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ABSTRACT Recently, a Fisher–Snedecor F composite fading model has gained great attention due
to its mathematical tractability and modeling accuracy. However, its bivariate statistical characteristics
have not been considered yet in the previous technical literature. In this paper, we present a bivariate
Fisher–Snedecor F distribution with identical shaping parameters and study its applications in the wireless
communication systems. We first derive novel theoretical formulations of the statistical characteristics for
the bivariate Fisher–Snedecor F distribution model, which include the joint probability density function
(PDF), the joint cumulative distribution function (CDF), the joint moment generating function (MGF)
and the joint moments. Then, capitalizing on the above statistical expressions, some exact and asymptotic
expressions of performance criteria, such as the outage probability, the average bit/symbol error probability
(ABEP/ASEP), and the average channel capacity, for dual-branch selection combing and maximal ratio
combing diversity systems are derived, respectively. Especially, the exact expressions of the ABEP/ASEP
for several classical modulation schemes are obtained in terms of the multivariate Fox’s H-function by
applying the Mellin-Barnes type contour integral. Furthermore, we investigate the second-order statistics
of a sampled Fisher-Snedecor F composited fading envelope by utilizing the joint CDF, and obtain the
mathematical expressions of the level crossing rate (LCR) and the average fade duration (AFD). Finally,
we employ numerical and simulation results to demonstrate the validity of the theoretical analysis under
various correlated fading and shadowing scenarios.

INDEX TERMS Correlated composite fading, Fisher–Snedecor F distribution, maximal ratio combing,
selection combing, second-order statistics.

I. INTRODUCTION
In many practical wireless environments (e.g., congested
downtown areas with slowing moving pedestrians and vehi-
cles), the received signals in thewireless receivers often suffer
from multipath fading and shadowing simultaneously [1].
To characterize the composite effect of the multipath fading
and shadowing and predict accurately the performance of
a wireless communication system, two popular composite
fading channel models have been proposed by combining
multipath fading with shadowing. One is a multiplicative
shadowing model assuming both the dominant components
and the scattered waves are shadowed equally, and the other
is named as line-of-sight (LOS) shadowing model in which
shadowing only affects the dominant components [2]. The
Rician shadowed and the κ-µ shadowed models are two
typical examples of the latter. In the open technical literature,
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the multiplicative composite model can be divided into four
categories: the lognormal (LN) based model, the Gamma
(GA) based model, the inverse Gaussian (IG) based model,
and the inverse Gamma (IGA) based model [3], [4].
The LN-based model mainly includes, but is not lim-
ited to, Rayleigh-LN, Rice-LN, Nakagami-LN, Weibull-LN,
α-η-µ-LN, and α-κ-µ-LN [5]. The common shortcoming
of these models is their rather cumbersome mathematical
expressions, which make them rather inconvenient to eval-
uate accurately the performance of wireless communication
systems and restrict their potential applications. To avoid
this issue, some alternative models had been studied in the
past decades. The GA-based model is an earlier substituted
version of the former by using GA distribution to replace LN
one. So far, the published papers about this model are rather
extensive. They include the K distribution (Rayleigh-GA)
and its generalized version (Nakagami-GA, hereafter referred
to as the KG), Weibull-GA, η-µ-GA, and κ-µ-GA [4].
Since GA distribution is not a good approximation for LN
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distribution with large variance, the third model has been
proposed by using the IG distribution to replace GA when
a long-tailed behavior is considered. The IG-based model
includes Rayleigh-IG [6], Nakagami-m/IG (hereafter referred
to as the G distribution) model [7], Rice-IG [8], η-µ-IG,
κ-µ-IG and α-µ-IG [9]. The results investigated in [7]
depicted the IG-based model can provide a more accurate
approximation for LN distribution and better characterization
of fading channels in comparison with the GA-based mod-
els. Unfortunately, in order to evaluate the performance of
some more complicated wireless communication systems by
applying the above models, for example, multipath diversity
systems and multi-hop cooperative systems, the mathemati-
cal forms of some performance metrics of interest, namely
the outage probability (OP) and the average bit/symbol
error probability (ABEP /ASEP), still become intractable.
To overcome these mathematical difficulties, some further
approximations have to be used, such as mixture Gamma
distribution [3], [10] and mixture IG distribution [9]. How-
ever, these approximated forms ignore modeling accuracy.
For this reason, the IGA-based model achieves an appropriate
balance between the modeling accuracy and the calculation
complexity. In [11], the η-µ-IGA and κ-µ-IGA models not
only provided a good fit for modeling the composite fading
channels but also can be extended to the conventional and
emerging wireless communication systems, such as cellular,
wearable, and vehicular wireless applications.

More recently, an alternative version of the IGA-based
model, namely the Fisher-Snedecor F fading channel model,
was proposed in [12]. This model is based on the fact that
the square root of an inverse gamma random variable follows
an inverse Nakagami-m distribution. It accurately describes
the composite effects of both shadowing components and
multipath components on the fading signal, where shad-
owing components follow inverse Nakagami-m distribution,
and multipath components follow Nakagami-m distribution.
Compared to the KG composite fading model, the authors
in [12] showed that under non-LOS (NLOS) and LOS envi-
ronments the Fisher composite fading model has a better
fit for experimental channel measurements, such as wireless
body area networks and device-to-device (D2D) communica-
tions. Furthermore, this fading model can reduce to one-sided
Gaussian, Rayleigh, and Nakagami-m in the absence of shad-
owing components. Importantly, its alternative advantage is
that the closed-form expressions of its statistical charac-
teristics are more tractable and simpler than those of KG
distribution.

As a result, the performance analysis of wireless digital
communication systems over Fisher-Snedecor F compos-
ite fading channels has gained great attention in [13]–[22]
and references therein. The authors in [13] gave the
theoretical formulations of the sum of independent and
non-identically distributed (i.n.i.d.) random variables (RVs)
following Fisher-Snedecor F distribution and applied them
in maximal ratio combining (MRC) receivers. The perfor-
mance of physical layer security was investigated over F

composite fading channels in [14]. The authors in [12] fur-
ther studied the achievable channel capacity and energy
detection-based spectrum sensing in Fisher-Snedecor F fad-
ing in [15] and [16], respectively. In [17], the performance
of the selection combining (SC) scheme with i.n.i.d branches
over F composite fading channels was analyzed. Authors
in [18] considered the ergodic capacity of several adaptive
transmission strategies and obtained some asymptotic and
exact representations in Fisher–Snedecor F fading channels.
The effective rate analysis of multiple-input single-output
(MISO) systems was presented in i.n.i.d. and independent
and identically distributed (i.i.d.) Fisher-Snedecor F fading
channels in [19]. In [20], the ASEP of M-ary quadrature
amplitude modulation (MQAM) and M-ary pulse amplitude
modulation (MPAM), and the average capacity were derived
and evaluated in Fisher-Snedecor F fading channels. The
authors in [21] re-investigated the statistical characterization
of the sum of i.n.i.d. Fisher-Snedecor F RVs and presented
a simple approximation by using another single F RV. After
that, the authors in [21] further studied the statistical charac-
terization of the ratio of products of F distributed random
variables in [22] and discussed its applications in physi-
cal layer security and full-duplex relaying with co-channel
interference.

Although the MRC and SC systems over the Fisher-
Snedecor F fading channels have been investigated
in [13], [17], and [21], the authors only considered the i.n.i.d.
fading environments and the correlation among different
branches were not involved. When the distance between
antennas is less than 0.38λ in a diversity system, the received
signals could be correlated resulting in a decrease of the
diversity gain, where λ is the wavelength of the carrier.
To be specific, this signal correlation usually occurs in
relatively small size mobile equipment because the space
between their diversity branches can be too close to keep the
received signals independent. Thus, the correlated analysis
of the received signals becomes crucial in the performance
evaluation of the diversity received systems. Up to now,
the correlated distribution in wireless communication diver-
sity systems has been studied extensively in the open research
papers. Nevertheless, most of them only considered either
the correlated small-scale fading or the correlated shadowing,
such as [8], [23]–[30] and references therein. For correlated
multipath and shadowing composite distributions, only a
few papers have been involved. Based on a GA shadowing
distribution, the correlated K and KG distribution were inves-
tigated in [31] and [32], respectively. In [33] and [34], the OP
of SC receivers was studied over correlated Weibull-gamma
fading channels with identical and non-identical fading
conditions, respectively. The authors in [35] studied the
performance of Micro- and Macro-diversity receivers in cor-
related Rician-Gamma fading channels. In [36], the bivariate
statistics of a double generalized Gamma distribution was
investigated to evaluate the performance of vehicle-to-vehicle
(V2V) communications. By using an IG shadowing model,
bivariate Rayleigh-IG fading distribution has been proposed
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and employed to the dual-branch SC and MRC diversity
receivers in [37]. In [38], the authors obtained the statistical
properties of bivariate Nakagami-lognormal distribution and
discussed the correlation properties under micro- and macro-
diversity environments. Recently, [39] proposed a bivariate
Rician shadowed fading model in which the shadowing
follows a Nakagami-m distribution.

To the best of the authors’ knowledge, the correlated
(bivariate) Fisher–Snedecor F composite channel model has
not been addressed in the published research work. Moti-
vated by the aforesaid observations, we study a bivariate
Fisher–Snedecor F composite distribution and apply it in
the diversity systems and the second-order statistics in this
paper. Despite that the probability density function (PDF) of
a bivariate Fisher–Snedecor F distribution has been reported
in [40], the mathematical form of the PDF is not suitable
for the performance analysis of the wireless communication
system. In this paper, we further extend our work in [41] and
obtain more significant analysis, so the main contributions of
this paper are summarized as follows:

• We derive the novel analytical expressions of the sta-
tistical characteristics for bivariate Fisher–Snedecor F
distribution including the joint PDF, the joint cumulative
distribution function (CDF), the joint moment gener-
ating function (MGF), the joint central moments, and
power correlation coefficient.

