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ABSTRACT Transportation mode recognition (TMR) is a common but critical task in the human behavior
research field, which provides decision support for urban traffic planning, public facility arrangement, travel
route recommendations, etc. The rapid development of urban information technology, mobile sensors and
artificial intelligence has generated solutions for TMR; however, they rely on extra sensors and Geographic
Information System (GIS) information, which are not always available. Recognition is usually simplified
by disregarding the trajectories among transportation mode change points. In this paper, we proposed an
ensemble learning-based approach to automatically recognize transportation modes (including a hybrid
mode) using only Global Positioning System (GPS) data. A total of 72 features were extracted to better
distinguish different transportation modes. Furthermore, we exploited a deep forest to combine various types
of classification models, which facilitates robust learning with different trajectory samples and modes. The
experimental results for the Geolife dataset show the efficiency of our approach, and the improved deep
forest model achieved the best performance among all experiments that we conducted with 88.6% accuracy.

INDEX TERMS Transportation mode recognition, ensemble learning, deep forest, hybrid transportation

mode.

I. INTRODUCTION
The motion behaviors of residents has a certain regularity
according to a certain time cycle, and the hidden patterns
and trends are crucial for urban development and governance.
Transportation mode recognition (TMR) can help reveal these
patterns by showing how individuals migrate among points of
interests (POIs). At the urban level, TMR aids in decision-
making for traffic system management, regional function
divisions, public facilities layouts etc. For individuals, by
inferring their life patterns and preferences from their past
trajectories, TMR can provide support for many applications,
such as travel route recommendations.

For the past few years, the methods employed for acquir-
ing transportation mode data information were question-
naires or telephone interviews. However, the information
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collected in these traditional ways was not universal for
all urban residents. The data quality is strongly affected by
respondents’ memories, which are commonly inaccurate and
incomplete, especially when the transportation mode changes
frequently in a trajectory [1]. The rapid development of urban
informatization, mobile sensors and artificial intelligence has
generated solutions for TMR; however, they rely on extra sen-
sors and Geographic Information System (GIS) information,
which are not always available. In recent years, vast amounts
of Global Positioning System (GPS) data have been produced
due to the popularity and refinement of GPS devices [2].
GPS data have a high sampling rate and accuracy and can
describe individual travel behaviors more completely with
greater detail.

Two primary issues in the research of machine learning-
based TMR have been addressed: feature extraction from
raw GPS data and selection of a classification model. Var-
ious kinematics or statistical features have been extensively
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applied in the representation of TMR, which can be divided
into two categories: point features, including velocity, accel-
eration, turning angle, and sinuosity; and segment fea-
tures, such as mean velocity or maximum acceleration.
For the different combinations of these features, decision
trees [3]-[8], k-nearest neighbors [S], SVMs [3], [5], [9], [10],
fuzzy systems [11], [12], ensemble learning [5], [9], [13],
[14], and deep learning methods [15]—-[17] have been applied
to enhance the identification capability of the TMR task.
However, the following problems still exist: recognition of
the trajectory segmentation at transportation mode change
points is usually disregarded in the training process, which
simplifies the recognition task but causes errors when the
transportation model changes. Additionally, in previous stud-
ies, Zheng [4] employed the maximum velocity and acceler-
ation and the mean, variance, and expectation of the velocity
as input features. Based on these features, researchers further
selected more statistical measures of the velocity and accel-
eration, which have been applied to better explain the dif-
ferences between different modes but introduce interference
from human experience [18]. The increase in the number of
features may also increase the complexity of the model and
the computational costs. The performance of the classifica-
tion model remains unsatisfactory in some real situations due
to the existence of noise and outliers. Therefore, improvement
in the generalization ability and robustness of the models is
needed.

More recently, a decision tree-based ensemble approach,
which is referred to as the deep forest [19], has been proposed.
The approach contains fewer hyperparameters and lower
computational costs than deep neural networks (DNNs) and
provides competitive performance. Inspired by its promis-
ing capacity in classification tasks, we propose an improved
deep forest method to automatically recognize transporta-
tion modes, including a hybrid mode, with only GPS data.
In this framework, we employ 72 global trajectory features
extracted by using statistical methods to distinguish trans-
portation modes. Our research contributes to the field in the
following ways:

1) In addition to a few general transportation modes,
including walking, riding a bike, taking a bus, driving
a car, and taking a subway or train, our approach is
able to identify whether a segment belongs to a hybrid
mode, which makes it better able to determine when
and where an individual is likely to change his/her
transportation mode.

2) We develop a deep forest method that combines various
types of classification models, including the random
forest (RF), completely RF (CRF), SVM and XGBoost,
to facilitate robust learning with different trajectory
samples and modes that does not require substantial
effort to tune the hyperparameters compared to the
effort needed for DNNs. However, the deep forest
method still performs similarly or better than these
models.
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The remainder of our paper is organized as follows:
Section 2 reviews relevant references. Section 3 presents our
model, and the experimental results and discussion are shown
in section 4. The conclusions are presented in section 5.

Il. LITERATURE REVIEW

Over the last decade, in the field of TMR, the GeoLife
dataset has become well known for its quality and quan-
tity [3], [4], [20]. Some researchers have either employed
data released by governments or independently collected
data. Biljecki et al [11] use a dataset with 17 million GPS
points from the Netherlands and elsewhere in Europe.
Bantis et al [21] collected GPS data via a customized smart-
phone application (app).

