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ABSTRACT Maritime images captured under low-light imaging condition easily suffer from low visi-
bility and unexpected noise, leading to negative effects on maritime traffic supervision and management.
To promote imaging performance, it is necessary to restore the important visual information from degraded
low-light images. In this article, we propose to enhance the low-light images through regularized illumination
optimization and deep noise suppression. In particular, a hybrid regularized variational model, which
combines L0-norm gradient sparsity prior with structure-aware regularization, is presented to refine the
coarse illumination map originally estimated using Max-RGB. The adaptive gamma correction method is
then introduced to adjust the refined illumination map. Based on the assumption of Retinex theory, a guided
filter-based detail boosting method is introduced to optimize the reflection map. The adjusted illumination
and optimized reflection maps are finally combined to generate the enhanced maritime images. To suppress
the effect of unwanted noise on imaging performance, a deep learning-based blind denoising framework
is further introduced to promote the visual quality of enhanced image. In particular, this framework is
composed of two sub-networks, i.e., E-Net and D-Net adopted for noise level estimation and non-blind noise
reduction, respectively. The main benefit of our image enhancement method is that it takes full advantage of
the regularized illumination optimization and deep blind denoising. Comprehensive experiments have been
conducted on both synthetic and realistic maritime images to compare our proposed method with several
state-of-the-art imaging methods. Experimental results have illustrated its superior performance in terms of
both quantitative and qualitative evaluations.

INDEX TERMS Low-light image enhancement, image restoration, Retinex theory, illumination optimiza-
tion, noise suppression

I. INTRODUCTION
A. BACKGROUND AND RELATED WORK
Maritime images captured under low-light conditions often
suffer from low contrast, poor visibility, and random noise.
The captured low-light images easily fail to reflect valu-
able visual information, which will directly affect the
effectiveness of many vision-based techniques, e.g., object
detection [1], [2], edge detection [3], [4], and visual navi-
gation [5], [6], etc. In practical applications, the low-light
maritime images essentially suffer from the low-intensity
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luminance and noise corruption leading to the degradation
of valuable visual information. To make low-light image
enhancement more available, it is essential to effectively
enhance the luminance contrast and suppress the unwanted
noise. According to the important problems we focus in
this work, we will briefly present the current progresses in
low-light image enhancement and noise suppression.

1) LOW-LIGHT IMAGE ENHANCEMENT
Traditional low-light enhancement methods can be roughly
divided into histogram equalization-based methods, Retinex-
based methods, and dehazing-based methods, etc. The classic
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histogram equalization method [7] has been widely used
in image contrast enhancement due to its advantages of
time-domain processing, simple calculation, and easy imple-
mentation. To further promote the classic histogram equal-
ization, several extended versions have been presented to
produce more robust enhancement results. In the current liter-
ature, these methods can be categorized into global and local
histogram equalization methods. The representative global
histogram equalization methods, e.g., brightness preserv-
ing bi-histogram equalization (BBHE) [8], minimum mean
brightness error bi-histogram equalization (MMBEBHE) [9],
and background brightness preserving histogram equaliza-
tion (BBPHE) [10], etc., were proposed to enhance the flex-
ibility of histogram equalization. These methods established
the dual histogram equalization strategy by decomposing the
original histogram into two histograms to enhance low-light
images. Besides, brightness preserving histogram equaliza-
tion with maximum entropy (BPHEME) [11] proposed a
histogram variation technique, which combined image pro-
cessing theory with optimization theory and functional anal-
ysis. BPHEME could maintain luminance and preserve local
details better compared with MMBEBHE. Many local his-
togram equalization methods were proposed [12]–[15] since
the histogram equalization with a single conversion func-
tion was difficult to enhance contrast in the dark regions.
They thus performed local histogram equalization methods
to enhance the local details. However, these methods often
suffer from noise residue and over-enhancement in practical
applications.

Based on the assumption of Retinex theory [16],
the observed image can be decomposed into the illumina-
tion and reflection maps. The reflection map contains the
intrinsic color and important geometrical structures. In con-
trast, only the illumination map, which is smoothly varying,
contains the luminance information. Early Retinex-based
attempts [17]–[19] tended to adopt the Gaussian filter to
estimate the smooth illumination maps and directly con-
sider the reflection maps as the final enhanced images. The
enhanced results thus have plentiful details and high-intensity
illumination. However, they often ignored the influences of
illumination maps on image enhancement leading to negative
effects in several different ways, such as over-enhancement
and unnaturalness. In order to generate more natural-looking
images, it is particularly important to optimally refine
the illumination map. Kimmel et al. [20] first proposed
a variational framework to estimate the smooth illumina-
tion map. However, the estimation of reflection map is
lacking in the proposed framework leading to limiting the
improvement of image quality. To further improve imag-
ing performance, a low-light image enhancement algorithm
for non-uniform illumination images [21] has been pro-
posed to restore the details and preserve the naturalness.
In [22], a bright channel prior (BCP)-based image restora-
tion method was presented to obtain a satisfactory illumi-
nation map. In particular, BCP could eliminate the black
halo and suppress the color distortion better. Fu et al. [23]

proposed a novel Retinex-based image enhancement method
with illumination adjustment. The proposed method per-
forms well in preserving significant edges in reflection
and properly adjusting illumination. The naturalness preser-
vation and detail enhancement could be correspondingly
generated in the enhanced images. To further promote
image quality, a weighted variational model for simultane-
ous reflection and illumination estimation (SRIE) [24] was
presented. SRIE is able to preserve the estimated reflec-
tion with more details and suppress random noise to some
extent. The quality of enhanced images could be improved
accordingly.