• Capitalizing on the above statistical expressions, the
performance metrics of dual-branch SC and MRC
systems are investigated, namely the average signal-
to-noise ratio (SNR), Amount of Fading (AoF), the OP,
the ABEP/ASEP, and the average channel capacity.
In particular, the novel and exact expressions of the
ABEP/ASEP of several classical modulation schemes
are obtained in the light of the multivariate Fox’s
H-function by employing the Mellin-Barnes type con-
tour integral. However, in the previous work about
correlated fading, most of them only considered the
OP [26]–[31], [33], [34], [39] and the ABEP of
non-coherent modulation schemes [35], [37] whereas
the ASEP of coherent and M-ray modulation schemes
had to be calculated by using numerical integra-
tion [24], [32] or the Parseval’s theorem approach [24].
Moreover, the analysis of the average channel capac-
ity has been rarely involved in [23]–[35], [37]
except [36].

• We study the average fade duration (AFD) and the level
crossing rate (LCR) of a sampled Fisher-Snedecor F
composited fading envelope, and derive their algebraic
expressions by utilizing the univariate CDF and the
bivariate CDF of a sampled envelope.

• We derive the asymptotic expressions of the OP and
the ABEP/ASEP for dual-branch SC and MRC systems
at high SNR regions and discuss the influences of the
multipath parameters, the shadowing parameters, and

the correlation coefficients on the diversity order and the
coding gain.

• We analyze the truncated error and the truncated terms of
the CDF expression of the dual-branch SC system. The
minimum numbers of the truncated terms are calculated
under different communication conditions to ensure the
target performance. These results are very well-suited to
most algebraic representations including double infinite
series sums in this paper.

The remainder of this paper is organized as follows:
In Section II, the statistical characteristics of the bivari-
ate Fisher–Snedecor F composite distribution are investi-
gated. The performance analysis of dual-branch SC andMRC
receivers is presented in Section III, and section IV gives the
second-order statistics of a sampled composited fading enve-
lope. In Section V, the asymptotic analysis and the truncated
error are studied. Numerical and simulation results are shown
and discussed in Section VI, and the main conclusions are
outlined in Section VII.

II. STATISTICAL CHARACTERISTICS OF BIVARIATE
FISHER-SNEDECOR F DISTRIBUTION
A. JOINT PDF
Let Xi (i = 1, 2) be the channel fading envelopes of
Nakagami-m processes, with the joint PDF between X1 and
X2 given in [42, eq.(126)] as

fX1,X2 (x1, x2)

=
4mm+1(x1x2)mρ

−(m−1)/2
N

0(m)(
√
Y1Y2)(m+1)(1− ρN )

× Im−1

[
2mx1x2

√
ρN

√
Y1Y2(1−ρN )

]
exp

[
−

m
1− ρN

(
x21
Y1
+
x22
Y2

)]
,

(1)

where m ≥ 1
/
2 is the Nakagami-m fading parameter,

ρN is the power correlation coefficient between X2
1 and

X2
2 , and Yi is the mean fading power Yi = E[X2

i ] with
E[·] denoting expectation, Im−1(x) represents the modified
Bessel function of the first kind and order (m-1) defined in
[43, eq. (9.210/1)], 0 (·) denotes the gamma function defined
in [43, eq.(8.310.1)].

When multipath fading is superimposed on shadowing, Yi
slowly varies and its root-mean-square (rms) can be consid-
ered as one RV following the inverse Nakagami-m distribu-
tion in [12]. Based on the revised signal model in [15], we let
Yi = w2

i�i(i = 1, 2), where wi is a normalized inverse
Nakagami-m RV with E [wi] = 1, �i = E

[
R2i
]
is the mean

power of the composite signal envelope Ri, then the PDF
in (1) is conditioned on wi. To describe an inverse Nakagami-
m distribution, we let the parameter wi = ai/ri, where ri
follows Nakagami-m distribution, then ai =

√
(ni − 1)

/
ni.

Using a standard transformation of RVs, the PDF of the
bivariate inverse Nakagami-m distribution can be obtained
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as

fW1,W2 (w1,w2)

=
4(n− 1)n+1(w1w2)−(n+2)

0(n)(1− ρG)ρ
(n−1)/2
G

× In−1

[
2(n−1)

√
ρG

w1w2(1−ρG)

]
exp

[
−
(n− 1)(w−21 +w

−2
2 )

1−ρG

]
,

(2)

where n > 1 is the inverse Nakagami-m shaping parameter,
ρG is the power correlation coefficient between w2

1 and w2
2.

Note that n→ 1 denotes the received signals suffer the heavy
shadowing, on the contrary, n → ∞ represents the absence
of shadowing.

Based on the total probability theorem, the PDF of
the bivariate Fisher–Snedecor F composite envelope can
be obtained by averaging the conditional PDF of the
Nakagami-m process over the random variation of the rms
signal powers. Consequently, the joint PDF of the bivariate
Fisher–Snedecor F composite distribution is written as

fR1,R2 (r1, r2)

=

∞∫
0

∞∫
0

fY1|W1,Y2|W2 (r1 |w1, r2 |w2 )fW1,W2 (w1,w2)dw1dw2.

(3)

Based on (1), fY1|W1,Y2|W2 (r1 |w1, r2|w1) in (3) can be
obtained as

fR1|W1,R2|W2 (r1 |w1, r2 |w1 )

=
4mm+1(r1r2)m(w1w2)−(m+1)ρ

−(m−1)/2
N

0(m)(
√
�1�2)(m+1)(1− ρN )

× Im−1

[
2mr1r2(w1w2)−1

√
ρN

√
�1�2(1−ρN )

]

× exp

[
−

m
1−ρN

(
r21

w2
1�1
+

r22
w2
2�2

)]
. (4)

Substituting (4) and (2) in (3), and applying the infinite
series representations of the modified Bessel function of
the first kind defined in [43, eq.(8.447.1)], and after some
mathematical manipulations, the joint PDF of the bivariate
Fisher–Snedecor F composite distribution can be derived
as

fR1,R2 (r1, r2) =
∞∑
k=0

∞∑
l=0

4ρkNρ
l
Gφ0(λ)(4142)(m+k)

k!l!0(m)0(n)B(k + m, l + n)

×

2∏
i=1

r2m+2k−1i(
4ir2i + 1

)λ , (5)

where 4i = m (1− ρG)
/
(n− 1) (1− ρN )�i, λ =m + k +

n + l, φ = (1−ρN )m(1−ρG)n, and B(·, ·) is the beta
function defined in [43, eq.(8.384.1)]. With the help of

the Appell function of the fourth kind, F4 [·] defined in
[43, eq.(9.180.4)], we can obtain the compact expression
of (5) as

fR1,R2 (r1, r2)

=
4φ

B2(m, n)

(
2∏
i=1

4m
i r

2m−1
i(

4ir2i + 1
)m+n

)

×F4

[
m+n,m+n;m, n; ρN

2∏
i=1

4ir2i
4ir2i +1

, ρG

2∏
i=1

1

4ir2i +1

]
.

(6)

Note that it can be verified that the marginal distributions
with respect to r1 or r2 from (5) follow the Fisher–Snedecor
F composite distribution given in [15, eq.(5)]. Furthermore,
as ρN = ρG = 0, F4 [·] in (6) equals to unity, the joint PDF
in (6) can reduce to

fR1,R2 (r1, r2) =
2∏
i=1

(
2ϕmi r

2m−1
i(

1+ ϕir2i
)m+n

B(m, n)

)
, (7)

where ϕi = m
/
(n− 1)�i, i= 1, 2. It is worth highlight-

ing that there exists no correlation between R1 and R2 and
they are independent of each other from (7). To the best of
the authors’ knowledge, the PDF expressions in (5) and (6)
have not been reported in the previously published technical
literature.

B. JOINT CDF
To obtain a corresponding expression of the joint CDF,
by making use of [43, eq.(3.194.1/3)] along with some alge-
braic manipulations, the joint CDF of R1 and R2 can be given
by

FR1,R2 (r1, r2)

=

∞∑
k=0

∞∑
l=0

ρkNρ
l
Gφ0(λ)(4142)(m+k)

k!l!0(m)0(n)B(k + m, l + n)(m+ k)2

×

2∏
i=1

r2m+2ki 2F1[λ,m+ k; 1+ m+ k;−4ir2i ], (8)

where 2F1[·, ·; ·; ·] is the Gauss hypergeometric function [43,
eq. (9.100)].

C. JOINT CENTRAL MOMENTS AND POWER
CORRELATION COEFFICIENT
By definition in [24, eq.(12)], the joint central moments of
the bivariate Fisher–Snedecor F composite distribution can
be obtained as

µR1,R2 (q1, q2) = E[rq11 rq22 ]

=

∞∫
0

∞∫
0

rq11 rq22 fR1,R2 (r1, r2)dr1dr2. (9)
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Substituting (5) into (9), and employing [43, eq.(3.194.3)]
and the identities [43, eq.(9.180.1), (9.182.11) and (9.131.1)],
after some mathematical manipulations, we have

µR1,R2 (q1, q2)

=
B(m+ q1

2 , n−
q1
2 )2F1[−

q1
2 ,−

q2
2 ;m; ρN ]

B2(m, n)(B(m+ q2
2 , n−

q2
2 )2F1[

q1
2 ,

q2
2 ; n; ρG])

−1

×
(
(n− 1)�1

/
m
) q1
2
(
(n− 1)�2

/
m
) q2
2 , (10)

where n > q1
/
2 and n > q2

/
2. As expected, the above

expression can be decomposed into two independent parts as
follows

µR1,R2 (q1, q2)

=µNa(q1, q2)× µiNa(q1, q2)

=

(
�1

m

) q1
2
(
�1

m

) q1
2 0(m+ q1

2 )0(m+
q2
2 )

02(m) 2F1[−
q1
2 ,−

q2
2 ;m; ρN]

× (n−1)
q1
2 +

q2
2
0(n− q1

2 )0(n−
q2
2 )

02(n) 2F1[
q1
2 ,

q2
2 ; n; ρG],

(11)

where µNa (q1, q2) denotes the joint central moments of the
bivariate Nakagami-m distribution which can be obtained
as [42, eq.(137)], and µiNa (q1, q2) denotes the joint central
moments of the bivariate inverse Nakagami-m distribution
which can be obtained in terms of the same steps as (10).
It can be observed from (11) that the received signals over
composite fading channels can be taken as the product of two
independent RVs, where one is multipath fading RV follow-
ing Nakagami-m distribution and the other is shadowing RV
following inverse Nakagami-m distribution.

