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ABSTRACT Extreme value modelling of peak load process is critical to the reliable specification of power
generation, distribution and maintenance purposes during both peak and off-peak periods. In this study,
a frequency assessment of extreme peak electricity demand for the four seasons of the year using South
African data for the period, January 1997 to December 2013 is carried out. A point process approach
from extreme value theory is proposed as an ingenious extreme value theory approach. The data are made
stationary by using a time-varying threshold which has a positive shift factor. The non-linear detrended
datasets are then grouped into summer, spring, winter and autumn according to the calendar dates in the
Southern Hemisphere. The datasets were declustered to keep the series relatively independent using Ferro
and Segers automatic declustering method. A stationary point process model is then fitted to each of the
cluster maxima. Themodelling framework, which is easily extensible to other peak load parameters, assumes
that peak power follows a Poisson point process. The parameters of the developed model are estimated
using the maximum likelihood method. Empirical results show that daily peak electricity demand could be
experienced approximately 27, 16, 7 and 15 days per year in winter, spring, summer and autumn, respectively.
The modelling approach could assist system operators of utility companies in scheduling maintenance of
generating units including long term planning.

INDEX TERMS Extreme value theory, daily peak electricity demand, peaks-over threshold, maximum
likelihood estimation, point process.

NOMENCLATURE
ARMA Autoregressive moving average
DJF December January and February
EIEs Energy-intensive enterprises
ESKOM South African power utility company
EVT Extreme value theory
DPED Daily peak electricity demand
DJF December, January, February
GEVD Generalised extreme value distribution
GEV Generalised extreme value
GPD Generalised Pareto distribution
GSP Generalised single Pareto
LCL Lower control limit
JJA June, July, August
MAM March, April, May
MLE Maximum likelihood estimation
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POT Peaks over threshold
PP Point process
QQ Quantile to quantile plot
RL Return level
SON September, October, November
UCL Upper control limit

I. INTRODUCTION
Since 1994, the increased electricity demand driven by
population growth and industrialisation has led to sustainabil-
ity issues in South Africa. The electricity generating capac-
ity does not show potential signs of meeting the country’s
demand and this has impacted negatively on the national grid.
As a result, the national grid has been operating in a risky
and vulnerable state, leading to disturbances such as load
shedding in the past decade. In particular, it is of greater
interest to have sufficient information about the extreme value
of the stochastic load processes in time for proper plan-
ning, designing the generation and distribution system and
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storage devices. Effective planning ensures efficiency in the
electrical energy sector and consequently maintains disci-
pline in the national grid system.

A point process characterisation of extremes is presented
in the paper. The study illustrates the importance of the mod-
elling approach using daily peak electricity demand (DPED)
data from South Africa. Extreme value models are normally
used to describe the distribution of rare events. The univariate
extreme value theory (EVT) is now relatively standard to
model the tail of the distribution of a scalar random vari-
able. Typically, an asymptotically motivated extreme value
model is applied to approximate the tail of some popula-
tion distribution. High electricity demand is normally driven
by very low (winter) and very high temperatures (summer)
([1], [2]; among others).

A. BACKGROUND
The motivation behind this study stems from the need to
assess the magnitude and frequency of occurrence of extreme
peak electricity demand over a specified threshold using
South African electricity data for each of the four seasons of
the year, i.e. winter, spring, summer and autumn, respectively.
Both grid companies and large consumers want to estimate
their electricity consumption in the future, to ensure secured
and economic system operation ( [3]). Reference [4], further
claim that, in many cases, energy-intensive enterprises (EIEs)
have their generating plants, thus forming a grid. Notably,
in many industrialised countries, electrical energy consump-
tion in EIEs constitute a significant part of the country’s total
energy use ([4]).

To have a better understanding of the frequency of occur-
rence of extreme peak loads it is important to focus on the
upper tail of the distribution of electricity demand. Modelling
the residual tail distribution of peak electricity demand may
help system operators and forecasters understand better how
extreme events, such as heatwaves, prolonged heavy snowfall
may affect load forecasts ( [5]). Such events can create a surge
in electricity demandwhichmay affect the stability of the grid
leading to possible brownouts including blackouts and load
shedding. On the same note, [6] argue that the reliability of a
network grid could be improved through an assessment of the
frequency of occurrence of extreme peak electricity demand.
These studies used either the block maxima approach or the
peaks over threshold (POT) approach.