Based on the collected GPS dataset, TMR can be consid-
ered a multicategory classification using a machine learn-
ing scheme; thus, two types of research efforts have been
commonly employed: extraction of trajectory features and
classification of TMR using these features.

A. EXTRACTING FEATURES BASED ON GPS DATA

Many researchers have extracted the statistical values of
a trajectory segment as global features. Zheng et al [3]
employed common statistical features, including the mean
velocity, expected velocity, top three velocities and top three
accelerations, to identify four different transportation modes
(bike, bus, car, and walking). Based on their previous results,
Zheng [4] then selected three features that are more advanced:
the Head Change Rate (HCR), the Stop Rate (SR), and the
Velocity Change Rate (VCR). The results show the capabil-
ity of these features for improving the robustness of TMR
models. Dodge [22] extracted a total of 58 features, including
global features and local features, via a statistical method and
profile decomposition. Xiao et al [14] further increased the
number of features to 111.

B. SELECTION OF CLASSIFICATION MODELS FOR
SPECIFIC DATASETS

In addition to traditional machine learning methods, the deep
learning method that has developed rapidly in recent years
is considered a new solution for TMR. Endo et al [23] first
employed a DNN in the TMR task with time information
only; that is, no kinematic characteristics were considered.
Song et al [24] employed heterogeneous data in a city to
build a long short-term memory (LSTM) network to sim-
ulate and predict the movement of personnel in the whole
city. To address the problem of human bias when creating
efficient features in traditional machine learning methods,
Dabiri et al [25] proposed a convolutional neural network
(CNN) architecture with 84.8% accuracy. Wang et al [15]
further presented the CNN-BiGRU, which combines a CNN
with a bidirectional gated recurrent unit (Bi-GRU), to better
mine the timing characteristics of a trajectory. Additionally,
Toan H. Vu et al [17] proposed an improved recurrent neural
network (RNN) model that is referred to as the Control Gate-
based Recurrent Neural Network (CGRNN), which is an
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end-to-end model that works directly with raw signals from
an embedded accelerometer.

lll. METHODOLOGY

A. FORMULATION

The GPS point can be denoted by three parameters with
pi = (€, g, t), where [;, g; and t; denote the
latitude, longitude, and timestamp, respectively, of point
pi. The trajectory segment S; of length n is a set of
pairs of points and the corresponding transportation mode.
Si = A{p1,m), P2, m), ..., (Pn,my)}, where m; €
{Walk, Bike, Bus, Car, Subway, Train}, and i = 1,...,n.
The mode M; of segment S; remains the same as that of each
point when all points fall into a single category. Formally,
ifvie{l,...,n}, je{l,...,n}, Im; # mj, then the
transportation mode of the segment is defined as “Hybrid”’;
that is, My = "Hybrid", otherwise My = m; = m;. The
trajectory, which consists of L segments, can be formulated
as T = {(S1,My), (52, M), ..., (SL, Mp)}. Therefore, the
TMR addresses how to determine the transportation mode
M; of each segment S; based on its corresponding GPS point

Sequence [plvp?.a e 7pn]-

B. THE FRAMEWOR OF OUR METHOD

In this paper, we propose a deep forest-based method to
automatically recognize seven transportation modes: walk-
ing, bicycle, bus, car, subway, train, and hybrid. The flowchart
of our method (as shown in Figure 1) includes three modules:
data processing, feature extraction and classification & evalu-
ation. In the data processing module, the cleaned GPS data are
segmented into a number of trajectory segments. For a single
segment, we first extract the kinematic parameters, including
the velocity, acceleration, turning angle and sinuosity, which
are then applied to calculate a variety of statistical measures
to serve as trajectory features. For the 72 extracted features,
a deep forest model is adopted to classify different transporta-
tion modes in the classification & evaluation module.

C. DATA PROCESSING

In our study, only surface transportation modes are included;
thus, the trajectories with the “airplane” and “boat’ labels
are pruned, and the “taxi”’ mode is merged into “‘car”’ due to
their similarity.

For each trajectory, three preprocessing steps were con-
ducted. First, if a GPS point has a time interval that exceeds
15 min compared to the previous point, then it is treated as
the start of a new trajectory. These trajectories are divided
into segments with a fixed length of m = 300. Segments with
fewer than 15 GPS points are removed. The segment set is
utilized as the input for the following blocks.

D. FEATURE EXTRACTION

Based on a previous study [22], the features are categorized
into global features and local features. The global features
represent the descriptive statistics of the entire trajectory,
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while the local features reveal more details about the move-
ment behavior. However, global features have been deter-
mined to be more important for trajectory segments after
theoretical analysis, which was also shown in [14] via feature
importance ranking; therefore, our study selects 68 global
features in terms of 17 statistical measures of the velocity vy,
the acceleration a;, the turning angle 6; (difference between
the azimuth angles of two consecutive points) and the sin-
uosity s; (winding path divided by distance). To obtain the
previously mentioned 68 features, first, v, a;, 6; and s; were
calculated for each GPS point. The following 17 statistical
measures were then respectively estimated for the four pre-
viously mentioned kinematic parameters for all GPS points
included in a segment.

1) Mean: The mean value reflects the general value of the
data in a trajectory segment.

2) Standard deviation: The standard deviation reflects the
degree of dispersion in a data set.

3) Mode: The mode is the most frequently occurring value
in the statistical distribution.