By definition in [1, eq.(9.195)], the Fisher–Snedecor F
power correlation coefficient between R21 and R22 can be
expressed as

ρ ,
cov(r21 , r

2
2 )√

var(r21 )
√
var(r22 )

=
E[r21 r

2
2 ]− E[r21 ]E[r

2
2 ]√

E[r41 ]− E2[r21 ]
√
E[r42 ]− E2[r22 ]

, (12)

where E(rqi ) =
B(m+q/2,n-q/2)

B(m,n)(m/(n−1)�i)q/2
was given in [15],

n > q
/
2, i = 1, 2.

Then, by using (11) and after some straightforward simpli-
fications, the power correlation coefficient can be written in
closed-form as

ρ ,
2F1[−1,−1;m; ρN ]2F1[1, 1; n; ρG]− 1

(m+ n− 1)[m(n− 2)]−1
, (13)

where n > 2.
Based on (13), Fig.1 reveals the relation between the

Fisher–Snedecor F power correlation coefficient (ρ) and the
shaping parameters (m and n) and correlation coefficients
(ρGandρN ) of bivariate Nakagami-m and its inverse distri-
butions. It can be observed from Fig.1 that ρ varies from

FIGURE 1. The Fisher–Snedecor F power correlation coefficient ρ as a
function of the correlation coefficient ρG where ρG = ρN .

zero to unity as ρG(ρN ) does, which indicates the system
performance degrades gradually with the increase of ρG(ρN ).
While for a certain value of ρG(ρN ), ρ increases as n grows
from n = 5, 20 to 50 when m = 2.5, and decreases as
m grows from m = 0.5, 2.5, 5, 20 to m = 50 when
n = 5. These results demonstrate that the correlation coef-
ficients have a more dominating impact on the decrease of
the system performance compared with m and/or n at the
light shadowing conditions (n = 20 and n = 50, including
the light composite fading case, m = 50 and n = 50), and
ρ approaches ρG(ρN ). While the increase of m can improve
slightly the channel conditions and leads to a decrease of ρ
at moderate shadowing cases (n = 5), and a similar behavior
has been observed in [24]. However, at the heavy shadowing
cases (n = 2.5, including the heavy composite fading case,
m = 0.5 and n = 2.5), ρ decreases quickly. This may
be explained that the heavy shadowing becomes a primary
factor in degrading the system performance as well as the
effect of ρ gets weak. Furthermore, for the extreme cases,
i.e., ρG = ρN → 1 and ρG = ρN → 0, ρ → 1 and ρ → 0,
respectively, independently of the values of m and n. These
cases can also be proved in (13) by using [43, eq.(9.122)] and
[43, eq.(9.100)].

D. JOINT MGF
Based on the definition of the jointMGF in [1], the jointMGF
of R1 and R2 can be given by

MR1,R2 (s1, s2)=E[exp(−s1R1 − s2R2)]

=

∞∫
0

∞∫
0

exp(−s1r1−s2r2)fR1,R2 (r1, r2)dr1dr2.

(14)

Plugging (5) into (14), and with the help of [44, eq.(07.
34.21.0013.01)], after some mathematical manipulations,
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the joint MGF of R1 and R2 can be obtained as

MR1,R2 (s1, s2) =
∞∑
k=0

∞∑
l=0

ρkNρ
l
Gφ[0(n)0(l + n)]

−1

k!l!π0(m)0(k + m)

×

2∏
i=1

G1,3
3,1[

44i

s2i
|
1−(n+l),0.5,1
m+k ], (15)

where Gm,np,q [·|·] denotes the univariate Meijer G-function
defined in [44, eq.( 07.34.02.0001.01)].

III. DUAL-BRANCH DIVERSITY RECEIVERS
In this section, we consider two classical dual-branch diver-
sity receivers, namely MRC and SC, operating over cor-
related Fisher–Snedecor F composite fading channels. For
these dual-branch diversity receivers, the equivalent baseband
received signal at the ith (i = 1 and 2) antenna can be given by
ri = shi+ni, in which s denotes the complex transmitted sym-
bol with average energy Es = E[|s|2], ni denotes the complex
additive white Gaussian noise (AWGN) with single-sided
power spectral densityN0 assumed identical and uncorrelated
to two branches, and hi denotes the complex channel gain
with its magnitude Ri = |hi| following a Fisher–Snedecor
F distribution. Furthermore, the general assumption is made
that only the channel fading magnitude has effects on the
received signal and the phase can be accurately estimated.
Thus, the instantaneous SNR per symbol is expressed as
γi = R2i Es/N0, and its average SNR can be given as
γ̄i = E

[
R2i
]
Es/N0 = �iEs/N0.

The PDF of the instantaneous SNR, γ , over the
Fisher–Snedecor F composite fading channels is given
by [15]

fγ (γ ) =
3mγm−1

B(m, n) (3γ + 1)m+n
, (16)

where 3 =m
/
(n− 1)γ̄ . The corresponding CDF of the

instantaneous SNR is also given by

Fγ (γ ) =
(3γ )m

mB(m, n) 2
F1[m+ n,m;m+ 1;−3γ ]. (17)

By using (5) and setting γi = r2i Es/N0, after a simple
variable transformation, the joint PDF of γ1 and γ2 over
the Fisher–Snedecor F composite fading channels can be
obtained as

fγ1,γ2 (γ1, γ2) =
∞∑
k=0

∞∑
l=0

ρkNρ
l
Gφ0(λ)(η1η2)

m+k

k!l!0(m)0(n)B(k + m, l + n)

×

2∏
i=1

γm+k−1i

(ηiγi + 1)λ
, (18)

where ηi = m (1− ρG)
/
(n− 1) (1− ρN ) γ̄i. Hence, with the

aid of [43, eq.(3.194.1)], the corresponding joint CDF of γ1

and γ2 can be yielded as

Fγ1,γ2 (γ1, γ2)=
∫ γ1

0

∫ γ2

0
fγ1,γ2 (γ1, γ2)dγ1dγ2

=

∞∑
k=0

∞∑
l=0

ρkGρ
l
Nφ0(λ)(η1η2)

m+k (m+ k)−2

k!l!0(m)0(n)B(k + m, l + n)

×

2∏
i=1

γm+ki 2F1[λ,m+k; 1+m+k,−ηiγi].

(19)

A. DUAL-BRANCH SC DIVERSITY RECEIVER
1) PDF OF THE OUTPUT SNR AND OUTAGE PROBABILITY
For a dual-branch SC receiver, the instantaneous output SNR
can be expressed γSC = max (γ1, γ2) in [1], and its corre-
sponding CDF is given by FγSC (γ ) = Fγ1,γ2 (γ, γ ) in the
correlated fading case, whereFγ1,γ2 (γ, γ ) can be obtained by
using (19). As ρN = ρG= 0, FγSC (γ ) can reduce to the i.i.d
CDF of two branches in [17, eq.(5)] after some mathematical
manipulations.

In order to find the PDF of γSC , it is readily obtained by
taking the first derivative of FγSC (γ ). However, this can lead
to more terms in the expression of the PDF. To this effect,
an alternative method in [1, eq.(9.687)] is given by

fγSC (γ )=
∫ γ

0
fγ1,γ2 (γ, γ2)dγ2+

∫ γ

0
fγ1,γ2 (γ1, γ )dγ1. (20)

Substituting (18) in (20), and employing [43, eq.(3.194.1)],
after some mathematical manipulations, the PDF of γSC over
correlated Fisher–SnedecorF composite fading channels can
be derived as

fγSC (γ )

=

∞∑
k=0

∞∑
l=0

ρkNρ
l
Gφ0(λ)(η1η2)

(m+k)γ 2(m+k)−1

k!l!0(m)0(n)B(k + m, l + n)(m+ k)

×

(
1∑
i=0

2F1[λ,m+ k; 1+ m+ k;−η2−iγ ]

(ηi+1γ + 1)λ

)
. (21)

In general, the OP is defined as the probability that the
instantaneous output SNR of SC falls below a given outage
threshold γth in [1]. By utilizing (19), we can obtain the
OP of SC receiver by using γth instead of γ1 and γ2 as
Pout =Fγ1,γ2 (γth, γth).

2) MOMENTS OF THE OUTPUT SNR AND AVERAGE SNR
Based on the definition of the moment in [1], the qth-order
moment of γSC can be expressed as

µγSC (q) = E(γ qSC ) =
∫
∞

0
γ qfγSC (γ )dγ . (22)

To solve the integral in (22) after inserting (21) in (22),
we use the identities [45, eq.(10) and (17)] to represent
(1+x)a and 2F1 [·, ·; ·; ·] in terms of Meijer G-function, and
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employ [44, eq.(07.34.21.0011.01)] along with some mathe-
matical manipulations, µγSC (q) can be yielded as

µγSC (q)

=

∞∑
k=0

∞∑
l=0

ρkNρ
l
Gφ[0(m)0(n)]

−1

k!l!0(k + m)0(l + n)

×

(
1∑
i=0

η
−q
i+1G

2,3
3,3[

η2−i

ηi+1
|
1−(n+l),1,1−(m+k+q)
m+k,n+l−q,0 ]

)
. (23)

The average output SNR is an important performance cri-
terion serving as an excellent indicator of the overall sys-
tem’s fidelity. The average output SNR of SC over correlated
Fisher–Snedecor F fading channels can be obtained by set-
ting q = 1 in (23), this is, γ̄SC = µγSC (1).

In addition, the AoF is also considered as a critical per-
formance measure which indicates the severity of fading for
the wireless communication system. This measure can be
evaluated by using µγSC (q). Traditionally, the AoF is defined
as

AoF =
µγSC (2)
µ2
γSC

(1)
− 1. (24)

By setting q = 1 and 2 in (23), then inserting them in (24),
the expression of AoF over correlated Fisher–Snedecor F
fading channels can be easily obtained. The AoF is typically
independent of the average fading power and can be further
applied to parameterize the distribution of the SNR of the
received signal in the presence of fading, such as the channel
quality estimation index (CQEI) presented in [46].