In their study, [7] outlined the use of the block max-
ima approach to estimate the maximum load forecast errors
(residuals), up to several decades ahead to assess the risk
inherent in long-term electricity demand projection taking
into account climate effects. The study discussed the max-
imum residuals in terms of return levels and return periods
that would occur with a finite time series. Empirical results
showed that using a generalised extreme value (GEV) model,
the number of return observations exceeding a given return
level was in line with what was predicted.

Reference [2] presented work on modelling extreme peak
electricity demand during a heatwave period. A frequency

analysis of the occurrence of monthly cluster maxima of
peak electricity demand was carried out. Areas for future
study were then proposed. Our paper extends this work to
frequency analysis of extreme peak electricity demand in the
four seasons of the year. Reference [8] suggested the use
of the generalised Pareto distribution (GPD) to explain how
extreme electricity demand changes with time in the United
Kingdom. The main idea underlying their study was to allow
the GPD parameters to vary linearly and in a non-stationary
sinusoidal manner. This was done to capture some patterns
exhibited by electricity demand data.

A hybrid model called an autoregressive moving
average-exponential generalised autoregressive conditional
heteroscedasticity-generalised single Pareto (ARMA-
EGARCH-GSP) was developed in [9]. The model was used
for estimating extreme quantiles of inter-day increases in
peak electricity demand. The authors carried out a compar-
ative analysis with an ARMA-EGARCH model. Empirical
results from this study showed that for estimating extreme
tail quantiles the ARMA-EGARCH-GSP outperformed the
ARMA-EGARCH model. The current paper focuses on the
use of point processes in the assessment of the occurrence of
extreme peak loads.

The point process characterisation of extremes introduced
by [10] has been used by several authors and researchers
including [11]–[13] who emphasised the importance of a
point process technique in EVT modelling. The two main
features of the point process (PP) are singled-out: firstly,
the PP provides the analysis of extremes through merging
the block maxima and POT approaches; secondly, the point
process is more associated with the variations in the excesses
above the threshold than the peaks-over-threshold approach
([12], [13]; among others).

A characterisation of extreme peak loads using point pro-
cesses is presented in [14]. The study was then extended to
power system reliability. Modelling and assessment of the
risk of electricity peak loads using EVT are discussed in [15].
The authors present a detailed discussion of how EVTmodels
can be used to forecast electricity peaks on a low voltage
network. In a related study, [16] propose the use of point
processes in modelling and forecasting of extreme electricity
demand. The authors argue that their modelling approach is
not only flexible and realistic but also that consistent outcome
can be guaranteed.

Reference [11] applied the EVT in modelling the envi-
ronmental data that were captured in Houston, Texas.
The non-stationary generalised extreme value distribu-
tion (GEVD), non-stationary generalised Pareto distribu-
tion (GPD) as well as the point process were used. The
study aimed to investigate the existence of a trend in the
data which consisted of hourly measurement of ozone from
April 1973 to December 1986. The study aimed at estimating
the frequency with which specified high levels are exceeded.
Reference [11], concluded that there was a downward trend
in the crossing rates at high levels. This indicates that the
work of the regulatory bodies has a significant effect by
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at least reducing the frequency of the occurrences of high
emissions and without such regulations, one could argue that
there would be an increasing trend.

B. RESEARCH HIGHLIGHTS
The main highlights of this study are as follows: The main
contribution of this paper is the estimation of the intensity
function of the point process which measures the rate of
occurrence of daily peak electricity demand per year. The
knowledge of the intensity function coupled with the 95%
return level estimation could be useful to Eskom, the South
African power utility company in ensuring stability in the
grid system. In this study, the focus was on the frequency
of occurrences of extreme peak electricity demand in each
of the four seasons of the year, i.e. winter, summer, spring
and autumn following the calendar dates in the South-
ern Hemisphere. Use of the reparameterisation approach of
the Poisson-generalised Pareto distribution has shown that
extreme daily peak electricity demand could be experienced
approximately 27, 16, 7 and 15 days per year in winter,
spring, summer and autumn, respectively. The modelling
approach could assist system operators of utility companies
in scheduling maintenance of generating units including long
term planning for capacity expansion.