4) — 9) Three max and three min values: These parameters
aim to reduce the impacts of abnormal points with positional
errors.

10) Range: The maximum value minus the minimum value.

11) — 12) Percentiles: Measures of the positions of the
data, which provide information about how the dataset is
distributed between the minimum value and the maximum
value. In this paper, we selected the 25th percentile (lower
quartile) and the 75th percentile (upper quartile).

13) Interquartile range: The difference between the upper
quartile and the lower quartile.

14) Skewness: Skewness is the digital characteristic of the
degree of asymmetry of a statistical data distribution, which
measures the direction and degree of the data distribution
deviation. Skewness is defined as follows:

3
Skewness = E |:<X ; M) ] @)

where p represents the mean value of the data, and o repre-
sents the standard deviation of the data.

15) Kurtosis: The kurtosis measures the flatness of a data
distribution. If the kurtosis is steeper than a normal distribu-
tion, the value is greater than 0; otherwise, it is less than 0.
It is defined as follows:

. |:X—M N
Kurtosis = E ( - > -3 2)

where © denotes the mean value of the data and o denotes the
standard deviation of the data.

16) Coefficient of variation: The coefficient of variation
reflects the degree of the data dispersion, which is similar
to the standard deviation, and eliminates the influence of
the measurement scale and dimension, whereas the standard
deviation does not eliminate this influence. The coefficient is
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FIGURE 1. Flow chart of the methodology of transportation mode recognition.

defined as:
cv=2 3)
7
where u represents the mean value of the data, and o repre-
sents the standard deviation of the data.

17) Autocorrelation coefficient: Autocorrelation is a math-
ematical representation of the degree of similarity between a
given time series and a lagged version over successive time
intervals.

The coefficient of autocovariance is formulated as follows:

1 N—k
k=D, G ) i — ) @)
The autocorrelation coefficient is defined as:
ac=L (5)
co

where p represents the mean value of the data.

We further employed three advanced features proposed by
Zheng [4], the HCR, SR, and VCR, to further assess the
robustness of the classification model. The thresholds for the
HCR, SR, and VCR were defined as H;, Vi, and V., whose
values were obtained according to the accuracy changes when
the HCR, SR and VCR were selected for classification. H;,
Vi, and V. were set as 19°, 3.4 m/s, and 0.26 m/s, respectively.

1) HCR: The HCR can be regarded as the frequency with
which individuals change their direction, which exceeded H;.
The HCR can better distinguish motorized and nonmotorized
transportation modes.

HCR = |Pc| /Distance (6)

where p. = {pi |pi € P, pi.H > H;}.

2) SR: By setting the threshold V, the SR represents how
often individuals stop in their trajectories, which effectively
distinguishes walking and other modes, as well as the VCR.

SR = |Ps| /Distance @)
where p; = {pi |pi € P, pi.V < V}.
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3) VCR: Similar to the SR, the VCR calculates the fre-
quency with which individuals change their velocity over a
certain threshold V..

P1.VCRate = |V2 —-V1|/V1 )
VCR = |Pv| /Distance ©)]

where p, = {p; |p; € P, p;.VCRate > V_}.

In addition, the length of each segment is involved in
the feature set. Thus, a feature set including 72 global
features is constructed and available for the downstream
classification task.

E. DEEP FOREST-BASED CLASSIFICATION MODEL

On top of the feature layer, we apply a deep forest as the
classifier due to its strong and robust prediction performance.
The deep forest [19], which is also known as the Multi-
Grained Cascade Forest (gcForest), is a kind of ensemble
learning method that is based on a decision tree. Inspired
by deep learning, the gcForest employs sliding windows of
different sizes to achieve representation learning and inputs
the obtained transformed features into cascade forests. The
deep forest does not require high computational costs such as
DNN s but achieves comparable prediction performance with
other deep learning methods. In addition, it shows promising
performance, even for small scale datasets.

Apart from the training strategies, the performance of the
deep forest is strongly affected by the selection of its com-
ponent learner. However, the original deep forest proposed
by Zhou [19] uses only the RF and the CRF as component
learners. Although the CRF can increase the generalization
ability of the model, it cannot effectively avoid the inter-
ference of noise and outliers in the dataset. Considering the
scale and dimension of the selected feature vector, we employ
the RF, CRF, SVM and XGBoost as the component learners.
Among these component learners, the RF, CRF and XGBoost
are ensemble learning models based on decision trees. Their
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FIGURE 2. The architecture of the deep forest model employed in this paper using the RF, the CRF, the SVM, and XGBoost as the component

learners.

difference is that XGBoost focuses on reducing the deviation
while the RF concentrates more on reducing the variance.
Compared with the RF, XGBoost is suitable for sparse data
and is less likely to overfit since it adds a regularization term
to control the complexity of the model. Compared to the
regular RF, the CRF helps by improving the generalization
ability of the deep forest since it randomly selects a single
feature from the full feature space when nodes are split. The
SVM is a traditional classifier, that is similar to the RF, and
can work well in high dimensions; however, it usually does
not perform well for large-scale datasets. Therefore, the joint
utilization of these four learning models can facilitate better
generalization and robustness of the proposed deep forest in
various cases of available data.

