered a candidate boundary.
There may be one or more candidate boundaries in a block.
The RBCD algorithm that finds the candidate boundaries for
“m” block is defined below:

This algorithm is executed separately for all blocks so
that all candidate border regions are found. The specific
patterned contours of skin fold and pectoral muscle are shown
in Fig. 8 (b). The candidate boundaries are shown in Fig. 8 (¢).

E. ELIMINATION OF FALSE BOUNDARY SEGMENTS
The candidate boundary segments may belong to the pectoral
muscle, breast boundary, skinfolds, and the other similar
tissues. Furthermore, some of the false boundary segments
may be located in any pectoral muscle blocks, while others
may be located in any breast blocks. Besides, the RBCD
algorithm may not detect some boundary segments depending
on the distortion effects. As a result of these possibilities, the
outputs of the RBCD algorithm can be summarized in six
different states given below.
1) There may be only and one true boundary segment in
any pectoral block.
2) There may be one or more false boundary segments and
one true boundary segment in any pectoral block.
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3) There may be one or more false boundary segments and

missed boundary segments in any pectoral block.

4) There may not be any boundary segment in any pectoral

block.

5) There may not be any boundary segment in any breast

block.

6) There may be one or more false boundary segments in

any breast block.

The boundary segments for mdb 40 and their cases are
shown in Fig. 10 (a). As can be seen from this figure, all cases
occurred in the sample images. In this stage, we proposed
three algorithms to eliminate false boundary segments. The
algorithms are mainly based on some knowledge below:

o The pectoral muscle boundary may be represented by
third-degree polynomial function because it can consist
of concave, convex, straight line segments.

o It begins at the upper edge and ends at the left edge of
the image.

« It continues to decrease gradually from up to down.

As a result, we decided to represent the pectoral muscle
border with a cubic polynomial.

As seen from Case 6 results in Fig. 10 (a), false positive
boundary segments appear in not only pectoral blocks but
also breast blocks. Therefore, we proposed an algorithm that
can eliminate candidate boundary segments of Case 6 by
detecting the last pectoral muscle block. This algorithm is
given below:

Algorithm 2 Elimination of the Candidate Boundary
Segments Located in Any Breast Blocks

Input: Candidate boundary segments
Output: Remaining candidate boundary segments
Initialisation:
1: Find at least three consecutive blocks that do not involve
any candidate boundary segments.
2: If available, eliminate all candidate boundary segments
located in blocks after there consecutive blocks deter-
mined in Step 1.

Algorithm 3 Selection of the Optimum Boundary Segments
Input: Remaining candidate boundary segments
Output: The optimum boundary segments
Initialisation:
1: Generate all possible paths by choosing, only one candi-
date boundary segment in each of the remaining blocks.

2: Fit a third-degree polynomial to each path.

3: Calculate the RMSE values of each path.

4: Select the boundary path having the minimum RMSE as
the optimum boundary path.

In the case of more than one candidate boundary segment
in any block given Case 2, an optimum boundary segment
must be selected; the others must be eliminated because one
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of them may only be true. We proposed an algorithm given
below for these tasks. Firstly, all alternatives for different
boundary paths are created using all combinations of the
candidate boundary segments. The RMSE values of these
different boundary paths are compared to each other to decide
the optimum boundary path.

Algorithm 4 Refining the Optimum Boundary Path
Input: The optimum boundary segments
True-positive
Output: boundary segments

Initialisation:

1: Fit a third-degree polynomial to the optimum boundary

path.

2: If the RMSE of the third-degree polynomial is less than

6 pixels, go Step 9.

3: Create all combinations of sub-paths by eliminating each
boundary segments one by one from on the optimum
path.

Fit a third-degree polynomial to each of the sub-paths.
Calculate RMSE values for each of them.

Select the sub-path having the minimum RMSE.
Consider the sub-path as the optimum boundary path.
Step 1;

Accept the optimum boundary path.

R A

As a result of algorithm 3, the false candidate bound-
ary segments were eliminated with the exception of
a single candidate boundary segment remaining in the pec-
toral muscle block. However, It is not yet known whether
the remaining boundary segment is true or false. We devel-
oped Algorithm 4 given below to eliminate the remaining
false boundary segments on the optimum boundary path. The
maximum RMSE value selected experimentally 6 pixels was
used to test the condition of accuracy. The elimination and
curve-fitting operations are repeated until this condition is
met. Consequently, this algorithm eliminates the remaining
false boundary segments.

Fig. 10 (a,b,c,d) show the results of Algorithms 1-4 for
mdb40, respectively. As can be seen from this figure,
first, candidate boundary segments are detected by Algo-
rithm 1 and then all FP boundary segments are eliminated
by Algorithms 2-4.