The rest of the paper is organized as follows: Section 2
presents the models. The empirical results are presented in
Section 3. Section 4 presents the discussion of the results
while Section 5 concludes with policy implications.

II. METHODOLOGY
A. POINT PROCESS CHARACTERISATION OF EXTREME
DAILY PEAK ELECTRICITY DEMAND
In the analysis of unusual events, EVT provides three impor-
tant approaches. Firstly, the block maxima approach approx-
imates the parent distribution’s tail with distribution for the
maxima over time blocks of equal size ( [17]). The second
is the peaks-over-threshold (POT) approach which approxi-
mates the behaviour of extremes with distribution for the val-
ues over a sufficiently high threshold. The point process (PP)
is the third and it unifies the first two approaches ( [11], [12]).
The PP describes the occurrences in time or space and can
be used to model threshold excesses as occurrences in time.
The study made use of the stationary PP characterisation of
extreme peak loads.

Electricity data exhibit a large degree of non-stationarity,
hence, the data is initially made stationary by non-linear
detrending. The study covers stationary dependent series and
the use of extremal mixture models where a non-parametric
kernel density is fitted to a fixed threshold on the positive
exceedances above a time-varying threshold. The extremal
index which is the measure of dependence or independence
structure of the daily peak electricity data is estimated.

The PP statistical approach was introduced by [11],
although the fundamental probability theory upon which
it derives had already existed in literature. The modelling

framework of [18] illustrated that more light can be shared
on PP using the viewpoints of EVT. Under this modelling
framework, the times at which high-threshold exceedances
occur and the excess values over the chosen threshold are
unified into one process based on a two-dimensional plot of
exceedance times and values instead of considering the two
events as separate processes. Here, the asymptotic theory of
threshold exceedances shows that under suitable normalisa-
tion, this process behaves like a non-homogeneous Poisson
process. As explained in [19] and discussed in detail by [20],
a PP is a stochastic model of points that are randomly scat-
tered in some space, where the points may denote times of
phenomena or location of objects that are characterised by a
stochastic system. According to [11], [12], a PP serves as an
approach for unifying and extending EVT modelling based
on both block maxima and threshold methods.

In order to fit a PP model, the block maxima
Mn = max{X1,X2, . . . ,Xn} should be distributed with the
GEVD for the normalizing constants {an > 0} and bn. This
leads to the sequential point process Tn on R2 which is given
in Eq. (1).

Tn =
{(

i
(n+ 1)

,
(Yi − bn)

an

)
, i = 1, .., n

}
(1)

such that an axis of time passes through the closed interval
(0, 1); and the second point ensures stability in the occurrence
of extremes as n→∞ such that on [0, 1]× [τ,∞], Kn→ K
as n → ∞, where K is a heterogeneous Poisson process as
emphasized in [13], [19], [20]. For a higher threshold, τ and
for a given space of the form A = [0, 1] × (u,∞), all the
values of Tn possess a p chance of happening within A, where

p = P
{
Xi − bn
an

> τ

}
≈

1
n

[
1+ ξ (

τ − µ

σ
)
]−1/ξ

. (2)

As the binomial mass approaches the limiting Poisson dis-
tribution, then as n → ∞, Tn(A) obeys Poi(3(A)) such
that for all spaces that satisfy A = [t1, t2] × (u,∞), with
[t1, t2] ⊂ [0, 1], the limiting distribution of Tn(A) is also
Poi(3(A)), where

3(A) =


(t2 − t1)