3) MGF OF THE OUTPUT SNR AND ABEP/ASEP
In order to evaluate the ABEP/ASEP of various modulation
schemes, the MGF-based approach is usually adopted to sim-
plify the mathematical analysis process. Hence, by using (21)
and following the similar procedure as (23) with the aid of
[44, eq.(07.34.21.0081.01)], the MGF of γSC over correlated
Fisher–Snedecor F composite fading can be derived as

MGFγSC (s)

=

∫
∞

0
exp(−sγ )fγSC (γ )dγ

=

∞∑
k=0

∞∑
l=0

ρkNρ
l
Gφ[0(m)0(n)]

−1

k!l!0(k + m)0(l + n)

(
1∑
i=0

(ηi+1
s

)m+k
× G0,1:1,1:1,2

1,0:1,1:2,2[
ηi+1

s
,
η2−i

s
|
1−(m+k)
− |

1−λ
0 |

1−(n+l),1
m+k,0 ]

)
, (25)

where Gm,n:m1,n1:m2,n2
p,q:p1,q1:p2,q2 [·|·] denotes the bivariate Meijer

G-function defined in [47, eq.(13.1)], also named as an
extended generalized bivariate Meijer G-function in [48].

By utilizing the MGF expression of γSC in (25) and the
MGF-based approach, the ABEP/ASEP of SC system can
be readily obtained for different modulation schemes. For
non-coherent binary frequency shift keying (NC-BFSK) and

differential binary phase-shift keying (DBPSK), the ABEP of
SC system can be expressed as [1]

Pe(E) = aMGFγSC (b) , (26)

where a = 0.5, b = 0.5 for NC-BFSK, and a = 0.5, b = 1
for DBPSK. Hence, by using (25), the ABEP of NC-BFSK
and DBPSK for SC system over correlated Fisher–Snedecor
F composite fading can be directly yielded as

Pe(E)

=

∞∑
k=0

∞∑
l=0

aρkNρ
l
Gφ[0(m)0(n)]

−1

k!l!0(k + m)0(l + n)

(
1∑
i=0

(ηi+1
b

)m+k
× G0,1:1,1:1,2

1,0:1,1:2,2[
ηi+1

b
,
η2−i

b
|
1−(m+k)
− |

1−λ
0 |

1−(n+l),1
m+k,0 ]

)
. (27)

For coherent modulation schemes, such as BPSK, BFSK,
and BFSKwith minimum correlation, the ABEP at the output
of the SC system can be expressed as [1]

Pe(E) =
1
π

∫ π/2

0
MGFγSC

(
g

sin2 θ

)
dθ, (28)

where g is a constant that depends on the specific modulation
schemes. In particular, g = 1 for BPSK, and g = 0.5 for
BFSK, and g = 0.715 for BFSK with minimum correlation.
In order to find the solution of the integral term in (28),
we express the bivariate Meijer G-function in (25) as its alter-
native definition formula in terms of double Mellin-Barnes
type contour integral in [47, eq.(13.1)]. Hence, the exact
analytical expression of (28) over correlated Fisher–Snedecor
F composite fading can be derived (see Appendix A for
details) as

Pe(E)

=

∞∑
k=0

∞∑
l=0

ρkNρ
l
Gφ[
√
π0(m)0(n)]−1

k!l!20(k + m)0(l + n)

(
1∑
i=0

(
ηi+1

g

)m+k

×G0,2:1,1:1,2
2,1:1,1:2,2[

ηi+1

g
,
η2−i

g
|
1−(m+k),0.5−(m+k)
m+k |

1−λ
0 |

1−(n+l),1
m+k,0 ]

)
.

(29)

Moreover, the ASEP of MPSK for SC system based on the
MGF approach can be given as [1]

Pe(E) =
1
π

∫ π−π/M

0
MGFγSC

(
gpsk
sin2 θ

)
dθ. (30)

where gPSK = sin2(π
/
M ), M = 2, 4, 8,. . .To solve the

integral term in (30), we employ the properties of the sine
function and rewrite (30) as

Pe(E) =
2
π

∫ π/2

0
MGFγSC

(
gpsk
sin2 θ

)
dθ

−
1
π

∫ π/M

0
MGFγSC

(
gpsk
sin2 θ

)
dθ

= I1 − I2. (31)
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For the first integral term I1 in (31), we can employ the
same approach as Appendix A. After some mathematical
manipulations, we have

I1

=

∞∑
k=0

∞∑
l=0

ρkNρ
l
Gφ[0(m)0(n)]

−1

k!l!
√
π0(k + m)0(l + n)

(
1∑
i=0

(
ηi+1

gpsk

)m+k

×G0,2:1,1:1,2
2,1:1,1:2,2[

ηi+1

gpsk
,
η2−i

gpsk
|
1−(m+k),0.5−(m+k)
m+k |

1−λ
0 |

1−(n+l),1
m+k,0 ]

)
.

(32)

While for the second integral term I2 in (31), we consider
the similar steps as (29) and use the definition of the multi-
variable Fox’s H-function in terms of double Mellin-Barnes
type contour integral in [49, eq.(A.1)]. The detailed derivation
procedure of I2 can be found in Appendix B. Hence, by using
the results of I1 and I2, the exact analytical expression of (31)
over correlated Fisher–Snedecor F composite fading can be
written as (33), shown at the bottom of the next page.

Finally, by using the MGF-based method, the ASEP of
MQAM for SC system can be given as [1]

Pe(E) =
4c
π

∫ π/2

0
MGFγSC

(
gQAM
sin2 θ

)
dθ

−
4c2

π

∫ π/4

0
MGFγSC

(
gQAM
sin2 θ

)
dθ, (34)

where c = 1−1
/√

M, and gQAM = 3
/
2(M− 1). Similarly,

we adopt the same steps that are used to derive (31), the exact
analytical expression of (34) can be obtained as (35), shown
at the bottom of the next page.

4) AVERAGE CHANNEL CAPACITY
The channel capacity, in Shannon’s sense, is a core perfor-
mance measure since it provides the maximum achievable
transmission rate in which the errors are recoverable. The
average channel capacity of the SC can be expressed as

C̄γsc =
B
ln 2

∫
∞

0
ln(1+ γ )fγsc (γ )dγ , (36)

where B denotes the bandwidth of the channel. By using (21)
and the identity [45, eq.(11)] to represent ln(1+x) in terms
of Meijer G-function, with the help of [44, eq.(07.34.21.
0081.01)], the average channel capacity of the SC over cor-
related Fisher–Snedecor F composite fading can be obtained
as

C̄γsc

=

∞∑
k=0

∞∑
l=0

BρkNρ
l
Gφ[0(m)0(n)]

−1

k!l! ln 20(k + m)0(l + n)

×

(
1∑
i=0

G1,1:1,2:1,2
1,1:2,1:2,2[

1
ηi+1

,
η2−i

ηi+1
|
1−(m+k)
n+l |

1,1
1,0|

1−(n+l),1
m+k,0 ]

)
.

(37)

B. DUAL-BRANCH MRC DIVERSITY RECEIVER
For a dual-branch MRC diversity receiver, the instantaneous
output SNR per symbol is expressed as γMRC = γ1 + γ2
in [1]. Under a correlated fading environment, it is diffi-
cult to directly find a simple and closed-form expression of
the PDF of γMRC, and the PDF-based performance analysis
usually becomes cumbersome and tedious. To this effect,
the MGF-based approach is considered to evaluate the OP,
the ABEP /ASEP, and the average channel capacity of the
dual-branch MRC diversity receiver over correlated Fisher–
Snedecor F composite fading channels.

1) MOMENTS OF THE OUTPUT SNR AND AVERAGE SNR
With the aid of the binomial identity defined in [43,
eq.(1.111)], the qth-order moments of γMRCγMRC can be
written as

µγMRC (q) = E[γ qMRC ] = E[(γ1 + γ2)q]

=

q∑
i=0

(
q
i

)
E[γ i1γ

q−i
2 ]. (38)

By using (18) and the similar steps as (10), the corre-
sponding closed-form expression of the qth-ordermoments of
γMRC over correlated Fisher–Snedecor F composite fading
channels can be derived as

µγMRC (q)

=

q∑
i=0

(
q
i

)(
(n− 1)γ̄1

m

)i ( (n− 1)γ̄2
m

)q−i
×
0(m+i)0(m+ q− i)0(n−i)2F1(−i,−q+i;m; ρN )
02(m)02(n)[0(n− q+ i)2F1(−i,−q+ i; n; ρG)]−1

.

(39)

By setting q = 1 in (39) and using [43, eq. (9.155.4)], and
after some straightforward simplifications, the average output
SNR of the dual-branch MRC system can be calculated as

γ̄MRC = µγMRC (1) = γ̄1 + γ̄2. (40)

Similarly, by setting q = 1 and q = 2 in (39), the AoF of
the dual-branch MRC system can also be obtained.

2) MGF OF THE OUTPUT SNR AND ABEP/ASEP
Based on the definition of MGF and using (18) with the aid
of [43, eq.(7.811.5)], the MGF of γMRC can be expressed as

MγMRC (s) = Mγ1,γ2 (s, s) = E[exp(−s(γ1 + γ2))]

=

∞∑
k=0

∞∑
l=0

ρkNρ
l
Gφ[0(k+m)]

−1

k!l!0(m)0(n)0(l+n)

×

2∏
i=1

G2,1
1,2[

s
ηi
|
1−m−k
0,n+l ].

(41)

By using (26) and (41), the ABEP expression of NC-BFSK
and BDPSK for the dual-branchMRC system over correlated
Fisher–SnedecorF composite fading channels can be written
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as

Pe(E) =
∞∑
k=0

∞∑
l=0

aρkNρ
l
Gφ[0(k + m)]

−1

k!l!0(m)0(n)0(l + n)

×

2∏
i=1

G2,1
1,2[

b
ηi
|
1−m−k
0,n+l ]. (42)

Similar to (29), by employing the definition of the bivariate
Meijer G-function in [47], the ABEP of BPSK, BFSK, and
BFSK with minimum correlation at the output of MRC sys-
tem can be expressed as

Pe(E) =
∞∑
k=0

∞∑
l=0

ρkNρ
l
Gφ[0(m)0(n)]

−1

k!l!2
√
π0(k + m)0(l + n)

×G0,1:1,2:1,2
1,1:2,1:2,1[

η1

g
,
η2

g
|
0.5
0 |

1,1−n−l
m+k |

1,1−n−l
m+k ]. (43)

For the MPSK modulation scheme, the exact analytical
expression of ASEP for the dual-branch MRC system over
Fisher–SnedecorF composite fading can be obtained as (44),
shown at the bottom of the next page by utilizing the same
steps as (33). Similarly, the exact analytical expression of
ASEP of MQAM for the dual-branch MRC system can also
be yielded as (45), shown at the bottom of the next page.