F. DETERMINATION OF MISSED BOUNDARY SEGMENTS
As shown in Fig. 10 (a), there may be missed boundary seg-
ments (Case 4) that cannot be detected as a result of distortion
effects. Furthermore, the boundary segments are generally
rough and not continuous. In the final stage, the curve fitting
operation is used both to detect the missed boundary segments
and smooth true boundary segments. A curve fitting process
with a third-order polynomial is carried out to detect the pec-
toral muscle boundary. This stage produces the final output of
the proposed method. The pectoral muscle boundary detected
by the proposed method for mdb 40 is shown in Fig. 10 (e).
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FIGURE 10. (a) Candidate boundary segments for mdb 40, (b), (c),and (d) the boundary segments after applying Algorithms 1, 2 and 3,

respectively, (e) the detected pectoral muscle boundary.

IIl. EXPERIMENTAL RESULTS

In order to test and compare the performance of the method,
we searched for widely used databases containing expert radi-
ologist information. Ferrari et al. [21] used a dataset including
84 MLO mammograms from the MIAS database. The radiol-
ogist drawings and the results of the pectoral muscle bound-
aries in this dataset can be provided by Ferrari et al. [21].
Therefore, many studies used this dataset to compare with
state-of-the-art methods reported in the literature under the
same conditions. This dataset also contains a considerable
number of distorted pectoral muscle images.

The Inbreast database contains expert radiological infor-
mation for the pectoral muscle boundaries. The experimental
results in some studies [29], [32], [33] were carried out by
using all 201 MLO images in this database. The fact that
this database contains the radiological information has led to
it being preferred as the second dataset in our experimental
studies.

The main purpose of our study is to develop a method that
is successful in distorted pectoral muscle boundaries, too.
Consequently, we created a third dataset consisting only of
the distorted pectoral muscle images. This dataset contains
12 images shown in Fig. 1 (a-1) from the MIAS database and
4 images shown in Fig. 1 (m-p) from the Inbreast database.
In the literature, to the best of our knowledge, there are no
studies providing a comparison of the quantitative results
based on a distorted pectoral muscle dataset. Some studies
given in Table 1 in this area made qualitative performance
evaluations for some distorted images, but none of them
made quantitative evaluations for these images one by one.
The proposed method was applied to the MIAS and Inbreast
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datasets for the distorted pectoral muscle images one by one.
The experimental results evaluated qualitatively and quanti-
tatively were given below.

A. QUALITATIVE EVALUATION

In the first experiment, we applied our method for qualitative
evaluation of the distorted pectoral muscle images in the third
dataset. The results of our method for each of these images
are shown in Fig. 11 (a-p) with yellow lines. For an effective
qualitative evaluation, the results of the Hough, Gabor meth-
ods, and the radiologist drawings are shown simultaneously
on the same images by blue, green, and red lines, respectively.
Since the results of the Hough and Gabor methods for the
images selected from the Inbreast database are not available,
they could not be shown in Fig. 11 (m-p).

B. QUANTITATIVE EVALUATION
We performed some experiments on the three datasets for
quantitative evaluations. Some metrics such as FP, FN,
FP,,, and FN,, values were used in this study for this
purpose. These metric values were calculated according to
equations 5, 6, 7, 8

In the second experiment, we computed the FP,, and FN,,
values of our method for the images in the first dataset. The
results of the proposed method and the compared studies
are shown in Table 1. These studies also used additional
performance criteria based on the range of the metrics FP and
FN. These criteria take into account the number of images
that meet the predefined error ranges with the FP and FN
percentages given in rows 3 to 6 of column 1 in Table 1.
According to these criteria, the performance of our method,
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FIGURE 11. The qualitative results of the proposed method, Hough method,and Gabor
method with radiologist drawings for the distorted pectoral muscle images shown by yellow,

blue, green, and red, respectively.
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TABLE 1. Performance comparison of the proposed method with the state-of-the-art methods for the MIAS dataset.