From the statistical point of view, the inverted low-light
images are visually similar to the degraded images captured
under hazy weather conditions. Several methods [25]–[27]
have been proposed based on the assumption of dark channel
prior (DCP) [28], which was originally presented to per-
form image dehazing. In particular, Dehazing-based meth-
ods first inverted the low-light images and then adopted the
improved dark channel prior method to deal with the inverted
images. Furthermore, many strategies, e.g., local smoothing,
Gaussian pyramid operators, block-matching and 3Dfiltering
(BM3D) [29], etc, were employed to improve the image qual-
ity. Finally, the enhanced results could be obtained by invert-
ing the dehazed images again. Dehazing-based enhancement
methods can effectively improve low-light intensities, but
they often fail to further enhance visual quality due to the
lack of theoretical basis.

With the rapid development of deep learning, the con-
ventional neural network (CNN) [30] has been widely
applied in the fields of image processing and computer
vision. The low-light image enhancement has gained great
achievement by taking full advantage of deep learning. For
example, Lore et al. [31] proposed a deep autoencoder-based
learning approach (LLNet), which could identify signal
features from low-light images and adaptively improve
the luminance without over-amplifying the lighter regions.
Chen et al. [32] presented a fully convolutional network
structure to process low-light images with end-to-end train-
ing mode. They fully considered the influences of long
and short exposures on imaging under low-light conditions
to construct the datasets. Therefore, the better enhance-
ment results on realistic low-light images could be pro-
duced accordingly. Furthermore, Hui et al. [33] proposed a
perception-preserving convolution network (PPCN) to learn
the mapping between ordinary photos and DSLR-quality
images. The Retinex-Net [34] was different from other end-
to-end networks, which was composed of a Decom-Net and
an Enhance-Net. In particular, the Decom-Net was employed
to estimate the illumination map, and the Enhance-Net
was employed to adjust the illumination map. It is worth
mentioning that the deep learning-based image enhance-
ment methods are strongly dependent on the volume and
diversity of training datasets. It is often difficult to pro-
duce satisfactory image quality if the training datasets do
not contain the geometrical features existed in images to
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be enhanced. In this work, we will only adopt the deep
learning as a post-processing step to further enhance visual
quality.

2) NOISE SUPPRESSION
The representative traditional denoising methods, e.g.,
adaptive variational method [35], patch-based nonlocal
means (NLM) [36], weighted nuclear norm minimization
(WNNM) [37], and BM3D [29], can effectively eliminate
random noise. However, these methods essentially suffer
from two main drawbacks: (1) time-consuming and often
fail to reduce spatially variant noise; (2) difficult to achieve
satisfactory denoising performance when the noise level is
unknown. The latest generation of deep learning technol-
ogy has achieved remarkable successes in image denois-
ing. For example, the denoising convolution neural network
(DnCNN) [38] was originally proposed to suppress the white
Gaussian noise. DnCNN was committed to obtaining the
mapping function between the input degraded image and
the output noise-free image through the residual learning
strategy [39]. However, the realistic noise is commonly
non-uniform Gaussian distributed, which may be changed
by the spatial domain in practice. To handle this problem,
Zhang et al. [40] proposed a fast and flexible solution for
CNN-based image denoising (termed FFDNet), which could
deal with the spatially variant noise with different levels.
More recently, Guo et al. [41] presented a convolutional blind
denoising network (CBDNet) to boost the blind denoising
performance and improve the generalization ability of net-
work. In particular, the CBDNet was composed of a 5-layer
fully convolutional network and a 16-layer U-Net [42]. The
5-layer fully convolutional network was used to estimate the
noise level, and the 16-layer U-Net was used to suppress
the random noise. Experiments have shown that CBDNet
is capable of generating satisfactory denoising performance
is the case of unknown noise level. In this work, a blind
deep denoising strategy will be adopted as a post-processing
step to optimize the enhanced images to improve image
quality.

B. MOTIVATION AND CONTRIBUTIONS
It is well known that Retinex theory [16] is a crucial assump-
tion in the fields of image processing and computer vision.
Many deep learning-based methods have been proposed
based on this assumption [34], [43]. To make image enhance-
ment more satisfactory, we propose a two-step framework for
low-light image enhancement based on the Retinex theory,
which benefits from the regularized illumination optimization
and deep blind denoising. In particular, the Retinex theory
considers that both illumination and reflection maps jointly
constitute the observed color image. In the current literature,
many regularized variational models [20]–[24], [44] have
been currently adopted to estimate the smoothed illumination
maps. These estimation methods, however, inevitably smooth
the edge structures leading to visual quality degradation.
According to the Retinex theory, the estimated illumination