[
1+ ξ

(
x − µ
σ

)]− 1
ξ

ξ 6= 0

(t2 − t1)exp
[
−

(
x − µ
σ

)]
ξ = 0

(3)

occurs as a homogeneous result of the process in the direc-
tion of time as emphasized in [13], [19]. The corresponding
intensity function is then given as given in Eq. (4):

λ(x) =


1
σ

[
1+ ξ

(
x − µ
σ

)]− 1
ξ

ξ 6= 0

1
σ
exp

[
−

(
x − µ
σ

)]
ξ = 0

(4)

Normally a scaling factor nx which denotes the number
of years of observations to the intensity function is used.
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This results in the estimation of the GEVD parame-
ters, µ, σ, ξ . The intensity measure is then defined as given
in Eq. (5).

3(A) =


nx(t2 − t1)

[
1+ ξ

(
x − µ
σ

)]− 1
ξ

, ξ 6= 0

nx(t2 − t1)exp
[
−

(
x − µ
σ

)]
, ξ = 0

(5)

Let the PP Pn be defined on the space A = (0, 1] × [τ,∞)
with corresponding intensity measure 3(A; θ ) as defined
in Eq. (5). Given that the probability density (pdf ) of the
points of a Poisson process in a set A, then the likelihood
function is given as (Coles, 2001):

L(θ; x1, . . . , xn) = exp {−3(A; θ )}
(A; θ )nτ

nτ !

nτ∏
i=1

λ(Xi; θ )
3(A; θ)

,

(6)

where 3(A; θ ) =
∫
A λ(Xi; θ )dx. This results in the gener-

alised likelihood function given as

L(τ, µ, σ, ξ |x)

∝



exp

{
−nx

[
1+ ξ

(
τ − µ

σ

)]− 1
ξ

}

×

∏nτ

i=1

1
σ

[
1+ ξ

(
τ − µ

σ

)]− 1
ξ
−1

, ξ 6= 0

exp
[
−nxexp

(
τ − µ

σ

)]
×

∏nτ

i=1

1
σ
exp

[
−

(
x − µ
σ

)]
, ξ = 0

(7)

B. THRESHOLD SELECTION, STATIONARITY AND
DECLUSTERING
If the observations x1, . . . , xn represent the independently and
identically distributed (i.i.d) average daily peak electricity
demand and suppose τ denote an arbitrarily and sufficiently
high threshold, then the observations x1, . . . , xk are the
k positive residuals above the sufficiently high threshold τ if
xi : xi > τ and the observations yj = xi − τ , for i = 1, . . . , k
are the threshold excesses ( [12]).

Reference [12] also emphasizes that the selection of thresh-
old processes is always a trade-off between the bias and vari-
ance and, if the chosen threshold is too small, it violates the
asymptotic properties underlying the derivation of the GPD.
However, if the chosen threshold is too high, the excesses
(x − τ ) above the threshold becomes too small to estimate
the shape and the scale parameters, leading to high variance.
Hence the threshold selection requires proper analysis to
determine whether the limiting model provides a sufficiently
good approximation versus the variance of the parameter
estimates.

There are numerous diagnostic models used to determine
the threshold, such as, the Pareto quantile plot, mean excess
plot, threshold stability plot, extremal mixture plots among
others. In this study extremal mixture models discussed

in [21] are going to be used. A standard kernel density estima-
tor representing the bulkmodel and the tail model represented
by the PP or the GPD is discussed in [21]. The distribution
function is given by [21]:

F(x|X , α, τ, στ , ξ, φτ ) =


(1− φτ )

H (x|X , α)
H (τ |X , α)

,

x ≤ τ,
(1− φτ )+ φτ × G(x|τ, στ , ξ ),
x > τ,

(8)

where H (.|X , α) is the distribution function of the kernel
density estimator, α is the band width, τ is the threshold,
ξ denotes the shape parameter (extreme value index),
στ represents the scale parameter for the exceedances and
φτ is the estimated sample proportion of the data above τ ,
calculated as φτ =

nτ
n .

To ensure homogeneous processes, two main approaches
were used to make the data stationary, i.e. non-linear
detrending and differencing approaches. The data is ini-
tially detrended using a penalised regression cubic smoothing
spline with a positive shift factor given in Eq. (9). See [21] for
details.