The architecture of the proposed deep forest is shown
in Figure 2. The 72 global features serve as the input of
the cascade forest structure, which consists of n levels of
component learners. Each level is composed of an SVM,
an XGBoost, an RF and a completely RF to ensure the
diversity of the component learners. The output vectors of the
component learners in the same level are concatenated with
the raw feature vector and then put on the next level as the
feature representation of each learner. As a result, the layer-
by-layer processing of the features is executed until there is
no significant performance gain, and an average strategy is
adopted to accomplish the classification at the last level.

1) RF/CRF
The RF was first proposed in 2001 [26]. As a representative
bagging method, which is shown in Algorithm 1, the RF uses
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a decision tree as the component learner and considers the
majority votes as the final result. The training procedure of
the RF can be briefly described as follows:

1) Sample m samples each time by using bootstrap sam-
pling to construct n sample subsets.

2) n decision trees are constructed with n subsets of sam-
ples, and each tree grows without pruning.

3) Compared with a regular decision tree, instead of using
all features, each node utilizes a feature subset when
splitting. The nodes of the trees in the CRF use a
single randomly selected feature from all features when
splitting.

Algorithm 1 Process of Bagging Methods
Input: Training set: D={(x1,y1),(X2,¥2)--->&m> Ym) };
DT Algorithm:Z; Training rounds: T
Output: H(x) = argmax Zthl I(h(x) = y), where I(x)
S

represents the indicatyoryfunction.

l:fort=1,2...,T do:

2: hy = Z(D, Dpg) (Dps: sample distribution through
bootstrap sampling)

3. end for

2) SVM

A SVM [27] aims to find a hyperplane that can lin-
early divide the samples in the original sample space or a
high-dimensional feature space. The model can be
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TABLE 1. Common kernel functions.

Name Functional expression

Linear kernel x(x,x j) = x,.ij
T \d
k(x,x;)=(x x;)",d 21
2
=]
2 b

x|

k(x,x;)=exp(———),0 >0
o

Polynomial kernel

Gaussian kernel r(x,x,)=exp(—
P

Laplace kernel

K(x,x,) = tanh(Ba, x, +6), 8 >0,0 <0

Sigmoid kernel

described as

m
FO) =) aiyin(e.x) +b (10)
i=1
where «; is the Lagrange multiplier, b is the displacement
term that determines the distance between the hyperplane and
the origin, and « (x, x;) is the kernel function. The commonly
employed kernel functions are listed in Table 1.

3) XGBOOST

The Classification And Regression Tree (CART) is a type
of decision tree that uses the Gini index to select partition
attributes. By combining a certain number of CARTSs, which
give a prediction score for each leaf, XGBoost [28] calculates
the final score by summing each individual tree’s prediction
score as

K
VAN
vi=) fiw).fi € F (11)
k=1
where K is the number of trees f is a function in the functional
space F, and F is the set of all possible CARTSs. The objective
function to be optimized is given as follows:

n

K
obj(®) = Y 10i 30 + Y Qfe) (12)

i k=1

IV. RESULT AND DISCUSSION

A. DATASET

The GPS trajectory dataset employed in this paper was col-
lected by the GeoLife project (Microsoft Research Asia)
by 182 users in a period of more than three years (from
April 2007 to August 2012) [3], [4], [29], [30]. The GPS
trajectories in this dataset are represented by sequences of
time-stamped points, each of which contains the latitude,
longitude and altitude. According to the statistical results,
the whole dataset contains 17,621 trajectories with a total
distance of approximately 1.2 million kilometers and a total
duration of more than 48,000 hours. These trajectories were
recorded by GPS devices or smart phones and have a variety
of sampling rates, most of which (91%) are densely logged,
e.g., every 1-5 seconds or every 5-10 meters per point.
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TABLE 2. Thresholds for each transportation mode.

Transportation Max Velocity Max Acceleration

Mode (m/s) (m/s"2)
Walking 7 3

Bike 12 3

Bus 34 2
Car/Taxi 50 10
Subway 25 5

Train 80 3

Hybrid mode / /

TABLE 3. Number of segments for each transportation mode.

Transportation Mode Number of segments Proportion

Walking 4373 22.7%

Bike 3056 15.9%

Bus 3405 17.7%

Car/Taxi 2530 13.1%
Subway 822 43%

Train 1828 9.5%

Hybrid mode 3232 16.8%
Overall 19246 100%

In general, raw GPS data, to some extent, contains noise,
outliers and gaps. Thus, we cleaned the raw dataset by
removing the duplicate data that have the same timestamp
information. Second, we empirically set the velocity and
acceleration thresholds for each transportation mode (as
shown in Table 2).

With the previous conditions, Table 3 shows the number of
segments for each transportation mode.

B. MODEL EVALUATION

To better compare the performance of different classifica-
tion models, we use the precision, recall, F-score, confusion
matrix, receiver operating characteristic (ROC) Curve and
area under the curve (AUC) as the evaluation metrics. For
the multiple classification tasks, by matching the labels with
the prediction results, all samples in the test dataset fall
into four categories: true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN). Among these
criteria, precision indicates how many samples are actually
positive compared with those predicted to be positive by the
model. Recall represents how many samples are successfully
identified among all the positive samples. The precision and
recall are defined as follows:

.. TP
Precision = —— (13)
TP 4 FP
TP
Recall = ———— (14)
TP + FN

VOLUME 8, 2020



M. Guo et al.: Transportation Mode Recognition With Deep Forest Based on GPS Data

IEEE Access

The precision and recall evaluate the model from two
aspects. However, in general, they are contradictory. The
F-score is extensively employed due to its comprehensive
consideration. The closer the F-score is to 1, the better is the
model’s performance.