map should retain the significant edge structures while
smoothing the textural details. To achieve this requirement,
we propose a hybrid regularized variational model, which
combines the L2-norm data-fidelity term, L0-norm gradi-
ent sparsity prior [45], and relative total variation (RTV)
regularizer [46]. The L2-norm data-fidelity term is used to
suppress the generation of outliers. The L0-norm and RTV
constraints can retain the important geometrical structures
and smooth the textural details. To guarantee a stable solution,
the resulting non-smooth optimization problem will be han-
dled using an effective numerical algorithm [47]. Meanwhile,
random noise existed in original low-light images could lead
to visual quality degradation. Many existing methods [34],
[48] proposed to denoise the estimated reflection map to
enhance image quality. However, from an imaging point of
view, the reflection map is significantly different from the
observed original image. The denoising of reflection map
could cause severe color distortions in enhanced images lead-
ing to degraded visual quality. In this work, we will introduce
a blind denoising network to denoise the final enhanced
images to further enhance imaging quality.

In particular, we will propose to incorporate both L0-
norm regularizer and RTV into a regularized variational
model to guarantee more robust illumination refinement.
From a theoretical point of view, the refined illumination
maps, only using L0-norm gradient minimization, easily
suffer from various artifacts, e.g., over-sharpening effects
and under-filtering of high-amplitude textures, etc., [45].
RTV adopted in LIME [48] is effective in removing texture,
but sometimes blurs the major edges. The combination of
L0-norm and RTV could effectively overcome these limita-
tions and improve the illumination refinement results. The
quality of enhanced images can be significantly improved
accordingly. To reduce the effect of random noise on image
enhancement, the deep learning method will be introduced
to blindly remove the unwanted noise with unknown noise
level. However, how to use this deep learning strategy to
enhance image quality is still an important problem. There
are three strategies considered to incorporate deep learning
into low-light image enhancement in this work. We will dis-
cuss the influences of these strategies on image enhancement
and select the best one in our low-light image enhancement
framework.

In the current literature, low-light image enhancement
mainly focuses on indoor screens or outdoor natural images.
Few studies have been conducted on low-light maritime
images. Meanwhile, we find that almost no low-light image
enhancement methods can suppress random noise blindly.
Compared with previous studies, the major contributions of
our work can be summarized as follows

1) A unified image enhancement framework, which
involves illumination refinement, reflection optimiza-
tion, and deep blind denoising, is developed to improve
image quality under low-light conditions. It has the
capacity of enhancing visual quality, blindly reducing
random noise, and suppressing unwanted artifacts.
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2) A hybrid regularized variational model, which com-
bines L0-norm gradient sparsity prior with structure-
aware regularization, is proposed to refine the illumi-
nation map. The proposed model has the capacity of
preserving the significant structures and removing the
textural details during illumination optimization.

3) The quality of enhanced image is further promoted
using a blind denoising framework. This framework is
composed of two sub-networks, i.e., E-Net and D-Net
adopted for noise level estimation and non-blind noise
reduction, respectively. The introduced blind denoising
framework is able to effectively reduce the unwanted
noise under poor imaging conditions.

4) Extensive experiments on both synthetic and realistic
low-light images have demonstrated the superior imag-
ing performance of our proposed enhancement method.
Our method is capable of enhancing the low-light
images and suppressing the unsatisfactory artifacts.

The main benefit of our proposed method is that it takes
full advantage of the regularized illumination optimization
and deep blind denoising. Thus it can effectively enhance
low-light images, suppress unwanted random noise and pre-
serve fine structural details in practice.

C. ORGANIZATION
The remainder of this article is divided into the following
sections. Section II mainly describes the problem formula-
tion related to low-light image enhancement. In Section III,
a hybrid regularized variational model is proposed to refine
the coarse illumination map estimated using Max-RGB.
Section IV is devoted to generating enhanced images, which
are further visually promoted through the blind denoising
framework. Experiments on both synthetic and realistic mar-
itime images are implemented in Section V. Finally, we con-
clude our main contributions in Section VI.

FIGURE 1. The principle of Retinex theory.

II. PROBLEM FORMULATION
In the current literature [49], low-light enhancement methods
are mainly proposed based on the assumption of Retinex the-
ory. The principle of Retinex theory can be visually illustrated
in Fig. 1. The captured low-light image I can be decomposed
as follows

I (x) = R(x) ◦ L(x), (1)

where x ∈ � denotes the pixel with � being the image
domain, L and R represent the illumination and reflection
maps, respectively. The operator ◦ is an element-wise multi-
plication operator. In this work, we assume that all three chan-
nels (i.e., RGB) of color images have the same illumination.
It can be seen from Fig. 1 that only the illumination map L
contains the luminance information affected by light. In con-
trast, the reflection map R essentially contains textural details
and random noise affected by the object and the shooting
process. It is worth noting that two partially magnified views
of the captured image under low-light imaging conditions
in Fig. 1 often suffer from low-intensity illumination and
noise corruption. Therefore, to enhance imaging quality, it is
necessary to estimate and adjust the illumination map, boost
the textural details existed in the reflection map, and suppress
the undesirable noise.