Performance criterion Hough Gabor AP MST Watershed | Li Chen Proposed
211 211 [22] [22] [23] [24] [25] Method
FP, 1.98 0.58 371 255 0.85 145 .02 0.92
FNpn 25.19 5.77 5.05 11.68 488 552 5.63 234
FP<5 & FN<5 10 45 50 40 46 48 49 62
min(FP,FN) <5 & 5 <maz(FP,FN)<10 | — — 18 20 25 28 30 19
min(FP,FN) <5 & maxz(FP,FN) < 10 — - 11 18 13 7 4 3
5<FP<10 & 5<FN <10 3 22 0 1 0 1 1 0
5 <min(FP,FN) <10 & max(FP,FN)>10 | — — 0 0 0 0 0 0
FP>10 & FN > 10 66 17 5 3 0 0 0 0
TABLE 2. The results of the proposed method, Hough method, and Gabor method for the images shown in Fig.1 (a-I).
mdb 33 | mdb 34 | mdb 36 | mdb39 | mdb40 | mdb68 | mdb75 | mdb98 | mdb 109 | mdb 110 | mdb 115 | mdb 115
Hough Method [21] | F2_|_16:04 0 0 15.19 0 0 0 100 100 0 0 0
ough Metho FN | 4096 | 7443 | 23.65 | 47.92 927 2675 | 2669 | 2344 348 1865 28.62 37.98
Gabor Method [21] | FE_|_ 013 9.67 0.41 0.74 0 0 0 100 231 0 327 037
abor Metho FN | 2473 11.95 11.65 13.77 13.76 19.69 19.87 0 7238 10.06 168 824
Pronosed Method |_EP_|__4:24 1.65 2.86 197 027 0.04 T4 0.4 454 12 3.65 22
roposed Metho! FN [ 207 175 6.7 152 1.37 175 784 382 8.57 0.92 083 2.19
70
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FIGURE 12. The number of images versus error ranges for the data given in Table 1.

and those of others, are given in Table 1. In addition, these
values are shown in the vertical bar graphical representation
in Fig. 12 to effectively compare the performance of these
studies in terms of these criteria. Each of the results of these
methods was represented by different colors.

In the third experiment, we quantitatively evaluated the
performance of our method on the distorted images shown
in Fig (a-1). The FP and FN values of our method for these
images were one by one computed. Our method, Hough, and
Gabor method’s results are shown in Table 2. The FP,, and
FN,, values of these results and the performance of them
according to the error ranges are given in Table 3. Besides,
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the number of images versus the error ranges for the data
given in Table 3 is shown Fig. 13 with different colors for
each method.

In the last experiment, we computed FP,, and FN,, values
of the images given in third database. The results of our study
and the results of the compared studies are shown in Table 4.

IV. DISCUSSIONS

The results of qualitative and quantitative experiments on the
images in three data sets were given in the previous section.
As a result, a total of 84 4+ 201 images were analyzed. The
discussion of the results is given in the following paragraphs.
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TABLE 3. Performance comparison of the proposed method with the
Gabor method and Hough method for the distorted pectoral muscle
images.

Performance criterion Hough [21] | Gabor [21] | Proposed Method
19.26 11.47
FiNn 377 15.06 344
FP<5 & FN<5 10
min(FP,FN) <5 & 5< maz(FP,FN) <10 2
min(FP,FN) <5 & maz(FP,FN) <10
5<FP<10 & 5<FN<I0
5<min(FP,FN) <10 & maz(FP,FN) > 10
FP>10 & FN >10

wlo|o|o|o| o
= = o < =[—
o|o|o| o

TABLE 4. Performance comparison of the proposed method with the
state-of-the-art methods for the Inbreast database.

Performance criterion | Shietal. [29] | Shenetal. [32] | Rampun etal. [33] | Proposed Method
FPm 242 1.35 0.3 1.26
FNm 13.61 1.27 5.7 1.15

Number of the images
- =
T

s

0

Error Range 1 Error Range 2 Error Range 3 Error Range 4 Error Range 5

Error Range 6

FIGURE 13. The number of images versus error ranges for the data given
in Table 3.

The results on a set of 16 images having the distorted
pectoral muscle due to masses, artifacts, skinfolds and over-
lapping tissues, or other effects are shown in Fig. 11. As can
be seen from this figure, our method yields satisfactory results
for the distorted pectoral muscle examples. The boundaries
obtained with our method are visually much closer to the
pectoral muscle edges drawn by the radiologist. The Hough
method yields unsatisfactory results on all of the images. The
Gabor method yields satisfactory results only on some of
these images. Consequently, the results of our study outper-
formed to both the Hough and Gabor methods results for the
distorted pectoral muscle boundaries.

Table 1 shows a performance comparison of our method
and the state-of-the-art methods for the images in the MIAS
database. We obtained these results from the second experi-
ment described above. All FP,, rates are between 0.58% and
3.71%. Although the FP,, rate of our method ranks third with
0.92%, it is close to the result of the Gabor method, which
gives the best rate. All FN,, rates are between 2.34% and
25.19%. The FN,, rates of the Hough method and the MST
method are among the worst. Apart from these, all FN,, ratios
are very close to each other. However, the FN,, rate of our
method has the best performance with 2.34%.
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As can be seen from Fig. 12, when the performance of the
methods in Table 1 is evaluated according to the smallest error
range, all results are very close to each other except the worst
and the best ones. Our method showed the best performance
by reaching about 74% of the images for the “error range 1
compared to these methods. The Hough method showed the
worst performance by reaching about 78% of the images for
the highest error range. Besides, the results of the Gabor,
AP, and MST methods had 17, 5, and 3 images in the “error
range 67, respectively. However, our method did not exceed
the ““error range 3" for any image. According to these results,
it is seen that the proposed method yielded superior perfor-
mance compared to the methods given in Table 1. As a result,
our method outperformed the methods given in Table 1.