η(t) =
n∑
i

(xi − f (ti))2 + λ
∫
(f ′′(t))2dt + τ, (9)

where yi denotes the daily peak electricity demand and
λ is a smoothing parameter and τε< is a shift factor
which should be large enough to accommodate asymptotic
conditions when the PP is fitted to the observations
exceeding τ ([22]). The study uses extremal mixture models
in determining the value of τ and observations above the
time-varying threshold η(t) are extracted without the shift
factor. Following the work by [22], the positive shift factor
τ is estimated using extremal mixture model given in Eq. (9).
Reference [23] emphasised that the use of penalised cubic
smoothing splines as a time-varying threshold has attractive
features such as deseasonalising and detrending at the same
time.

The initial stage is to identify the clusters in the data,
an approach that is commonly known as declustering. The
exceedances will be declustered using the intervals estimator
method discussed in [24]. This will be followed by fitting a
stationary PP model to the cluster maxima.

III. EMPIRICAL RESULTS
A. EXPLORATORY DATA ANALYSIS
The datasets used in this study consist of daily peak electricity
demand (DPED) from Eskom, South African power utility
company. The length of the data is 16 years spanning from
the period, January 1997 to December 2013 constituting
6209 observations. The analysis presented here applies to
the non-linear detrended datasets. The data are divided into
winter, spring, summer and autumn according to the calendar
dates in the Southern Hemisphere. Winter is defined as June,
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July and August (JJA), spring as September, October and
November (SON), summer as December, January and Febru-
ary (DJF) and autumn as March, April and May (MAM).
The Poisson point process model is used in the modelling
of the non-linear detrended DPED data for the four sea-
sons. Table 1 shows summary statistics of DPED data for
the sampling period, January 1997 to December 2013. From
Table 1, Q1, Q2 and Q3 represent the first quartile, second
quartile (median) and the third quartile, respectively. The
DPED data from Table 1 have a mean value less than the
median value, indicating negatively skewed data as confirmed
by the skewed value of −0.248 from the table. The value
of the kurtosis which is 2.295 inferred the distribution of
DPED is platykurtic. A visual inspection of the time series
plot in Fig. 1 shows that the DPED data is non-stationary
and have a high seasonality and a deterministic upward trend.
We divide the non-linear detrended DPED data into four
seasons, winter, spring, summer and autumn according to
the calendar dates in the Southern Hemisphere for yearly
frequency analysis. Figs. 2-5 show plots of the DPED data
from the four seasons superimposed with the time-varying
thresholds (non-linear trend lines). The box plots showing
the distribution of DPED in the different seasons of the year
are shown in Fig. 6. As shown in Fig. 6 the highest demand
for DPED is experienced in winter and the least demand is
in summer. The distributions of demand in various seasons
are important to system operators including decision-makers

TABLE 1. Summary statistics of DPED.

FIGURE 1. Plot of daily peak electricity demand.

FIGURE 2. Spring nonlinear detrending.

FIGURE 3. Spring nonlinear detrending.

FIGURE 4. Summer nonlinear detrending.

in planning for scheduling of the maintenance of generating
units.

Table 2 presents the descriptive statistics of the nonlinear
detrended winter, spring, summer and autumn data set.
In Table 2, Min denotes minimum, Max represents Maxi-
mum, Std Dev is the Standard Deviation, Kurt is Kurtosis and
Skew represents Skewness. All the descriptive statistics were
rounded to the nearest whole number except for kurtosis and
skewness which were rounded to three decimal places.
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FIGURE 5. Autumn nonlinear detrending.

FIGURE 6. Box plots of daily peak electricity demand.

Table 2 representing the descriptive statistics of the win-
ter, spring and autumn DPED show negative kurtosis value
indicating lighter tails and flatter peak than the normal dis-
tribution. The kurtosis of the summer DPED data is positive
meaning that the data are characterised by heavier tails and
sharper peak than the normal distribution. All four datasets
are negatively skewed. A comparative analysis of the four
data sets reveals the spring data have the lowest standard
deviation of 1086.4, inferring that the spring DPED were
closely dispersed around the mean value of 47.86.