2
P xR
= (@ + DP+R (15)
(@?2+P)+R
Especially, when « =1, P and R have the same weight:
2%xPxR
Fl= —— (16)
P+R

The graph for the ROC curve uses the False Positive
Rate (FPR) and True Positive Rate (TPR) as the horizon-
tal axis and vertical axis, respectively, and draws the curve
by traversing all thresholds. The graph works well when
addressing class-imbalance problems. We calculate the AUC
to quantify the performance, which is referred to as the AUC
value.

FP
FPR = —— (17)
FP + TN
TP
TPR= — (18)
TP + FN

To assess the performance of the proposed method,
we compare our method with a set of machine learning
algorithms according to the previously mentioned evaluation
metrics. Additionally, in our experiment, all classification
models were implemented in Python.

C. EXPERIMENTAL RESULTS AND DISCUSSION

To better evaluate the effectiveness of our study, we con-
structed a set of comparative experiments, including RF,
XGBoost, CNN and regular deep forest. The RF was
employed because it was commonly employed in the TMR
field and performed well in most experimental conditions.
The XGBoost and CNN were conducted based on the studies
carried out by [14] and [25]. These two methods were cho-
sen because they achieved the best results as representatives
of ensemble learning methods and deep learning methods.
In addition, the regular deep forest is employed to verify
our improvements in the ensemble structure. Based on these
reasons, to ensure an unbiased and consistent test, we trained
5 models on the same preprocessed dataset, and tuned the
parameters, respectively.

The dataset is randomly divided into a training set that
contains 80% of the segments and a testing set with the
remaining 20% of the segments. A 5-fold cross-validation
method was employed. The details of different models can
be obtained in Table 4, Table 5, and Table 6.

The performance of the proposed models and baselines
are evaluated in terms of the previously mentioned metrics.
From the confusion matrixes shown in Table 7, Table &,
Table 9, and Table 10, we can visually determine that our deep
forest achieves the highest accuracy at 88.6%, which is 4.6%,
0.8%, and 14.6% higher than the RF, XGBoost and CNN. For
the precision rate, our deep forest ranks first for “Bicycle”,
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TABLE 4. Parameters of the best XGBoost model.

Parameters Value Parameters Value
1 booster ‘gbtree’ 7 max_depth 6
2 objective multl:s’ 8 lambda 1
oftmax
scale_pos_ min_child_
3 weight 3 ? weight !
4 n_estimator 500 10 eta 0.05
5 gamma 0 11 nthread -1
6 num_class 7
TABLE 5. Structure of the optimal CNN.
Layer Nodes Ke}‘nel Stride ActlvaFlon
size Function
Convolution 1-2 32 13 11 ReLU
Max pooling 12 12
Convolution 3-4 64 13 11 ReLU
Max pooling 12 12
Convolution 5-6 128 13 11 ReLU
Max pooling 12 12
Fully Connected 7 Softmax

TABLE 6. Parameter settings of the best deep forest model.

C(l)mp onent Parameter settings
earners
RF n_estimators=300,max_features='sqrt',min_samples_le
af=10, min_samples_split=50, max_depth=6
CRF n_estimators=300, max_features=1, max depth=5
n_estimators=500,max_depth=8,objective="multi:softp
XGBoost rob', nthread= -1, learning_rate=0.1
SVM kernel="rbf', c=1, gamma =0.01, probability=True

“Car”, “Train” and “Hybrid” and ranks second for “Walk™
and “Bus”. In terms of the recall rate, our model performs
better than the precision rate. The improved deep forest ranks
first in six categories— “Walk”, “Bicycle”, “Bus”, “Car”,
“Subway”” and ““Train”’—and ranks second for the “Hybrid”’
mode with a slight numerical difference. Although the recall
rate of our model is slightly lower than that of the XGBoost,
it achieves a higher precision rate, which yields a higher value
of AUC. These results demonstrate a better performance of
our method in recognizing “Hybrid” trajectory segments.

As a representative method of deep learning, the CNN
had been shown to be able to perform well in the TMR task
[25]. However, it can be obviously seen from the confusion
matrix in Table 9 and the ROC curve in Figure 6 that the
performance of the CNN is roundly lagging behind that of
the RF, XGBoost and our deep forest. The overall accuracy
of CNN was only 74.2%. The poor performance of the CNN
may be attributed to the finding that the performance of the
CNN is positively correlated with the scale of the training
set. However, the segment length in our method (300) is
longer than that of Dabiri [25](200), which produces a 40%
reduction in the scale of the dataset.

Considering the condition of class imbalance in the dataset,
the unweighted average precision (UAP) and unweighted
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TABLE 7. Confusion matrix of the RF model.