3) OUTAGE PROBABILITY
By utilizing the MGF-based approach, the OP of the
dual-branch MRC system is given by [1]

Pout (γth) = Pr(γMRC < γth) = FγMRC (γth)

= L−1
[
MGFγMRC (s)

s
; γMRC

]∣∣∣∣
γMRC=γth

, (46)

where FγMRC (·) denotes the CDF of γMRC , and L−1[·; ·]
represents the inverse Laplace transform. In order to solve
the inverse Laplace transform in (46), the CDF of γMRC can
be expressed as

FγMRC (γ ) =
1
2π j

∫
C
exp(sγ )MγMRC (s)

/
sds. (47)

where j =
√
−1 and C denotes the appropriate contour.

By substituting (41) in (47), and based on the definition of the

univariateMeijer G-function in [44], after somemathematical
manipulations, the exact analytical expression of the CDF of
γMRCover correlated Fisher–Snedecor F composite fading
channels can be obtained (see Appendix C for details) as

FγMRC (γ )

=

∞∑
k=0

∞∑
l=0

ρkNρ
l
Gφ[0(m)0(n)]

−1

k!l!0(k + m)0(l + n)

×G0,0:2,1:2,1
1,0:1,2:1,2[1

/
η1γ , 1

/
η2γ |

1
−|

1−m−k
0,n+l |

1−m−k
0,n+l ]. (48)

Hence, the OP of the dual-branch MRC system can be
calculated after replacing γ with γth based on the above
expression. In addition, the OP in (46) can be also calculated
by applying the Euler summation based algorithm for the
inversion of CDFs in [1, Appendix 9B.1]. In what follows,
the upper and lower bounds of the OP for the dual-branch
MRC system are considered as [1]

Fγmax

(γth
2

)
≤ Pout (γth) ≤ Fγmin

(γth
2

)
, (49)

where γmax= max(γ1, γ2), γmin= min(γ1, γ2), Fγmax (·) and
Fγmin (·) denote the corresponding CDF of γmax and γmin, and
can be expressed, respectively, as

Fγmax (γ ) = Pr{γ1 < γ, γ2 < γ } = Fγ1,γ2 (γ, γ ). (50-a)

Fγmin (γ ) = 1− Pr{γ1 > γ, γ2 > γ }

= Fγ1 (γ )+ Fγ2 (γ )− Fγ1,γ2 (γ, γ ). (50-b)

On the basis of (17) and (19), the above two expressions
can be readily obtained, respectively.

4) AVERAGE CHANNEL CAPACITY
According to the MGF-based approach in [50], the average
channel capacity of the dual-branch MRC system can be
given as

C̄γMRC =
B
ln 2

∫
∞

0
Ei(−s)

[
∂

∂s
MγMRC (s)

]
ds, (51)

where Ei (·) is the exponential integral function defined in
[43, eq.(8.221.1)]. By employing (41) and with the help of

Pe(E) =
∞∑
k=0

∞∑
l=0

ρkNρ
l
Gφ[0(n)0(l + n)]

−1

k!l!
√
π0(m)0(k + m)

(
1∑
i=0

(
ηi+1

gpsk

)m+k (
G0,2:1,1:1,2
2,1:1,1:2,2[

ηi+1

gpsk
,
η2−i

gpsk
|
1−(m+k),0.5−(m+k)
m+k |

1−λ
0 |

1−(n+l),1
m+k,0 ]

−
zm+k+0.5

2π
H0,2:1,1:1,2:1,1
2,1:1,1:2,2:1,1 [

zηi+1
gpsk

,
zη2−i
gpsk

,−z|(0.5−m−k:1,1,1),(1−m−k:1,1,0)(−0.5−m−k:1,1,1) |
(1−λ:1)
(0:1) |

(1−n−l:1),(1:1)
(m+k:1),(0:1) |

(0.5:1)
(0:1) ]

))
. (33)

Pe(E) =
∞∑
k=0

∞∑
l=0

2cρkNρ
l
Gφ[0(m)0(n)]

−1

k!l!
√
π0(k + m)0(l + n)

(
1∑
i=0

(
ηi+1

gQAM

)m+k (
G0,2:1,1:1,2
2,1:1,1:2,2[

ηi+1

gQAM
,
η2−i

gQAM
|
1−(m+k),0.5−(m+k)
m+k |

1−λ
0 |

1−(n+l),1
m+k,0 ]

−
0.5m+k+0.5c

π
H0,2:1,1:1,2:1,1
2,1:1,1:2,2:1,1 [

ηi+1

2gQAM
,
η2−i

2gQAM
,−0.5|(0.5−m−k:1,1,1),(1−m−k:1,1,0)(−0.5−m−k:1,1,1) |

(1−λ:1)
(0:1) |

(1−n−l:1),(1:1)
(m+k:1),(0:1) |

(0.5:1)
(0:1) ]

)
. (35)
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[44, eq.(07.34.20.0002.01)], the first-order derivative of the
MGF of γMRC with respect to s in (51) can be deduced as

∂

∂s
MγMRC (s)

=

∞∑
k=0

∞∑
l=0

ρkNρ
l
Gφ[0(n)0(l + n)]

−1

k!l!0(m)0(k + m)

×

(
1∑
i=0

−1
ηi+1

G2,1
1,2[

s
ηi+1
|
−m−k
0,−1+n+l]G

2,1
1,2[

s
η2−i
|
1−m−k
0,n+l ]

)
.

(52)

Here, we represent Ei (−s) in terms of Meijer G-function as

Ei(−s) = −G2,0
1,2[s|

1
0,0]. (53)

Then, by plugging (52) and (53) into (51), and employing
[44, eq.(07.34.21.0011.01)] along with some mathematical
manipulations, the exact analytical expression of the average
channel capacity for the dual-branch MRC system over cor-
related Fisher–SnedecorF composite fading channels can be
obtained as

C̄γMRC

=

∞∑
k=0

∞∑
l=0

BρkNρ
l
Gφ[0(n)0(l + n)]

−1

ln 2k!l!0(m)0(k + m)

×

(
1∑
i=0

G1,2:2,0:2,1
2,1:1,2:1,2[ηi+1,

ηi+1

η2−i
|
0,1−(n+l)
m+k |

1
0,0|

1−(m+k)
0,(n+l) ]

)
.

(54)

IV. LEVEL CROSSING RATE AND AVERAGE
FADE DURATION
The LCR and AFD are two important examples to charac-
terize higher-order statistics of the received signal envelope
in small-scale multipath and/or large-scale shadowing fading
environments. They are very helpful to design and select
error control techniques and diversity systems since they can
provide useful information about the burst error statistics. The
former denotes the expected rate at which the fading envelope
crosses a specified threshold level in a positive (or negative)
direction, whereas the latter is defined as the average period
of time in which the envelope stays below this specified
threshold level. Traditionally, the joint PDF of the continuous

fading envelope and its time derivative has been employed
to calculate them based on Rice’s method [51]. In [52],
the authors proposed an alternative analytical approach in
which the LCR and theAFDof a sampled random process can
be obtained according to the univariate CDF and the bivariate
CDF of a sampled envelope. Recently this approach has been
used to evaluate the LCR and the AFD of a sampled Rician
shadowed fading envelope in [39]. In [52], the LCR of a
sampled random process is expressed as

LCR(µ) =
Pr{R1 < µ,R2 > µ}

Ts
, (55)

where R1 , R(t) and R2R , (t+Ts) are correlated and iden-
tically distributed random variables, R(t) is the continuous-
time envelope, µ is a specified threshold level and Ts denotes
the sampling period. Moreover, the marginal CDF of R1 and
R2 can be given as FR (x) , FR1 (x) , FR2 (x). Therefore,
the compact form of the LCR can be expressed by using the
marginal CDF of R1 and the bivariate CDF of R1 and R2
in [52] as follows

LCR(µ) =
FR1 (µ)− FR1,R2 (µ,µ)

Ts
, (56)

where FR1 (µ) can be found in [15, eq.(11)]. By substitut-
ing (8) into (56), the LCR can be obtained as

LCR(µ) =
(31µ

2)m

TsmB(m, n)
2F1[m+ n,m;m+ 1;−31µ

2]

−

∞∑
k=0

∞∑
l=0

ρkNρ
l
Gφ0(λ)(4142)(m+k)(m+ k)−2

k!l!Ts0(m)0(n)B(k + m, l + n)

×

2∏
i=1

µ2m+2k
2F1[λ,m+k; 1+m+k,−4iµ

2].

(57)

where 31 = m
/
(n− 1)�1. Based on the definition of the

AFD in [52], the AFD of a sampled random process can be
written as

AFD(µ) =
Pr(R1 < µ)
LCR(µ)

=
TsFR1 (µ)

FR1 (µ)− FR1,R2 (µ,µ)
. (58)

Similar to (57), (58) can also be readily calculated.

Pe(E) =
∞∑
k=0

∞∑
l=0

ρkNρ
l
Gφ[0(n)0(l + n)]

−1

k!l!
√
π0(m)0(k + m)

(
G0,1:1,2:1,2
1,1:2,1:2,1[

η1

gpsk
,
η2

gpsk
|
0.5
0 |

1,1−n−l
m+k |

1,1−n−l
m+k ]

−
z0.5

2π
H0,1:1,2:1,2:1,1
1,1:2,1:2,1:1,1 [

zη1
gpsk

,
zη2
gpsk

,−z|(0.5:1,1,1)(−0.5:1,1,1)|
(1:1),(1−n−l:1)
(m+k:1) |

(1:1),(1−n−l:1)
(m+k:1) |

(0.5:1)
(0:1) ]

)
. (44)

Pe(E) =
∞∑
k=0

∞∑
l=0

2cρkNρ
l
Gφ[0(n)0(l + n)]

−1

k!l!
√
π0(m)0(k + m)

(
G0,1:1,2:1,2
1,1:2,1:2,1[

η1

gQAM
,
η2

gQAM
|
0.5
0 |

1,1−n−l
m+k |

1,1−n−l
m+k ]

−
c
√
2π

H0,1:1,2:1,2:1,1
1,1:2,1:2,1:1,1 [

η1

2gQAM
,

η2

2gQAM
,−0.5|(0.5:1,1,1)(−0.5:1,1,1)|

(1:1),(1−n−l:1)
(m+k:1) |

(1:1),(1−n−l:1)
(m+k:1) |

(0.5:1)
(0:1) ]

)
. (45)
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V. ASYMPTOTIC ANALYSIS AND TRUNCATION ERROR
In this section, the asymptotic behavior of the aforementioned
performance expressions will be discussed, such as the OP
and the ABEP expressions for dual-branch SC and MRC
system. Then we investigate the rate of convergence of the
infinite series sum by employing the truncation error analysis
and give some calculation results by taking the CDF expres-
sion of the output SNR for the dual-branch SC system as an
instance.