In Table 2, Min is minimum, Q1 denotes quartile 1, Q2 is
quartile 2, Max is maximum, StDev is the standard deviation,
Kurt is kurtosis and Skew is skewness.

B. POINT PROCESS ANALYSIS OF THE WINTER, SPRING,
SUMMER AND AUTUMN DPED DATA
1) WINTER DPED
The winter period is defined as a period spanning from
1 June to August 31 (JJA). The original winter series has a

TABLE 2. Summary statistics of detrended winter, spring, summer and
autumn.

length of 1235 observations. The data are initially detrended
using penalised cubic smoothing splines. An initial threshold
is set at zero and only the positive excesses above zero are
considered. The non-parametric extremal mixture model is
fitted to the observations to determine a sufficiently high
threshold (which was found to be τ = 1516) and the
exceedances are then declustered using the intervals estimator
technique discussed in [24]. The PPmodel is then fitted to the
cluster maxima. The parameter estimates are used to compute
the yearly frequency of occurrence of extreme peak DPED
during the winter season. Fig. 7 is the time series plot of
the non-linear detrended DPED winter data together with the
density, normal quantile to quantile (QQ) and box plots.

FIGURE 7. Non-linear detrended winter DPED data.

Fig. 8 shows the threshold estimation with the vertical line
indicating the value of the threshold which was determined
as τ = 1516.

Following the interval estimation method of [24], the esti-
mate of the extremal index is found to be θ̂ = 0.565
(fairly independent stationary process) with the exceedances
occurring in groups of 1.77 ≈ 2 and 47 identified
cluster maxima were observed. The maximum likelihood
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FIGURE 8. The threshold estimation using the non-parametric extremal
mixture model, τ = 1516.

estimates of the stationary point process fitted to the win-
ter cluster maxima with their standard errors in parenthe-
ses are µ̂ = 3149.8(503.7), σ̂ = 174.2(168.1), ξ̂ =
−0.131(0.198). In this study the reparameterisation approach
discussed in [25] is used.

σ̂ ∗ = σ + ξ (τ − µ) and λ̂∗ =
[
1+ ξ

(
τ − µ

σ̂ ∗

)]− 1
ξ

The new scale parameter, σ after reparameterisation is
estimated as:

σ̂ ∗ = 174.232− 0.131(1601− 3149.804)

= 377.125

The intensity of the point process which measures the fre-
quency of the occurrence of the DPED demand is estimated
per year as follows:

λ̂∗ =

(
1− 0.131

(1601− 3149.804)
377.125

)7.633

= 26.732

' 27.

The estimated intensity (λ̂ ' 27), indicates that, DPEDwould
be experienced approximately 27 days in a year.

Fig. 9 shows the diagnostic plots of the PP model fitted
to the cluster maxima for the winter data. Visual inspec-
tion of the plots shows a fairly good fit. The formal good-
ness of fit tests based on Anderson-Darling test statistics A2

and Cramer-Von Mises test statistics W 2 for each data set
were consistent with Poisson GPD with their scale and
shape parameters at 5% level of significance. The results of
each formal test have been summarised in tables found in
appendix B. The test statistics are consistent with the usual
asymptotic arguments underpinning the Poisson GPD the
model.

FIGURE 9. Diagnostic plots of the PP fitted to the winter cluster maxima.

2) SPRING DPED
The spring data spans from 1 September to November 30
(SON). The length of the original series is 963, with thresh-
old τ = 1183, interval estimator of extremal index θ =
0.5822 inferring a fairly independent process as θ is closer
to 1 than 0, run length of 1 and 91 identified cluster maxima
observations. The maximum likelihood estimates with their
standard errors in parentheses are µ̂ = 3708.0(200.0), σ̂ =
109.0(58.4), ξ̂ = −0.183(0.112).