Prediction
RF Recall
Walking Bicycle Bus Car Subway Train Hybrid
Walking 843 10 0 0 0 0 0 0.99
= Bicycle 45 514 8 3 0 0 8 0.89
E Bus 31 8 553 48 0 15 34 0.80
e Car 22 5 37 381 2 13 70 0.72
E Subway 26 3 5 18 88 6 30 0.50
© Train 0 1 5 8 0 341 2 0.96
Hybrid 22 24 67 30 8 2 514 0.77
Precision 0.85 091 0.82 0.78 0.90 0.90 0.78
TABLE 8. Confusion matrix of the XGBoost model.
Prediction
XGBoost Recall
Walking Bicycle Bus Car Subway Train Hybrid
Walking 893 0 1 1 1 10 0 0.99
= Bicycle 34 539 6 1 0 0 4 0.92
E Bus 23 7 572 37 0 4 15 0.87
= Car 20 5 34 384 8 7 56 0.75
§ Subway 19 0 7 8 112 5 24 0.64
© Train 0 0 5 6 0 365 9 0.95
Hybrid 25 32 3 29 5 19 515 0.82
Precision 0.88 0.92 091 0.82 0.89 0.89 0.83
TABLE 9. Confusion matrix of CNN.
Prediction
CNN Recall
Walking Bicycle Bus Car Subway Train Hybrid
Walking 1035 46 27 24 12 0 31 0.88
= Bicycle 85 685 19 12 2 2 22 0.83
= Bus 104 21 509 150 10 6 86 0.57
E Car 51 8 75 528 5 14 35 0.74
§ Subway 57 2 10 14 118 4 12 0.54
© Train 2 1 8 13 3 441 3 0.94
Hybrid 63 19 66 65 32 9 193 0.43
Precision 0.74 0.88 0.71 0.66 0.65 0.93 0.51

average recall (UAR) were calculated, as shown in Figure 7.
The results indicate that the improved deep forest is more
robust to the class-imbalance data. For example, compared
with the RF, for the smallest category (subway, ~ 4%),
although the precision rate of the deep forest is not better than
that of the RF, it has a higher recall rate, which yields a larger
AUC. This finding illustrates that the deep forest tends to be
more sensitive to the positive samples in the class-imbalance
cases.

150898

Based on the experimental results, we intuitively discover
that:

1) Most misclassification occurs between “walking” and
other modes, which may be caused by the similarity between
“walking” and “driving” in the case of heavy traffic or
transfer at a bus station.

2) Misclassification commonly occurs between the
“hybrid” mode and other single transportation modes
because the differences in the kinematic characteristics
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TABLE 10. Confusion matrix of the improved deep forest model.

Prediction
Improved Deep Forest Recall
Walking Bicycle Bus Car Subway Train Hybrid

Walking 854 5 0 1 2 0 1 0.99
= Bicycle 31 589 11 0 0 0 2 0.93
Z Bus 31 6 586 27 3 3 16 0.87
E Car 29 6 22 374 4 3 49 0.77
E Subway 17 4 5 7 130 4 10 0.73
© Train 0 0 4 1 2 343 5 0.97

Hybrid 23 18 39 32 10 4 537 0.81

Precision 0.87 0.94 0.88 0.85 0.86 0.96 0.87

The ROC Curve of different classification models

TABLE 11. Overall accuracy of selected models.
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FIGURE 3. ROC Curve of different classification models.
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FIGURE 4. Comparison of overall performance of four models on the
Geolife dataset. The unweighted average precision, recall and F1-score
for all 7 transportation mode classes were calculated.

between different transportation modes will be diluted or
amplified according to their weight of the distance.

3) There is a high correlation between the classification
performance and the number of samples of a specific mode.
For example, the large number of samples and unique char-
acteristics of the “walking”” mode make its recall rate stable
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Model Overall accuracy
CNN 74.0%
RF 84.0%
Regular Deep Forest 84.6%
XGBoost 87.8%
Our deep forest 88.6%

at approximately 99% with the RF, XGBoost and improved
deep forest. However, the recall rate of the “subway’ mode
with the least number of samples fluctuated greatly and the
value was low: only 73% for the improved deep forest,
although it is more than the RF of 50%.

In terms of running time, CNN has the longest running
time while RF has the shortest, which is consistent with the
complexity of the model. As for XGBoost and deep forest,
deep forest spends longer time than XGBoost, since XGBoost
is one of the component learners of deep forest.

In the case of the same travel distance, a higher sampling
rate means larger dataset size and more refined data descrip-
tion, both of which generally have a positive impact on the
feature representation and model performance, leading to the
better classification. However, the influence will be limited
when the sampling rate reaches a certain level.

The overall accuracies are shown in Table 11, and the
improved deep forest that we proposed are 14.6%, 4.6%,
4%, 0.8% higher than the CNN, RF, regular deep forest,
and XGBoost, which demonstrates the effectiveness of our
method.

V. CONCLUSION

In this paper, we presented a deep forest and trajectory global
feature-based TMR model using only raw GPS data to rec-
ognize the transportation modes. In this ensemble learning
framework, the SVM and XGBoost are employed as the
component classifiers in addition to the RF and CRF models
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to enhance the diversity of component classifiers. A total of 7
transportation modes of individuals can be determined by the
proposed model, including walking, bicycle, bus, car, train,
and subway and hybrid modes. In particular, our method can
effectively identify hybrid pattern recognition, which helps
to infer an individual’s transfer time and location and can
improve the accuracy of travel behavior recognition. In the
evaluation on the GeoLife dataset, we compared our model to
the state-of-the-art baseline of conventional and deep learn-
ing methods: XGBoost and CNN as well as the commonly
employed method, the RF. The evaluation results showed
that our model achieves the highest accuracy of 88.6%. The
combination of ensemble learning and deep learning shows
the potential to be regarded as a new solution for prediction
tasks in other applications.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7

[8]

[91

[10]

[11]

[12]

[13]

[14]

X. Yang, K. Stewart, L. Tang, Z. Xie, and Q. Li, “A review of GPS
trajectories classification based on transportation mode,” Sensors, vol. 18,
no. 11, p. 3741, Nov. 2018, doi: 10.3390/s18113741.