A. ASYMPTOTIC ANALYSIS
For the sake of obtaining more insights on how the channel
parameters and the correlation coefficients affect the diver-
sity order and the coding gain, the asymptotic performance
analysis at high SNR regions is especially useful for wireless
diversity communication systems. The diversity order refers
to the slope of the OP or ABEP (ASEP) curve versus the
average SNR in a log-log scale. In general, the larger the
slope of the curve, and the higher the diversity order. While
the coding gain is considered as the shifting degree of OP
or ABEP (ASEP) line to the left versus SNR in a log-log
scale. Thus, at high average SNR regions, the asymptotic OP
or ABEP (ASEP) can be expressed as [53]

Px ≈ (Gc · γ̄ )−Gd , (59)

where Gc is the coding gain and Gd is the diversity order,
Px denotes the OP or the ABEP (ASEP). In what follows,
we derive the high SNR asymptotic performance expressions
of SC and MRC system over correlated Fisher–Snedecor F
composite fading, by taking the OP and the ABEP of DPSK
as examples, and point out their diversity orders.

1) DUAL-BRANCH SC RECEIVER
When the average SNR γ̄i → ∞, by using the series rep-
resentation of a hypergeometric function in [43, eq.(9.100)],
the PDF of the output SNR for SC system in (21) can be
approximated as

fγSC (γ )≈
∞∑
k=0

∞∑
l=0

2ρkNρ
l
Gφ0

2(λ)(η1η2)(m+k)γ 2(m+k)−1

k!l!0(m)0(n)0(k + m+ 1)0(l + n)
.

(60)

By using (60), the asymptotic CDF and MGF of the output
SNR for SC system can be deduced, respectively, as

FγSC (γ )

≈

∞∑
k=0

∞∑
l=0

ρkNρ
l
Gφ0

2(λ)(η1η2)(m+k)[0(m)0(n)]−1

k!l!0(k + m+ 1)0(l + n)(m+ k)
γ 2(m+k).

(61-a)

MGFγSC (s)

≈

∞∑
k=0

∞∑
l=0

2ρkNρ
l
Gφ0

2(λ)(η1η2)(m+k)0(2m+ 2k)

k!l!0(m)0(n)0(k + m+ 1)0(l + n)
s−2(m+k).

(61-b)

Therefore, the asymptotic expressions of the OP and the
ABEP of DPSK for SC system can be deduced, respectively,
as

Pout (γth)

≈

∞∑
k=0

∞∑
l=0

ρkNρ
l
Gφ0

2(λ)(η1η2)(m+k)[0(m)0(n)]−1

k!l!0(k + m+ 1)0(l + n)(m+ k)
γ
2(m+k)
th .

(62-a)

Pe(E)

≈

∞∑
k=0

∞∑
l=0

2aρkNρ
l
Gφ0

2(λ)(η1η2)(m+k)0(2m+ 2k)

k!l!0(m)0(n)0(k + m+ 1)0(l + n)b2(m+k)
.

(62-b)

Finally, in order to observe the diversity order of the OP,
(62-a) needs to be further approximated and is written as
the form of (59). As γ̄1 = γ̄2 = γ̄ → ∞, (62-a) can be
further simplified, (the mathematical derivation is provided
in Appendix D), as

Pout (γth) ≈

(φ2F1(m+ n,m+ n; n; ρG)
m2B2(m, n)(9γth)−2m

)− 1
2m
· γ̄

−2m .
(63-a)

where 9 = m(1−ρG)
/
(n− 1)(1− ρN ). By using a similar

method in (63-a), the asymptotic expression of the ABEP of
DPSK can be further simplified as

Pe(E)≈

(2aφ0(2m)F1(m+n,m+n; n; ρG)
mB2(m, n)(b/9)2m

)− 1
2m
·γ̄

−2m .
(63-b)

Based on the definition in (59), it is evident from (63-a)
and (63-b) that their diversity order Gd is 2m regardless of
the larger-scale parameters and the correlation coefficients.

2) DUAL-BRANCH MRC RECEIVER
Since the diversity order and the code gain can be observed
by using the asymptotic value of the MGF function when
s → ∞ [3], with the aid of the asymptotic formula of the
univariate Meijer G-function defined in [44, eq.(07.34.06.
0018.01)], the MGF of the output SNR for MRC system
in (41) can be approximated as

MGFγMRC (s)≈
∞∑
k=0

∞∑
l=0

ρkNρ
l
Gφ0(k + m)0

2(λ)(η1η2)m+k

k!l!0(m)0(n)0(l+n)s2(m+k)
.

(64)

By using (47), we perform the inverse Laplace transform to
the above expression, the asymptotic CDF of the output SNR
for MRC system can be obtained as

FγMRC (γ )≈
∞∑
k=0

∞∑
l=0

ρkNρ
l
Gφ0(k + m)0

2(λ)(η1η2γ 2)m+k

k!l!0(m)0(n)0(l + n)0(2m+2k+1)
.

(65)
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Then, the asymptotic expressions of the OP and the ABEP
of DPSK for MRC system can be deduced, respectively, as

Pout (γth) ≈
∞∑
k=0

∞∑
l=0

ρkNρ
l
Gφ0(k + m)0

2(λ)(η1η2γ 2
th)

m+k

k!l!0(m)0(n)0(l + n)0(2m+ 2k + 1)
.

(66-a)

Pe(E) ≈
∞∑
k=0

∞∑
l=0

aρkNρ
l
Gφ0(k + m)0

2(λ)(η1η2)m+k

k!l!0(m)0(n)0(l + n)b2(m+k)
.

(66-b)

Therefore, similar to the mathematical derivation of
Appendix D, as γ̄1 = γ̄2 = γ̄ → ∞, (66-a) and (66-b) can
be further simplified, respectively, as

Pout (γth)

≈

(φ02(m+ n)2F1(m+n,m+n; n; ρG)

02(n)0(2m+1) (9γth)−2m

)− 1
2m
· γ̄

−2m .
(67-a)

Pe(E)

≈

(aφ02(m+ n)2F1(m+ n,m+ n; n; ρG)

02(n)
(
b
/
9
)2m

)− 1
2m

·γ̄


−2m

.

(67-b)

In terms of the definition in (59), it can be seen from
(67-a) and (67-b) that their diversity order Gd is 2m. Further-
more, as ρN = ρG = 0, (67-a) can reduce to the i.i.d case as
[13, eq.(10)] when L=2.

From the aforesaid asymptotic analysis, as expected, the
dual-branch SC and MRC systems have identical diver-
sity orders over correlated Fisher–Snedecor F composite
fading, and only the small-scale fading parameters have
heavy impacts on the diversity order, while other parame-
ters, namely the larger-scale parameters and the correlation
coefficients, have impacts only on the coding gain. Moreover,
the aforementioned asymptotic expressions not only have
a convenient and simply algebraic form that is helpful in
the numerical analysis but also can reveal some insights for
wireless communication system design.

B. TRUNCATION ERROR
In the aforesaid sections, most algebraic formulas include
double infinite series sums, and their rates of convergence
need to be investigated for exact target performance. Hence,
we considered the CDF expression of the output SNR for the
dual-branch SC system in (19) as an example to discuss the
truncated error and the truncated terms. It is noted that these
results are also suitable for the other expressions in this paper.

We assume that K and L are the numbers of truncated
terms, and expand the expression of (19) as

Fγ1,γ2 (γ, γ ) =
(
φ(η1η2γ 2)m

0(m)0(n)

)
(Z0 + Z1 + Z2) , (68)

where

Z0 =
K∑
k=0

ρkN (η1η2γ
2)k

k!0(k + m)(m+ k)2

(
L∑
l=0

ρlG0
2(λ)

l!0(l + n)

×2F1[λ,m+ k; 1+ m+ k,−η1γ ]2F1[λ,m

+ k; 1+ m+ k,−η2γ ]

)
, (69-a)

Z1 =
K∑
k=0

ρkN (η1η2γ
2)k

k!0(k + m)(m+ k)2

 K1∑
l=L+1

ρlG0
2(λ)

l!0(l + n)

×2F1[λ,m+ k; 1+ m+ k,−η1γ ]2F1[λ,m

+ k; 1+ m+ k,−η2γ ]

 , (69-b)

Z2 =
K1∑

k=K+1

ρkN (η1η2γ
2)k

k!0(k + m)(m+ k)2

( K1∑
l=0

ρlG0
2(λ)

l!0(l + n)

×2F1[λ,m+ k; 1+ m+ k,−η1γ ]2F1[λ,m

+ k; 1+ m+ k,−η2γ ]

)
, (69-c)

K1 → ∞. Hence, the truncated error after truncating the
double infinite series in (68) can be obtained as

ET =
(
φ(η1η2γ 2)m

0(m)0(n)

)
(Z1 + Z2) . (70)

With the aid of Mathematica software package, we adopt
the numerical analysis method to calculate K (L) at a given
target accuracy. To meet the given target accuracy, it is a
key factor to choose the values of K (L) and K1 in (69-a)
and (69-b). Without loss of generality, we assume K = L.
To obtain the minimum value of K (L), we need to adjust
it until ET in (70) is less than the given target accuracy.
In fact, the target accuracy can be achieved as long as K1
is greater than K . For example, K1 = K + 50 is enough
for all of the cases in this paper when the truncated error
satisfies ET < 2.0 × 10−6. Based on the above method,
we obtain the minimum number of truncated terms, K (L),
required in (19) at a given error accuracy (ET < 2.0 ×
10−6). In Table 1-4, the minimum values of K (L) have been
summarized for different normalized SNR (γ

/
γ̄ ), m, n and

ρN (ρG), respectively. It can be observed that the number of
truncated terms grows rapidlywith the increase of the value of
the shadowing parameter or/and the correlation coefficients
while it changes slightly as the normalized SNR or/and the
multipath parameter increases. Interestingly, ρG has more
impacts on the number of truncated terms than ρN in Table 4.