The new scale parameter, σ after reparametrisation is esti-
mated as:

σ̂ ∗ = 109.005− 0.183(2551.408− 3707.971)

= 320.656.

and the intensity is estimated as:

λ̂∗ =

(
1− 0.183

(2551.408− 3707.971)
320.656

)5.4645

= 15.953

' 16.

The estimated intensity (λ̂ ' 16), shows 16 days of extreme
DPED will be experienced per year.

3) SUMMER DPED
The summer DPED is from 1 December to February 28/29
(DJF) of each year depending on whether February is in a
leap year or not. The length of the original series is 905, with
threshold τ = 1125, number of threshold exceedances 74,
interval estimator of extremal index θ̂ = 0.3645 (weak
dependence in the cluster maxima series). The exceedances
occur in groups of 2.74 ≈ 3. The maximum likelihood
estimates with their standard errors in parentheses are µ̂ =
2357.52(98.97), σ̂ = 53.62(23.07), ξ̂ = −0.3894(0.0934).
The new scale parameter, σ after reparameterisation is

estimated as:

σ̂ ∗ = 53.62− 0.3894(1125− 2357.52)

= 533.609.

VOLUME 8, 2020 146111



J. Boano-Danquah et al.: Analysis of Extreme Peak Loads Using Point Processes

and the intensity is estimated as:

λ̂∗ =

(
1− 0.3894

(1125− 2357.52)
533.609

)2.5678

= 5.194

' 6.

The estimated intensity (λ̂ ' 6), indicates that approximately
6 days of extreme DPED will be experienced in a year.

4) AUTUMN DPED
The autumn is for the period 1 March to 31 May of
each year. The estimated threshold is τ = 1550, an esti-
mated extremal index θ̂ = 0.5841 (fairly independent
stationary process) indicating that exceedances occur in
groups of 1.71 ≈ 2 and 44 identified cluster maxima
observations. The maximum likelihood estimates with their
standard errors in parentheses are µ̂ = 2685.1(265.2),
σ̂ = 107.6(79.9), ξ̂ = −0.190(0.2).

The new scale parameter, σ after reparametrisation is esti-
mated as:

σ̂ ∗ = 107.633− 0.190(1513.340− 2685.083)

= 330.264.

The estimated intensity is:

λ̂∗ =

(
1− 0.20.19

(1513.340− 2685.083)
330.264

)5.263

= 15.057

' 15.

The estimated intensity (λ̂ ' 15), shows that approximately
15 days of extreme DPED will be experienced in a year.

Table 3 provides the predictive interval estimates for the
return levels of the winter, spring, summer and autumn data,
respectively. The statistical inference drawn from Table 3
for instance, shows that we are 95% confident that a daily
peak electricity demand of 1656.2 megawatts is likely to be
reached with a lower confidence limit of 1616.9 megawatts
and upper limit of 1695.5megawatts in 20 years for the winter
data. The interval estimates provide sufficient information
to ESKOM, South Africa’s power utility about the extreme
value of the stochastic load process in time for effective
planning and maintenance of the national grid system.

IV. DISCUSSION
The PP characterisation of extreme peak electricity demand is
discussed to model the rate of occurrence of these peaks. The
modelling approach incorporates extremal mixture model for
threshold estimation. The penalised regression cubic smooth-
ing splines were used to stationarise the data. High depen-
dence was observed within the threshold exceedances. The
data was declustered to keep it relatively independent using
the interval method discussed in [24].

The cluster maxima of each of the non-linear detrended
data sets were extracted. This was followed by fitting the

TABLE 3. 95% predictive interval estimates for the return levels.

stationary point process models to the cluster maxima and
the parameters were estimated using the maximum likelihood
estimation method. The maximum likelihood estimates of the
shape parameter (ξ ) are all negative for the four data sets
implying that the Weibull class of distributions is a good
fit for these data. That means that DPED data are bounded
above. The key interest is the frequency analysis of the occur-
rence of extreme daily peak load in each of the four seasons,
i.e. winter, summer, spring and autumn based on the calendar
dates in the Southern Hemisphere. The results show that daily
peak electricity demand could be experienced approximately
27, 16, 7 and 15 days per year in winter, spring, summer and
autumn, respectively. This is consistent with the modelling
framework of [2], [14] with the winter season recording
the maximum daily peak electricity demand. This high peak
value may be due to excessive use of geysers, cookers and
other heating appliances during the winter season. Another
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FIGURE 10. Cluster maxima for winter, spring, summer and autumn DPED data. The dashed
horizontal lines represent the thresholds which are 1516, 1183, 1125 and 1183 for winter,
spring, summer and autumn DPED data, respectively.