Retinex-based image enhancement methods could be
roughly divided into two categories. The first type considers
the reflection map as the final enhanced image. In particu-
lar, these methods directly remove the illumination map and
optimize the reflection map. Another type tends to recombine
the illumination and reflection maps to restore the low-light
image. To improve imaging performance, they propose to
optimize both reflection and illumination maps. The first type
is not only susceptible to distortion but also easily causes
the over-enhancement problem due to the direct removal of
illumination map. Recent studies have shown that it is more
reasonable to yield satisfactory results by jointly optimizing
both illumination and reflection maps.

The flowchart of our image enhancement method is sum-
marized in Fig. 2. In the first step, a hybrid regularized
variationalmodel is proposed to refine the coarse illumination
map originally estimated using Max-RGB. In the second
step, an adaptive gamma correction method and a guided
filter-based detail boosting method are adopted to optimize
the reflection map. The refined illumination and optimized
reflection maps are combined to generate the final enhanced
images. As a post-processing step, the blind denoising frame-
work is introduced to reduce the unwanted noise to further
improve visual image quality.

III. REGULARIZED ILLUMINATION OPTIMIZATION
The performance of Retinex-based low-light enhancement
method depends, to a great extent, upon the estimation of
illumination map. To obtain a satisfactory illumination map,
we first adopt the Max-RGB method to estimate the coarse
illumination map. The hybrid regularized variational model
is then proposed to further generate the refined illumination
map leading to image quality improvement.

A. COARSE ILLUMINATION MAP USING MAX-RGB
The popular Max-RGB method, widely adopted for coarse
illumination estimation, is essentially related to the dark
channel prior (DCP) [28]. Since the inverted low-light image
(1− I ) looks similar to the hazy image, we can transform the
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FIGURE 2. Flowchart of our proposed method for enhancing low-light maritime images.

atmospheric scattering model (1) as follows

1− I (x) = (1− R(x)) ◦ L̃(x)+ A(1− L̃(x)), (2)

with A being the global atmospheric light. Note that DCP has
been widely used to estimate the transmission map for image
dehazing. Therefore, we still tend to adopt theDCP to initially
estimate the illumination map, i.e.,

L̃(x) ≈ 1− min
c∈{R,G,B}

1− I c(x)
A

= 1−
1
A
+ max

c∈{R,G,B}

I c(x)
A

, (3)

where L̃ is the coarse illumination map, and I c represents the
single-channel image of the RGB image I in channel c ∈
{R,G,B}. Please refer to [28] for more details on DCP-based
transmission map estimation. We consider that all three chan-
nels (i.e., RGB) of color images have the same illumination.
The intensities in low-light images will significantly become
large in hazy images after inversion. From a statistical point of
view, the global atmospheric light A is close to 1. In this work,
we roughly set A = 1 since the inverted low-light image is
similar to the hazy image. Eq. (3) can thus be rewritten as
follows

L̃(x) ≈ max
c∈{R,G,B}

I c(x), (4)

which will be directly adopted to estimate the coarse illumi-
nation map L̃ in our experiments.

B. REFINED ILLUMINATION ESTIMATION USING HYBRID
REGULARIZED VARIATIONAL MODEL
To obtain the satisfactory enhancement results, the estimated
illumination should smooth the texture details while pre-
serving the main geometrical structures. However, the illu-
mination map estimated by Max-RGB obviously failed to

achieve this claim. It is thus necessary to further optimize the
illumination map. In this article, a nonsmooth nonconvex reg-
ularized optimization model is proposed to refine the coarse
illumination map, i.e.,

min
L̂

{
1
2

∥∥L̂ − L̃∥∥22 + λ1L0(L̂)+ λ2R(L̂)
}

(5)

where λ1 and λ2 are positive regularization parameters, L̃ and
L̂ denote the coarse and refined illumination maps.

The first term in Eq. (5) is named the squared L2-norm
fidelity term, which can guarantee the solution accords with
the degradation process and suppress the potential outliers.
The second term is the L0-norm prior which can smooth
the low-amplitude structures and enhance the salient edges,
which can be defined as follows

L0(L̂) =
∥∥∇hL̂∥∥0 + ∥∥∇vL̂∥∥0, (6)

where ∇h and ∇v, respectively, denote the first-order deriva-
tive filters in horizontal and vertical directions. The third
term R(·) in Eq. (5) is selected as the RTV regularizer [46],
which can assist in preserving meaningful structures during
illumination optimization. The theoretical definition of RTV
for one pixel x ∈ � is given by

R(L̂(x)) =
Dh(x)

Lh(x)+ ε
+

Dv(x)
Lv(x)+ ε

, (7)

where ε > 0 is a constant to avoid division by zero,D∗(·) and
L∗(·) with ∗ ∈ {h, v}, respectively, denote the windowed total
variation and windowed inherent variation, i.e.,

D∗(x) =
∑

y∈�̄(x)
g(x, y) ·

∣∣(∇∗L̂)(y)∣∣, (8)

L∗(x) =
∣∣∑

y∈�̄(x)
g(x, y) · (∇∗L̂)(y)

∣∣, (9)
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with �̄(x) denoting the region centered at pixel x ∈ �, and
the weighting function g(x, y) being given by

g(x, y) ∝ exp
(
−
(xh − yh)2 + (xv − yv)2

2σ 2

)
, (10)

where x = (xh, xv) ∈ � and y = (yh, yv) ∈ �,
σ is the standard deviation which controls the spatial scale of
the region �̄(·). The combination of L0-norm and RTV has
the capacity of suppressing significant structures and remov-
ing textural details in the optimized illumination map. The
quality of enhanced images could be improved accordingly.
However, due to the nonsmooth and nonconvex natures of
regularizers in Eq. (5), it is intractable to effectively handle
Eq. (5) using simple numerical method [50].