E. Murakami and D. P. Wagner, “Can using global positioning sys-
tem (GPS) improve trip reporting?” Transp. Res. C, Emerg. Technol.,
vol. 7, nos. 2-3, pp. 149-165, Apr./Jun. 1999, doi: 10.1016/S0968-
090X(99)00017-0.

Y. Zheng, L. Liu, L. Wang, and X. Xie, “Learning transportation mode
from raw GPS data for geographic applications on the Web,” in Proc.
17th Int. Conf. World Wide Web (WWW), Beijing, China, Apr. 2008,
pp. 247-256.

Y. Zheng, Q. Li, Y. Chen, X. Xie, and W.-Y. Ma, “Understanding mobil-
ity based on GPS data,” in Proc. 10th Int. Conf. Ubiguitous Comput.
(UbiComp), Seoul, South Korea, Sep. 2008, pp. 312-321.

A. Jahangiri and H. A. Rakha, “Applying machine learning techniques to
transportation mode recognition using mobile phone sensor data,” IEEE
Trans. Intell. Transp. Syst., vol. 16, no. 5, pp. 2406-2417, Oct. 2015, doi:
10.1109/TITS.2015.2405759.

M. Elhoushi, J. Georgy, A. Noureldin, and M. Korenberg, ““‘Online motion
mode recognition for portable navigation using low-cost sensors,” Navi-
gation, vol. 62, no. 4, pp. 273-290, Dec. 2015, doi: 10.1002/navi.120.

L. Stenneth, O. Wolfson, P. S. Yu, and B. Xu, “Transportation mode
detection using mobile phones and GIS information,” in Proc. 19th ACM
SIGSPATIAL Int. Conf. Adv. Geograph. Inf. Syst. (GIS), Chicago, IL, USA,
Nov. 2011, pp. 54-63.

S. Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen, and M. Srivastava,
“Using mobile phones to determine transportation modes,” ACM
Trans. Sensor Netw., vol. 6, no. 2, pp.1-27, Feb. 2010, doi:
10.1145/1689239.1689243.

A. Jahangiri and H. Rakha, “Developing a support vector machine (SVM)
classifier for transportation mode identification by using mobile phone sen-
sor data,” in Proc. Transp. Res. Board 93rd Annu. Meeting, Washington,
DC, USA, Jan. 2014, pp. 1-14.

A. Bolbol, T. Cheng, I. Tsapakis, and J. Haworth, “Inferring hybrid
transportation modes from sparse GPS data using a moving window SVM
classification,” Comput., Environ. Urban Syst., vol. 36, no. 6, pp. 526-537,
Nov. 2012, doi: 10.1016/j.compenvurbsys.2012.06.001.

F. Biljecki, H. Ledoux, and P. van Oosterom, ‘“Transportation mode-
based segmentation and classification of movement trajectories,” Int.
J. Geograph. Inf. Sci., vol. 27, no. 2, pp.385-407, Feb. 2013, doi:
10.1080/13658816.2012.692791.

R. Das and S. Winter, “Detecting urban transport modes using a hybrid
knowledge driven framework from GPS trajectory,” ISPRS Int. J. Geo-Inf.,
vol. 5, no. 11, p. 207, Nov. 2016, doi: 10.3390/ijgi5110207.

Q. Zhu, M. Zhu, M. Li, M. Fu, Z. Huang, Q. Gan, and Z. Zhou, “Identifying
transportation modes from raw GPS data,” in Proc. Int. Conf. Young
Comput., Singapore, Aug. 2016, pp. 395-409.

Z. Xiao, Y. Wang, K. Fu, and F. Wu, “Identifying different transportation
modes from trajectory data using tree-based ensemble classifiers,” ISPRS
Int. J. Geo-Inf., vol. 6, no. 2, p. 57, Feb. 2017, doi: 10.3390/ijgi6020057.

150900

[15]

[16]

(17]

[18]

(19]

[20]

[21]

(22]

(23]

(24]

[25]

[26]
(27]

(28]

(29]

(30]

M. Guo, P. Wang, and L. Zhao, ““Research on recognition method of trans-
portation modes based on deep learning,” J. Harbin Inst. Technol., vol. 51,
no. 11, pp. 1-7, Feb. 2019, doi: 10.11918/.issn.0367-6234.201902039.
X. Liang and G. Wang, ““A convolutional neural network for transportation
mode detection based on smartphone platform,” in Proc. IEEE 14th Int.
Conf. Mobile Ad Hoc Sensor Syst. (MASS), Oct. 2017, pp. 338-342, doi:
10.1109/MASS.2017.81.

T. H. Vu, L. Dung, and J.-C. Wang, “Transportation mode detection on
mobile devices using recurrent nets,” in Proc. ACM Multimedia Conf.
(MM), Oct. 2016, pp. 392-396, doi: 10.1145/2964284.2967249.