In Table 2, the quantitative evaluation results of our method
for the distorted pectoral muscle images were given sepa-
rately for each image along with the results of the Hough and
Gabor methods. We took the quantitative results of distorted
pectoral muscle images for these methods from Ferrari et al.,
but quantitative results are not presented for other methods
given in Table 1 in the literature. As can be seen from Table 2,
the FP rate of the Gabor and Hough methods for some dis-
torted images was 100%. In terms of FN results, the Hough
method shown a performance close to 3.5% on mdb109,
between 23% and 93% on other images, whereas the results of
the Gabor method between 0% and 42%. Our method yielded
FP and FN values of less than 4.3% and 8.6%, respectively.
Our method performed quite well compared to the Gabor and
Hough methods. However, in terms of FP values for some
images, the Gabor method performed slightly better. These
results showed that our method has a superior performance
for the distorted images.

As seen in Table 3, the FP,, and FN,, rates of the Hough
and Gabor methods on the distorted images are more than
10% and these rates were found unsatisfactory. However,
the proposed method yielded the FP,, rate of 2.01% and the
FN,, rate of 3.44% respectively. As can be seen from Fig. 13,
the number of images in the smallest error range is ten and
corresponds to about 83%. In addition, all images are in the
first two error ranges. In the Hough method, the images are
in the last two error ranges, with a maximum of 9 images
in the fifth range and corresponds to 75%. As for the Gabor
method, the number of images in ‘“error range 3-6 is ten
and corresponds to about 83%. As a result, when our method
was evaluated according to the error ranges for the distorted
pectoral muscle images, it performed better than both Hough
and Gabor methods.

Table 4 shows the qualitative comparison of the state-of-art
methods for the Inbreast database. As can be seen from this
table, all FP,, values are very small compared to the results
obtained from the MIAS database in Table 1 and are between
0.3% and 2.4%. Rampun et al. [33] achieved the best FP,,
value. The FP,, rate of our method ranks second with 1.26%.
The FN,, values are between 1.15% and 13.6%. Shi et al. [29]
obtained the biggest FN,, value. Our method achieved the
best FN,, value. Since the quantitative performance results of
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these methods for the distorted pectoral muscle images in this
database are not in the literature, the quantitative evaluation
results for each of the distorted pectoral muscle images shown
in Table 2 could not presented for the Inbreast database.

V. CONCLUSION

In this study, we proposed an automatic method that uses a
divided topographic representation to detect distorted pec-
toral muscle boundaries. A robust pectoral muscle boundary
can be represented by a single continuous contour in the iso-
contour map. However, the distorted pectoral muscle bound-
ary cannot be represented by a single continuous contour
because some parts of them can be fuzzy or invisible. In this
method, after the division of the isocontour map into blocks,
the distorted and robust pectoral muscle parts are separated
from each other and localized in different blocks. Even if
the whole boundary contour is a curved line, the robust con-
tour parts become straight-line segments in the blocks. The
location, geometry, and topographic features of the pectoral
muscle boundary become more efficient and stable. As a
result, the specific patterned contours having these features
are revealed for the robust pectoral muscle boundary parts.
However, some of the pectoral muscle blocks do not have
specific patterned contours due to the distorting effects.

Since the proposed method is performed separately for
each block, no distorted pectoral part does not adversely
affect the other robust parts. The candidate pectoral mus-
cle boundary parts are detected from the specific patterned
contours using the RBCD algorithm. Some of them may be
false-positive because some tissues such as breast border,
skinfold, and some tissues may show similar characteris-
tics of the pectoral muscle boundary. The optimum bound-
ary detection algorithms developed in this study eliminate
false-positive boundary segments. Finally, the pectoral mus-
cle boundary segments are combined and refined by the
third-degree polynomial.

Our method was tested on two data sets consisting
of 84 and 201 mammogram images, respectively, from MIAS
and Inbreast databases. The method was also tested on the dis-
torted images selected from these databases. The quantitative
and qualitative results for the distorted images show that the
proposed method outperformed the other compared methods.

In the future, the proposed method will be tested on dis-
torted pectoral muscle images in other databases to further
test its validity. Besides, by adding the division process to
the state-of-the-art methods in this field, their performance
on distorted images will be examined. Due to the overlap-
ping tissue problem in radiology, some masses in the breast,
lungs, liver, and brain can sometimes be partially blurred or
invisible. In these cases, the proposed method can be adapted
and used for the segmentation of these masses.
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