1) TWO-STEP OPTIMIZATION APPROACH
To achieve stable solution, we introduce two intermediate
variables Uh = ∇hL̂ and Uv = ∇vL̂ and transform the
unconstrained minimization problem (5) into the following
constrained version

min
Uh,Uv,L̂

{1
2

∥∥L̂−L̃∥∥22+λ1(∥∥Uh∥∥0+∥∥Uv∥∥0)+λ2R(L̂)
}

s.t. Uh = ∇hL̂, Uv = ∇vL̂, (11)

whose equivalent version can be obtained as follows

min
Uh,Uv,L̂

{1
2

∥∥L̂ − L̃∥∥22 + λ1(∥∥Uh∥∥0 + ∥∥Uv∥∥0)+ λ2R(L̂)

+
β1

2

∥∥Uh −∇hL̂∥∥22 + β22 ∥∥Uv −∇vL̂∥∥22}, (12)

where β1 and β2 are positive constant parameters. If β1→∞
and β2 → ∞, the solutions in Eq. (12) will be equivalent
to the solutions in Eq. (11). In this work, the unconstrained
optimization problem (12) will be effectively solved using a
two-step optimization approach [51] which iteratively mini-
mizes with respect to (Uh,Uv) and L̂ separately. In particular,
the two steps we will perform are given by

Step 1 : min
Uh,Uv

{
λ1
∥∥Uh∥∥0 + λ1∥∥Uv∥∥0

+
β1

2

∥∥Uh −∇hL̂∥∥22 + β22 ∥∥Uv −∇vL̂∥∥22},
(13)

Step 2 : min
L̂

{1
2

∥∥L̂ − L̃∥∥22 + λ2R(L̂)

+
β1

2

∥∥Uh −∇hL̂∥∥22 + β22 ∥∥Uv −∇vL̂∥∥22}.
(14)

In the Step 1 of our two-step optimization approach,
the minimizations of Uh and Uv are essentially related
to the standard L0-norm optimization problem. Therefore,
the solutions Uh and Uv could be easily obtained using the
element-wise hard thresholding operator, i.e.,

Uh = Hλ1,β1

(
∇hL̂

)
, and Uv = Hλ1,β2

(
∇vL̂

)
, (15)

where the definition ofHa,b(·) is given by

Ha,b (s) =

{
0, if |s| <

√
2a/b,

s, otherwise.

with both a and b being intermediate variables.
The L̂-subproblem in Step 2 is essentially a least-squares

optimization problem constrained by RTV regularizer. Let
F(L̂) = 1

2

∥∥L̂−L̃∥∥22+ β12 ∥∥Uh−∇hL̂∥∥22+ β22 ∥∥Uv−∇vL̂∥∥22 which
is a smooth convex function. To achieve a numerically stable
solution, the proximal forward-backward splitting (PFBS)
framework [52] will be introduced to solve the L̂-subproblem
in Step 2. In particular, the PFBS-based iterative thresholding
algorithm for effectively handling Eq. (14) is given by{

L̄ ← L̂−t∇F(L̂)

L̂ ← minL̂

{∥∥L̂ − L̄∥∥22 + λ̄2R(L̂)
} (16)

with λ̄2 =2 tλ2 and ∇F(L̂) = L̂ − L̃ + β1∇
T
h (∇hL̂ −

Uh) + β2∇
T
v (∇vL̂ − Uv). It is obvious that minL̂

{∥∥L̂ −
L̄
∥∥2
2 + λ̄2R(L̂)

}
is essentially related to image filtering reg-

ularized by RTV proposed in [46]. It is able to decompose
the RTV regularizer into a nonlinear term (i.e., essentially
weighting parameters) and a quadratic term. The approxi-
mated nonlinear optimization problem could be decomposed
into a set of subproblems which are much easier to solve
effectively. We refer the interested reader to [46] for more
details on numerical solution for RTV-regularized image
filtering. We alternatively implement the iterative threshold
algorithm (16) until the obtained solution converges to the
optimal one. The advantage of our combination of L0-norm
and RTV on illumination refinement is confirmed by the
visual comparisons in Fig. 3. It is obvious that the refined
illumination maps, only using RTV regularization, easily
suffer from the loss of prominent structures. In contrast, our
combined version has the capacity of preserving significant
structures and removing textural details during illumination
optimization. The quality of final enhanced image can then
be improved accordingly.