VI. NUMERICAL RESULTS AND DISCUSSION
Capitalizing on the previous derived analytical expres-
sions, we will present various numerical and simulation
results under different correlated Fisher–Snedecor F fad-
ing and shadowing scenarios in this section. In simulations,
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TABLE 1. Minimum number of terms, K (L), required in (19) at
ET < 2.0× 10−6 for different normalized SNR γ/γ̄ (m = 2, n = 5,
ρG = ρN = 0.5).

TABLE 2. Minimum number of terms, K (L), required in (19) at
ET < 2.0× 10−6 for different m (n = 5, ρG = ρN = 0.5, γ/γ̄ = 5dB).

TABLE 3. Minimum number of terms, K (L), required in (19) at
ET < 2.0× 10−6 for different n (m = 2, ρG = ρN = 0.5, γ/γ̄ = 5dB).

TABLE 4. Minimum number of terms, K (L), required in (19) at
ET < 2.0× 10−6 for different ρN(ρG) (m = 2, n = 5, γ/γ̄ = 5dB).

we adopted the simulation approach described in [54] to first
generate two groups of correlated distributed Nakagami-m
variables, and then apply their ratios to obtain the corre-
lated Fisher–Snedecor F variables. The simulations that are
obtained via generating no less than 106 iterations are com-
pared with the analytical results. Simulation results match
well with the numerical analysis and confirm the accuracy
of our derivations. In simulation and numerical analysis,
several different combinations of the multipath parameters,
the shadowing parameters, and the correlation coefficients
are considered to discuss their respective impacts on the
performance of dual-branch SC and MRC systems. Further-
more, for the aforementioned bivariate Meijer G-function
and triple-variable Fox’s H-function in this paper, a Mathe-
matica implementation was provided in [48], a Python code
has been introduced in [55], a GPU-enabled MATLAB rou-
tine was developed in [56]. They can be applied to evalu-
ate these special functions. Unfortunately, some expressions
including these special functions become difficult to converge
γth= 0dB when the truncated terms get larger. For example,
K (L) = 215 as ρN = ρG = 0.9 shown in Table 4. However,
these cases have less influence on our conclusions in this
paper.

By using (23), in Fig.2, we show the first branch normal-
ized average output SNR (γ̄SC

/
γ̄1) of SC as a function of the

multipath fading parameter (m) for various wireless commu-
nication scenarios over correlated Fisher–Snedecor F fading
channels. It can be seen from Fig.2 that the average SNR gain

FIGURE 2. First-branch normalized average output SNR (γ̄SC /γ̄1) of
dual-branch SC as a function of the multipath fading parameter (m)
over correlated Fisher–Snedecor F fading channels.

decreases gradually as m grows for all scenarios. Especially
for the smaller values of m, this gain degrades quite rapidly.
For different shadowing parameters (n = 2, 5, and 25) when
ρG = ρN = 0.5 and γ̄1 = γ̄2, it is interesting to note that
the average SNR gain decreases from the heavy shadowing
(n = 2), the moderate shadowing (n = 5) to the light
shadowing (n = 25). These results show that the SC system
would like to choose one branch with the maximum SNR
and hold it when the channel conditions get better (m and/or
n increase) and two branches have high SNR. Likewise,
the average SNR gain also degrades as only the correlation
coefficients (ρG and/or ρN ) increase with the fixed values of
other parameters. It may be explained that the increase of the
correlation coefficients leads to the worse received signals,
and the average output SNR of the SC system tends to that
of a single branch (i.e., without diversity). In particular, for
the uncorrelated case (ρG = ρN = 0), the average SNR
gain reaches its maximum limit. Whereas for the unequal
correlation coefficient cases, namely ρN = 0.2, ρG = 0.7
and ρN = 0.7, ρG = 0.2, the average SNR gain of the
former is higher than that of the latter for the lower values
of m, which indicates the small-scale correlation coefficient
(ρN ) shows a larger influence on the system performance than
the shadowing correlation coefficient (ρG) at the high fading
severity. As expected, for the unbalanced average SNR per
branch, the case of γ̄2 = 1.25γ̄1 obtains a larger SNR gain
than the case of γ̄2 = 0.75γ̄1.
On the basis of (24), Fig.3 illustrates the AoF of

dual-branch SC system as a function of the multipath fading
parameter (m) for various channel conditions over corre-
lated Fisher–Snedecor F fading channels. As expected, it is
observed that the values of the AoF show similar behaviors
as the average SNR gain in Fig.2 as m and/or n increases.
On the contrary, the AoF increases with the increase of
the correlation coefficients (ρG = ρN = 0, 0.2, 0.5, 0.7).
This is because the system performance degrades when the
correlation coefficients get larger. Whereas for the unequal
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FIGURE 3. AoF of dual-branch SC system as a function of the multipath
fading parameter (m) over correlated Fisher–Snedecor F fading channels.

correlation coefficient cases, namely ρN = 0.2, ρG = 0.7
and ρN = 0.7, ρG = 0.2, the AoF value of the former
is smaller than that of the latter for the lower values of m,
and a similar result has been obtained in Fig.2. In addition,
the AoF value of the unequal SNR cases (γ̄2 = 1.25γ̄1 and
γ̄2 = 0.75γ̄1) is higher than the one of the equal SNR case
(γ̄1 = γ̄2), and this indicates the latter can improve the
system performance. For comparison purposes, the AoF of
the dual-branch MRC system is also presented. It is evident
that the AoF of MRC has a lower value than that of SC, and
the MRC system can provide better system performance. It is
due to the fact that the output SNR of the MRC system is
the sum of the average SNR of two branches, while that of
the SC system is the maximum one. Furthermore, it can be
seen from Fig.3 that the maximum value and the minimum
value of AoF occur as n = 3 and n = 25. This result shows
that the shadowing parameter causes more effect on the AoF
by comparing them with the correlation coefficients and the
unequal SNR.

By using (19), the outage probability of dual-branch SC
receiver is plotted in Fig. 4 as a function of the average output
SNR (γ̄ ) per branch with the outage threshold γth = 0dB
over correlatedF composite fading channels. As anticipated,
the OP gets better as m (m = 1, 2, 3) and/or n (n = 2, 5, 25)
increases, and/or as the correlation coefficients (ρG = ρN =
0.9, 0.7, 0.5, 0.2) reduce when a moderate scenario (m = 2,
n = 5, ρG = ρN = 0.5) is assumed as a benchmark. In par-
ticular, the small-scale fading parameter (m) has an important
impact on the slope of the OP performance, namely, the larger
the value of m, the larger the curve slope. On the other hand,
the shadowing parameter and the correlation coefficients have
an impact on the coding gain of the OP performance in the
high SNR region, as shown in (63-a). Whereas the increase
of the shadowing parameter leads to a larger coding gain
than the decrease of the correlation coefficients. Likewise,
by using (48), Fig.5 depicts the OP of dual-branch MRC
receiver as a function of the average output SNR (γ̄ ) per

FIGURE 4. Outage Probability of dual-branch SC system as a function of
the average SNR with γ th = 0dB over correlated F composite fading
channels.

FIGURE 5. Outage Probability of dual-branch MRC system as a function
of the average SNR with γ th= 0dB over correlated F composite fading
channels.

branch with the outage threshold γth = 0dB, n = 5 and ρG =
ρN = 0.5. It can be seen from Fig.5 that the OP significantly
improves with the increase ofm. As expected, the OP ofMRC
outperforms that of SC, and the uncorrelated case (ρG =
ρN = 0) provides the best system performance under all con-
sidered communication scenarios. However, the lower bound
of the OP of the MRC receiver remains relatively loose in
whole SNR regimes regardless of the value of m. In addition,
the asymptotic results are also presented in Fig.4 and Fig.5.
We can observe that the asymptotic results keep tight with the
exact results at high average SNR values. Interestingly, it is
noted that the asymptotic results can rapidly converge to the
exact results with the smaller values ofm and/or the correlated
level, and/or the larger value of n.

Based on (27), Fig.6 plots the ABEP of DPSK for dual-
branch SC receiver as a function of the average SNR per bit
in the same communication scenarios as those used in Fig.4.
In Fig.6, the exact analytical results, the asymptotic results,
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FIGURE 6. Average BEP of DPSK of dual-branch SC system as a function
of the average SNR over correlated F composite fading channels.

FIGURE 7. Average BEP of BPSK and BDPSK of dual-branch SC and MRC
systems as a function of the average SNR over correlated F composite
fading channels.

and the simulations are presented, respectively. As expected,
we can obtain the same conclusions as those in Fig.4 from
these results. In Fig.7, we demonstrate the ABEP perfor-
mance of BPSK and DPSK for dual-branch SC and MRC
receivers as a function of the average SNR per bit in a
moderate fading and shadowing scenario (m = 2 and n = 5).
For comparison purposes, it is observed from Fig.7 that the
ABEP of MRC receiver outperforms that of SC receiver, and
the ABEP of BPSK is better than that of DPSK because
the differential modulation can result in more performance
loss than the coherent one. Moreover, the uncorrelated case
(ρG = ρN = 0) shows the best system performance.

Furthermore, Fig.8 and Fig.9 plot the ASEP of MPSK and
MQAM for dual-branch SC and MRC as a function of the
average SNR per symbol in the case of m = 2, n = 5 and
ρG = ρN= 0.5. It is clear that the ASEP performance of SC
andMRC diversity systems improves as the average SNR per

FIGURE 8. Average SEP of MPSK of dual-branch SC and MRC systems as
a function of the average SNR over correlated F composite fading
channels.

FIGURE 9. Average SEP of MQAM of dual-branch SC and MRC systems as
a function of the average SNR over correlated F composite fading
channels.

symbol grows, and degrades because the distances among the
symbols get smaller with the increase of the value of M .
On the basis of (37) and (54), the average capacity per

unit bandwidth of SC and MRC receiver versus the first
branch average SNR is plotted in Fig.10 for several different
communication conditions. From Fig.10 (a) to Fig.10 (d), it is
evident that the average capacity improves with the increase
of the value of m, n and/or γ̄1, respectively. However, the
increase of the correlation coefficients leads to the reduction
of the average capacity. For the unequal average SNR case,
the larger the value of γ̄2, the larger the average capacity. This
is because the SC system is apt to choose the second branch as
its output. On the other hand, the increasing trends of average
capacity become slight when the value ofm and/or n becomes
larger, and/or when the value of the correlation coefficient
becomes smaller. These results suggest these parameters have
no dominating impact on the average capacity. Moreover,
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FIGURE 10. Average capacity per unit bandwidth of SC and MRC
receivers versus the first branch average SNR over correlated F
composite fading channels.