W. Dong, J. Li, R. Yao, C. Li, T. Yuan, and L. Wang, ‘“Characterizing
driving styles with deep learning,” 2016, arXiv:1607.03611. [Online].
Available: http://arxiv.org/abs/1607.03611

Z.H.Zhou and J. Feng, “Deep forest: Towards an alternative to deep neural
networks,” in Proc. 26th Int. Joint Conf. Artif. Intell., Feb. 2017, pp. 1-7.
Y. Zheng, Y. Chen, Q. Li, X. Xie, and W.-Y. Ma, “Understanding trans-
portation modes based on GPS data for Web applications,” ACM Trans.
Web, vol. 4, no. 1, pp. 1-36, Jan. 2010, doi: 10.1145/1658373.1658374.
T. Bantis and J. Haworth, ““Who you are is how you travel: A framework for
transportation mode detection using individual and environmental charac-
teristics,” Transp. Res. C, Emerg. Technol., vol. 80, pp. 286-309, Jul. 2017,
doi: 10.1016/j.trc.2017.05.003.

S. Dodge, R. Weibel, and E. Forootan, ‘“Revealing the physics of move-
ment: Comparing the similarity of movement characteristics of different
types of moving objects,” Comput., Environ. Urban Syst., vol. 33, no. 6,
pp. 419—434, Nov. 2009, doi: 10.1016/j.compenvurbsys.2009.07.008.

Y. Endo, H. Toda, K. Nishida, and A. Kawanobe, ‘“‘Deep feature extraction
from trajectories for transportation mode estimation,” in Proc. Pacific-
Asia Conf. Knowl. Discovery Data Mining, Berlin, Germany, Apr. 2016,
pp. 54-66, doi: 10.1007/978-3-319-31750-2_5.

X. Song, H. Kanasugi, and R. Shibasaki, “Deeptransport: Prediction and
simulation of human mobility and transportation mode at a citywide level,”
in Proc. 25th Int. Joint Conf. Artif. Intell., San Francisco, CA, USA,
Jul. 2016, pp. 2618-2624.

S. Dabiri and K. Heaslip, “Inferring transportation modes from GPS
trajectories using a convolutional neural network,” Transp. Res. C, Emerg.
Technol., vol. 86, pp. 360-371, Jan. 2018, doi: 10.1016/j.trc.2017.11.021.
L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5-32,
Oct. 2001, doi: 10.1023/A:1010933404324.

C. Cortes and V. Vapnik, “Support vector networks,” Mach. Learn.,
vol. 20, no. 3, pp. 273-297, Sep. 1995, doi: 10.1007/BF00994018.

T. Q. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proc. 22nd ACM SIGKDD Int. Conf., Aug. 2016, pp. 758-794, doi:
10.1145/2939672.2939785.

Y. Zheng, X. Xie, and W.-Y. Ma, “GeoLife: A collaborative social network-
ing service among user, location and trajectory,” IEEE Data Eng. Bull.,
vol. 33, no. 2, pp. 32-39, Jun. 2010.

Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma, ‘““Mining interesting locations
and travel sequences from GPS trajectories,” in Proc. 18th Int. Conf.
World Wide Web (WWW), Madrid, Spain, Apr. 2009, pp. 791-800, doi:
10.1145/1526709.1526816.

MAOZU GUO received the Ph.D. degree
from the College of Computer Science and
Technology, Harbin Institute of Technology,
Harbin, China. He is currently a Profes-
sor with the School of Electrical and Infor-
mation Engineering, Beijing University of
Civil Engineering and Architecture, Beijing,
China. His current research interests include
machine learning, bioinformatics, and image
processing.

VOLUME 8, 2020


http://dx.doi.org/10.3390/s18113741
http://dx.doi.org/10.1016/S0968-090X(99)00017-0
http://dx.doi.org/10.1016/S0968-090X(99)00017-0
http://dx.doi.org/10.1109/TITS.2015.2405759
http://dx.doi.org/10.1002/navi.120
http://dx.doi.org/10.1145/1689239.1689243
http://dx.doi.org/10.1016/j.compenvurbsys.2012.06.001
http://dx.doi.org/10.1080/13658816.2012.692791
http://dx.doi.org/10.3390/ijgi5110207
http://dx.doi.org/10.3390/ijgi6020057
http://dx.doi.org/10.11918/j.issn.0367-6234.201902039
http://dx.doi.org/10.1109/MASS.2017.81
http://dx.doi.org/10.1145/2964284.2967249
http://dx.doi.org/10.1145/1658373.1658374
http://dx.doi.org/10.1016/j.trc.2017.05.003
http://dx.doi.org/10.1016/j.compenvurbsys.2009.07.008
http://dx.doi.org/10.1007/978-3-319-31750-2_5
http://dx.doi.org/10.1016/j.trc.2017.11.021
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/1526709.1526816

M. Guo et al.: Transportation Mode Recognition With Deep Forest Based on GPS Data

IEEE Access

VOLUME 8, 2020

SHUTONG LIANG received the B.S. degree from
the College of Electrical and Information Engi-
neering, Beijing University of Civil Engineering
and Architecture, Beijing, China, in 2017, where
he is currently pursuing the M.S. degree. His
research interests include machine learning and
urban computing.

LINGLING ZHAO received the Ph.D. degree in
computer application technology, in 2011. She is
currently a Lecturer with the College of Computer
Science and Technology, Harbin Institute of Tech-
nology. Her research interests include machine
learning and urban computing.

PENGYUE WANG received the bachelor’s degree
from the School of Electrical and Information
Engineering, Beijing University of Civil Engi-
neering and Architecture, Beijing, China, where
she is currently pursuing the Ph.D. degree with
the School of Architecture. Her current research
interests include machine learning and urban
computing.

150901