appealing contribution is the use of extremal mixture model
for threshold estimation which makes redundant any major
concerns about the trade-off bias-variance aspects of the POT
and PP approaches.

Our modelling framework provides insightful feedback to
electric power generating companies about the quantity of
electricity to be reserved for the off-peak seasons on the
national grid system if a reliable assessment of the extreme
load levels and predictive distribution beyond the range of
available data is of interest. Electricity is a key commodity
used mainly as a source of energy in industrial, residen-
tial and commercial sectors. Effective monitoring of elec-
tricity demand is of great importance because demand that
exceeds maximum power generated may lead to a power out-
age and load shedding. Consequently, decision-makers and
demand-side managers should play a key role in managing
the behavioural change in electricity usage, especially dur-
ing peak seasons. Viable demand response strategies can be
designed and implemented, wherein consumers are exposed
to day time-based electricity pricing incentives.

V. CONCLUSION
This paper presented an application of the point process
models in assessing the rate of occurrence of extreme peak
electricity demand using South African data for the four
seasons of the year. The study provided predictive interval
estimates for the extremal quantiles for each data set. These

FIGURE 11. Spring DPED.

interval estimates can be helpful to ESKOM as they cater to
the uncertainties surrounding the average peak loads.

This study is significant because careful modelling of daily
peak electricity demand is critical to the reliable specification
of power generation, distribution and maintenance in both
peak and off-peak periods. Estimates of the intensity func-
tion with their associated predictive intervals of the extreme
quantiles could be helpful to ESKOM in planning for future
electricity generation. This is very crucial because, over a
long period, management, policy makers and planners must
embrace a probabilistic view of potential peak demand levels
instead of point estimates only. Statistical inference based on
the Autumn data set from Table 3 for instance, shows that a
peak electricity demand of 3066.5 megawatts will be reached
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FIGURE 12. Summer DPED.

FIGURE 13. Autumn DPED.

with a lower confidence level of 2965.1 megawatts and upper
limit of 3167.9 megawatts on average once in 100 years at
5% level of significance. This predictive distribution pro-
vides information about the extreme value of the stochastic
load process in time which can assist ESKOM for proper
planning, designing the generating and distribution system
and storage devices to ensure sanity in the national grid
system. The research is informative as it provides a poten-
tially better warning and much insight into the frequency
analysis of extreme peak electricity demand which can be
helpful to the scientific community, power utility companies
and energy-intensive enterprises for planning and forecasting
during both peak and off-peak seasons.

Warning of extreme peak demand will be more reliable
if future researchers could consider using the discrete-time
Markov Chain (DTMC) and Bayesian estimation with infor-
mative priors to model the daily peak electricity demand.
Covariates such as temperature could also be incorporated in
the case of non-stationary dependent sequences as this study
focused only on the stationary dependent sequences.
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APPENDIX A
FIGURES
Plot 10 shows the cluster maxima for winter, spring, summer
and autumn DPED data. The plots 11 - 13 are the diagnostic

TABLE 4. Goodness-of-fit test statistics for the winter, spring, summer
and autumn DPED data.

plots of the stationary point process model fitted to cluster
maxima of the daily peak electricity data based on the four
seasons.

APPENDIX B
TABLES
Table 4 presents formal goodness-of-fit test statistics
(Anderson-Darling test andCramer vonMises test) for testing
goodness of fit for the models. The null hypothesis is that the
model is a good fit to the data. In all cases the p−values which
are given in column 3 in Table 4 are greater than the level
of significance, α = 0.05, meaning that the null hypothesis
cannot be rejected. Therefore, the models are a good fit to the
data.
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