FIGURE 11. LCR·Ts of a sampled correlated F composite fading envelope
as a function of the specified level µ with �i = 1

(
i = 1,2

)
.

the average capacity of dual-branch MRC is higher than that
of the dual-branch SC receiver in all cases.

Finally, Fig.11 illustrates the LCR·Ts as a function of the
specified lever µ with �i = 1(i = 1, 2) for several different
communication scenarios as those used in Fig.4. As it was
expected, when the other parameters are fixed, the LCR

decreases obviously with the increase of the value of m. This
demonstrates that the fades take place less frequently when
the fading severity reduces (i.e., m increases). Moreover,
the shape of LCR gets narrower and falls fast on both sides
as the value of m grows, which may be explained by the fact
thatm characterizes the fast fading of the instantaneous signal
envelope. On the contrary, the correlation coefficients show
less effect on the LCR at lower threshold levels whereas the
LCR decreases slightly as the correlation coefficients grow
at higher threshold levels. The former can be corroborated
since the first term without the correlation coefficients in (57)
plays amore important role in the final results than the second
term, and the latter is because two successive sampling values
of the envelope tend to be identical and result in the second
term larger with the increase of the correlation coefficients.
As compared to the correlation parameters, the shadowing
parameters constitute a more significant impact on the LCR
across all the threshold levels. However, it is interesting to
note that the LCR decreases quickly as the shadowing varies
from heavy (n = 2) to light (n = 25) at higher threshold
levels. This is because the shadowing parameter depicts the
slow fading of the instantaneous signal envelope and hasmore
influence on the power mean value of the signal envelope.
In Fig.12, we plot the ADF/Ts versus the specified lever µ
with �i = 1(i = 1, 2) under these same scenarios as Fig.11.
Since LCR and AFD are inversely proportional, some similar
conclusions can be also obtained. It is interesting that these
curves show a floor effect at lower threshold levels. This is
due to the fact that the least value of a fading duration is Ts
(one sampling period), this is to say, the value of ADF/Ts
tends to 1.

FIGURE 12. ADF/Ts of a sampled correlated F composite fading
envelope as a function of the specified level µ with �i = 1

(
i = 1,2

)
.

VII. CONCLUSION
In this paper, we investigated a bivariate Fisher–Snedecor
F composite distribution with identical shaping parameters.
The novel theoretical representations including the joint PDF,
the joint CDF, and the joint moments for this distribution
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were derived. Based on these theoretical results, we analyzed
the performance of dual-branch SC and MRC receivers over
correlated Fisher–Snedecor F composite fading channels
and evaluated the LCR and the AFD of a sampled Fisher-
Snedecor F composited fading envelope. Simulation results
matched well with the numerical analysis and confirmed the
validity of the theoretical expressions under various corre-
lated fading and shadowing scenarios.

APPENDIX A
Let x = sin2θ and dx = 2sinθcosθdθ , then by insert-
ing (25) in (28), and after some necessary changes of vari-
ables, (28) can be written as

Pe(E)

=

∞∑
k=0

∞∑
l=0

ρkNρ
l
Gφ[0(m)0(n)]

−1

k!l!2π0(k + m)0(l + n)

×

(
1∑
i=0

(
ηi+1

g

)m+k ∫ 1

0
xm+k−0.5(1− x)−0.5ϒ1dx

)
,

(A-1)

where ϒ1 = G0,1:1,1:1,2
1,0:1,1:2,2[

xηi+1
g ,

xη2−i
g |

1−(m+k)
− |

1−λ
0 |

1−(n+l),1
m+k,0 ].

Based on the alternative definition of the bivariate Meijer
G-function in [47, eq.(13.1)], ϒ1 can be expanded as

ϒ1 =

(
1
2π j

)2 ∫
C1

∫
C2

0(m+ k + t1 + t2)0(t2)
0(1+ t2)[0(n+ l + t2)]−1

×
0(λ+ t1)0(−t1)
[0(m+ k − t2)]−1

(
xηi+1
g

)t1 (xη2−i
g

)t2
dt1dt2,

(A-2)

where j =
√
−1 and Ci denotes the ith appropriate contour

which starts at the point τi− j∞ and goes to the point τi− j∞
with τi is a constant value, i ∈ {1, 2}.
Therefore, the integral term with respect to x in (A-1) with

the aid of [43, eq.(3.191.3)] can be obtained as

ϒ2 =

∫ 1

0
xm+k+t1+t2−0.5(1− x)−0.5dx

=

√
π0(m+ k + 0.5+ t1 + t2)
0(m+ k + 1+ t1 + t2)

. (A-3)

By using (A-1) and (A-2), and the alternative definition
of the bivariate Meijer G-function, after some mathematical
manipulations, (29) can be obtained.

APPENDIX B
Let x = sin2θ, dx = 2sinθcosθdθ , then by inserting (25) in
I2, and after some necessary changes of variables, I2 can be
written as

I2=
∞∑
k=0

∞∑
l=0

ρkNρ
l
Gφ[0(n)0(l+n)]

−1

k!l!2π0(m)0(k+m)

(
1∑
i=0

(
ηi+1

gpsk

)m+k
· I3

)
(B-1)

where I3 =
∫ z
0 x

m+k−0.5(1− x)−0.5ϒ3dx, z =sin2(π
/
M)z =

sin2(π
/
M ), ϒ3 can be obtained by replacing g in (A-2)

with gPSK . Therefore, the integral term with respect to x in
I3 with the aid of [43, eq.(8.391)] can be obtained as

ϒ4 =
∫ z
0 x

m+k+t1+t2−0.5(1− x)−0.5dx

= Bz(m+ k + t1 + t2 + 0.5, 0.5), (B-2)

where Bx(·, ·) is the incomplete beta function defined in
[43, eq.(8.391)]. To obtain the solution of the integral term
I3 in (B-1), we use the identity [57, eq.(06.19.26.0010.01)] to
represent Bx (·, ·) in (B-2) in terms of the definition of Meijer
G-function. To this end, ϒ4 can be yielded as

ϒ4=
zm+k+t1+t2+0.5
√
π

1
2π j

∫
C3

0(0.5+m+k+t1+t2+t3)
0(1.5+m+k+t1+t2+t3)

×0(0.5+ t3)0(−t3)(−z)t3dt3. (B-3)

We combineϒ3 andϒ4 into I3, and use the definition of the
multivariable Fox’s H-function in terms of multiple Mellin–
Barnes type contour integral defined in [49], and after some
mathematical manipulations, I3 can be re-expressed as

I3 =
zm+k+0.5
√
π

H0,2:1,1:1,2:1,1
2,1:1,1:2,2:1,1 [

zηi+1
gpsk

,
zη2−i
gpsk

,−z

|
(0.5−m−k:1,1,1),(1−m−k:1,1,0)
(−0.5−m−k:1,1,1) |

(1−λ:1)
(0:1) |

(1−n−l:1),(1:1)
(m+k:1),(0:1) |

(0.5:1)
(0:1) ],

(B-4)

where Hm,n:m1,n1:···:m3,n3
p,q:p1,q1:···:p3,q3 [·|·] denotes a triple-variable Fox’s

H-function defined in [49]. By substituting (B-4) into (B-1),
the analytical expression of (36) can be obtained.

APPENDIX C
Based on the definition of the univariate Meijer G-function
in [44], (41) can be expanded as

MγMRC (s) =
∞∑
k=0

∞∑
l=0

ρkNρ
l
Gφ[0(n)0(l + n)]

−1

k!l!0(m)0(k + m)

×

(
1
2π j

)2 ∫
C1

∫
C2

2∏
i=1

(
s
ηi

)ti
0(−ti)

×0(n+ l − ti)0(m+ k + ti)dt1dt2. (C-1)

By substituting (C-1) in (47), and after some mathematical
manipulations, (47) can be rewritten as

FγMRC (γ )=
∞∑
k=0

∞∑
l=0

ρkNρ
l
Gφ[0(n)0(l + n)]

−1

k!l!0(m)0(k + m)

×

(
1
2π j

)2 ∫
C1

∫
C2

(ϒ5)

2∏
i=1

(ηi)
−ti

×0(m+k+ti)0(n+l−ti)0(−ti)dt1dt2 (C-2)

where ϒ5 =
1
2π j

∫
C3
s(t1+t2)−1 exp(sγ )ds.

Let s = jx in ϒ5, and by using [43, eq.(8.315.2)], ϒ5 can
be calculated as

ϒ5 =
γ−t1−t2

0(1− t1 − t2)
. (C-3)

By inserting (C-3) in (C-2), and using the definition of
the univariate Meijer G-function again, after some algebraic
manipulations, (48) can be obtained.
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APPENDIX D
By using the definition of the Gauss hypergeometric function
[43, eq. (9.100)], (62-a) can be rewritten as

Pout (γth)

≈
φγ 2m

th (η1η2)m

mB2(m, n)

∞∑
k=0

(m+ n)k (m+ n)k
k!(m+ 1)k (m+ k)

×

(
ρNη1η2γ

2
th

)k
2F1(m+n+k,m+n+k; n; ρG). (D-1)

where (x)p is the Pochhammer’s symbol defined in [43,
p.xliii], (x)p = 0(x + p)

/
0 (x) , with p ∈ N. As γ̄i → ∞,

we ignore the higher-order terms of γ̄i (k ≥ 1), the above
expression can be further approximated as

Pout (γth)≈
φγ 2m

th (η1η2)m

m2B2(m, n) 2F1(m+n,m+n; n; ρG). (D-2)

As γ̄1 = γ̄2 = γ̄ , (D-2) can be simplified as

Pout (γth) ≈
φ2F1(m+ n,m+ n; n; ρG)(9γth)2m

m2B2(m, n)γ̄ 2m , (D-3)

where 9 = m(1−ρG)
/
(n− 1)(1− ρN ). Based on the form

of (59), (D-3) can be rewritten as (63-a).
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