2) COMPUTATIONAL COMPLEXITY AND
CONVERGENCE ANALYSIS
The proposed two-step optimization algorithm is in principle
simple as it is intuitive. Let k denote the total number of outer
iterations, and M × N be the image size. In our imaging
experiments, we directly select the total number of inner
iteration as 1 in Eq. (16). The computational cost mainly
involves two parts, i.e., numerical solutions in Step 1 and
Step 2. The hard threshold operators for both Uh and Uv can
be easily performed with O(2MN ) operations in Step 1. It is
more complicated to analyze the time complexity of PFBS in
Step 2. The computational bottleneck is due to the solution of
RTV-regularized least-squares problem in Eq. (16). Inspired
by the work [46], it becomes easy to analyze the computa-
tional complexity of our PFBS, i.e., O((σ + 1) MN ). For
illumination refinement, the total computational complexity
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FIGURE 3. Visual displays of refined illumination maps for different low-light images. From top to bottom: original low-light images, refined illumination
maps generated by only RTV, and the combination of L0-norm and RTV.

of our two-step optimization algorithm can be theoretically
obtained as O(k(σ + 3) MN ). The comparisons of run-
ning time for different image enhancement methods will be
detailedly illustrated in Table 7.

Note that we proposed a two-step optimization algorithm
which decomposed the original minimization problem (5)
into two simple subproblems. Each subproblem could be
effectively solved using existing numericalmethod. This opti-
mization strategy has been successfully introduced to handing
variational image restoration [53]. The corresponding conver-
gence has already been proved theoretically.1 Analogous to
Ref. [53], the closed-form solutions of (Uh,Uv)-subproblems
in Step 1 can be exactly obtained using the hard thresholding
operators (15). The L̂-subproblem in Step 2 is essentially a
least-squares optimization problem constrained by a convex
regularizer. Therefore, the convergence of the corresponding
numerical solution can be guaranteed since the convergence
of PFBS has been established to solve generic convex opti-
mization problems [52], [54]. We remark that it is tractable
to obtain the closed-form solutions of (Uh,Uv)-subproblems
in Step 1. Solution of Eq. (16) is also a global minimizer of
L̂-subproblem in Step 2. Based on the Opial theorem [55],
the iterative sequence {L̂} in Eq. (16) converges to a fixed
point of the L̂-subproblem in Step 2, i.e., a minimizer of
minimization problem (5). The convergence of our two-step
optimization algorithm can thus be guaranteed accordingly.

IV. LOW-LIGHT IMAGE ENHANCEMENT WITH DEEP
NOISE SUPPRESSION
This section is dedicated to generating the final enhanced
image by combining refined illumination and opti-
mized reflection maps. The optimized reflection map is
obtained using the adaptive gamma correction and detail

1Please refer to Ref. [53] for more detailed information.

boosting methods. The deep learning method is further intro-
duced to blindly remove the potential (unwanted) noise
existed in enhanced image.

A. ILLUMINATION ADJUSTMENT
It is well known that low-light images have low-intensity
illumination in the dark regions. The illumination map essen-
tially contains aplenty luminance information which is tightly
related to visual image quality. It is thus necessary to adjust
the illumination maps to generate satisfactory enhancement
results. In the literature [24], [48], gamma correction has
been widely employed to adjust the illumination map. The
adjusted illumination map L̂G is accordingly obtained using
the gamma correction, i.e.,

L̂G(x) = L̂
1
γ (x), (17)

where γ is a coefficient larger than 1. If γ becomes larger,
the enhancement effect will be more obvious. However,
this method fails to adaptively adjust the illumination map,
i.e., the illumination map is sensitive to the constant coeffi-
cient γ . To overcome this limitation, we propose to adaptively
adjust γ through calculating the average pixel value of the
illumination map, i.e.,

γ (x) =

γ0
logµL̂(x)

log 0.5
, µL̂(x) ≤ 0.5,

γ0, µL̂(x) > 0.5,
(18)

where µL̂(x) denotes the local mean value of L̂ within the
local region around x ∈ �, γ0 is a pre-selected coefficient
related to the enhancement intensity.

B. DETAIL BOOSTING ON REFLECTION
According to the assumption of Retinex theory, we can easily
generate the coarse reflection map R from the optimized
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FIGURE 4. The architecture of blind denoising network used in this work.

illumination map L̂ and low-light image I via Eq. (1), i.e.,

R =
I

L̂
=
I0 + N

L̂
,

where I0 and N , respectively, denote the latent noise-free
image and unwanted noise. The existence of noise N easily
degrades the quality of reflection map leading to unsatis-
factory imaging performance. Motivated by previous stud-
ies [56], we tend to adopt the guided filter [57] to effectively
boost the details existed in reflection map. In particular,
the blurred base layer B is defined as follows

B = Gg(I )⊗ R, (19)

where ⊗ denotes the convolution operator, Gg(·) is a guided
kernel related to the input low-light image I (i.e., guided
image) with the local window radius being 15 and regular-
ization parameter being 10−5. Please refer to [57] for more
details on guided filter. The details layer D can be defined as
follows

D(x) = R(x)− B(x). (20)

In this work, the enhanced reflectionmap R̂ can be obtained
by summing the blurred base layer and weighted details layer,
i.e.,

R̂(x) = B(x)+ κD(x), (21)

where κ > 0 is a weighting parameter. The final enhanced
image Ī can be accordingly obtained by multiplying the
enhanced reflectionmap R̂ and adjusted illuminationmap L̂G,
i.e.,

Ī (x) = R̂(x) ◦ L̂G(x). (22)

The proposed detail boosting strategy is capable of preserv-
ing the important geometrical structures and suppressing the
unwanted artifacts during reflection optimization.

C. DEEP LEARNING-BASED BLIND IMAGE DENOISING
It is obvious that it is computationally difficult to accurately
estimate the level fo random noise in practical imaging con-
ditions. Therefore, the current non-blind denoising networks
often fail to effectively reduce the unwanted noise easily lead-
ing to detail loss or noise residue. To further enhance image
quality, we tend to introduce the blind denoising network
to blindly remove the unwanted noise existed in enhanced
images. To the best of our knowledge, no research has been
conducted on blind denoising for low-light image enhance-
ment thus far. The network architecture and loss function for
our blind denoising network will be detailedly discussed in
this subsection.

1) NETWORK ARCHITECTURE
Inspired by previous work [41], the blind denoising network
introduced in this work is composed of a noise estimation
sub-network (E-Net) and a non-blind denoising sub-network
(D-Net), shown in Fig. 4. E-Net takes the enhanced image
containing noise Ī as input and the estimated noise level
map σ̂ = FE (Ī ,NE ) as output with FE and NE being
the process of estimating the noise level map and E-Net
parameters, respectively. D-Net takes Ī and σ̂ as input and
the denoised image Î = FD(Ī , σ̂ ,ND) as output with FD
and ND being the process of estimating the noise-free image
and D-Net parameters, respectively. Since Ī and σ̂ have the
same size, E-Net introduces a five-layer fully convolutional
network to obtain σ̂ , only containingConvolution (Conv) [58]
and Rectified Linear Units (ReLU) [59]. In each convolu-
tion layer, the number of feature channels is set as 32, and
the size of all filters in E-Net is 3 × 3. The ReLU acti-
vation function is deployed after each Conv layer. D-Net
uses the residual learning [39] strategy that first estimates
the residual map R and then obtains Î = Ī + R(Ī , σ̂ ,ND).
To improve the network performance, D-Net is generated
by modifying the 16-layer U-Net structure [42]. In particu-
lar, D-Net uses the symmetric skip connections, transposes
the convolutions to expand the receiving domain, and uses
the multi-scale information. Besides, to further improve the
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network receptive field, four Conv layers in the middle are
revised to dilated convolutions, and their dilated rates are set
as 2, 4, 8, and 16 in order. The size of all filters in D-Net is
3×3, and the ReLU activation function is deployed after each
Conv layer except the last one.

2) LOSS FUNCTION
To enhance the network robustness, three loss functions are
introduced to constrain the estimated noise level map σ̂ and
the denoised image Î . Recent studies [41] have shown that
non-blind denoising networks were often more sensitive if
σ̂ (x) < σ̃ (x), and more robust if σ̂ (x) > σ̃ (x) with σ̃ (x) being
the ground-truth noise level. To robustly predict the accurate
map of noise level, the asymmetric MSE Lasymm, total varia-
tion LTV , and structural similarity LSSIM are simultaneously
considered as loss function to constrain the estimation of σ̂ .
The definition of Lasymm is given by

Lasymm =
∑
x∈�

∣∣α − k(σ̂ (x)−σ̃ (x))<0
∣∣ (σ̂ (x)− σ̃ (x))2 , (23)

where kω = 1 if ω < 0 and 0 otherwise. As discussed
in [41], the selection of α ∈ (0, 0.5) is able to make the
network generalize well to realistic noise with more penalty
to under-estimation error. The loss functionLTV is defined as
follows

LTV =
∑
x∈�

(∇hσ̂ (x))2 + (∇vσ̂ (x))2, (24)

where x ∈ �, ∇h and ∇v represent the operators of the
horizontal and vertical gradients, respectively. To preserve the
important geometrical structures in final enhanced images,
LSSIM is also adopted as the loss function, i.e.,

LSSIM =
∑
x∈�

1− SSIM(Î (x), Ĩ (x)). (25)

where Ĩ is the ground-truth image. In Eq. (25), the formula-
tion of SSIM is mathematically defined as follows

SSIM(Î , Ĩ ) =
(2µÎµĨ + c1)(2σÎ Ĩ + c2)

(µ2
Î
+ µ2

Ĩ
+ c1)(σ 2

Î
+ σ 2

Ĩ
+ c2)

, (26)

where µÎ and µĨ denote the local mean values, σÎ and σĨ
represent the standard deviations, σÎ Ĩ is the covariance value,
c1 and c2 are constant parameters. More details on the defi-
nition of SSIM can be found in [60]. To sum up, the overall
loss function of our blind denoising network can be written
as follows

L = LSSIM + λasymmLasymm + λTVLTV , (27)

where λasymm and λTV represent the trade-off parameters for
the asymmetric loss Lasymm and total variation loss LTV ,
respectively.

During the training of our introduced network, the network
parameters of each layer are obtained byminimizing Eq. (27).
We hold the view that the effect of blind denoising network
is closely related to the selection of parameters. By manually
performing exhaustive numerical experiments, we optimally

selected the parameters α = 0.3, λasymm = 0.5 and λTV =
0.005 according to the received enhancement performance.

V. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, we first investigate the influence of deep blind
denoising on image enhancement. Furthermore, our method
will be compared with several state-of-the-art low-light
enhancement methods. Experiments on both synthetic and
realistic low-light maritime images will be performed to
demonstrate the effectiveness of the proposed method.
Finally, we will perform the comparisons of running time for
several image enhancement methods under different experi-
mental conditions.

A. COMPARISONS WITH OTHER
ENHANCEMENT METHODS
Our proposed method will be compared with ten state-of-
the-art methods including seven traditional methods and three
deep learning-based methods.

• DeHZ: Dehazing-Based Method [25]. This method
assumes that the inverted low-light image looks similar
to the hazy image. It thus can directly use the DCP-based
method to deal with the inverted image (i.e., dehazing).
The final enhanced image is accordingly obtained by
inverting the dehazed image again.

• DePAMEF: Multi-Exposure Image Fusion Dehazing-
Based Method [61]. DePAMEF proposes a new
single-image dehazing solution based on the adap-
tive structure decomposition integrated multi-exposure
image fusion. In imaging experiments, we first invert the
low-light images and then adopt this dehazing method
to deal with the inverted images. The final enhanced
images are achieved by converting the dehazed images
again.

• BCP: Bright Channel Prior [22]. To handle the prob-
lem of low-light image enhancement, a hybrid regu-
larized variational model is proposed by introducing
the bright channel prior, which can eliminate the black
halo and suppress the over-enhancement. The resulting
minimization problem is effectively solved using an
alternating direction optimization method.

• JIEP: Joint Intrinsic-Extrinsic Prior [39]. This method
takes full account of the internal characteristics (i.e.,
shape and texture) and the external environment (i.e.,
illumination). The proposed joint intrinsic-extrinsic
prior model is capable of robustly estimating both illu-
mination and reflection maps.

• FFM: Fractional-Order Fusion Model [62]. This model
proposes a fractional-order mask and a fusion frame-
work to enhance the low-light images. It can achieve
a good trade-off between contrast improvement, detail
enhancement, and artifacts suppression.

• SRIE: Simultaneous Reflectance and Illumination Esti-
mation [24]. Based on the analysis of illumination map
structure, a new weighted variational model is proposed
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for better prior representation. This method can not only
preserve the estimated reflectance with more details, but
also suppress noise to some extent.

• LIME: Low-Light Image Enhancement [48]. LIME pro-
poses a structure-aware smoothing model to refine the
illumination map which is further adjusted using a
gamma correction. By adopting BM3D [29] to suppress
the unwanted noise, the final enhanced image can be
generated accordingly.

• EETL: End-to-End Transformation Learning [63]. It is
an end-to-end deep learning method that can convert
ordinary photos into DSLR quality images. Further-
more, EETL could adopt the residual convolutional neu-
ral network [39] and the composite perceptual error
function to improve both color rendition and image
sharpness.

• Retinex-Net: Deep Retinex Decomposition for Low-
Light Enhancement [34]. Retinex-Net combines Retinex
theory and deep learning to construct two net-
works, i.e., Decom-Net for image decomposition and
Enhance-Net for illumination adjustment. Furthermore,
BM3D [29] is introduced to suppress the unsatisfactory
noise existed in reflection map. The enhanced image is
finally obtained by multiplying the denoised reflection
and adjusted illumination maps.

• MBLLEN: Multi-Branch Low-Light Enhancement Net-
work [64]. MBLLEN decomposes the image enhance-
ment problem into sub-problems related to different fea-
ture levels, which can be solved respectively to produce
the final output via multi-branch fusion.

Both synthetic and realistic images will be adopted to
evaluate the enhancement performance of these competing
methods in terms of quantitative and qualitative evaluations.
Four popular full-reference image quality assessment meth-
ods, i.e., peak-signal-to-noise ratio (PSNR) [65], structural
similarity (SSIM) [60], feature similarity (FSIM) [66], and
lightness-order-error (LOE) [21] are introduced to evalu-
ate the enhancement quality by comparing the enhanced
imagewith the ground-truth version.Meanwhile, two popular
no-reference image quality assessment methods, i.e., natural
image quality evaluator (NIQE) [67] and blind tone-mapped
quality index (BTMQI) [68] are also employed to per-
form blind image quality evaluation in realistic experiments.
We refer interested readers to Refs. [21], [60], [65]–[68] and
the references therein for more details on calculations of
PSNR, SSIM, FSIM, LOE, NIQE, and BTMQI. Theoreti-
cally, higher values of PSNR, SSIM, FSIM, and lower values
of LOE, NIQE, BTMQI normally indicate better imaging
performance for low-light image enhancement.

B. EXPERIMENTAL SETTINGS
To guarantee high-quality enhancement results, the input
parameters should be selected properly in our experiments,
e.g., λ1, λ2, β1, β2 and t for illumination optimization,
γ0 for illumination adjustment and κ for detail boosting

on reflection. In particular, the regularization parameters λ1
and λ2 control the trade-offs between the data-fidelity and
regularization terms. The penalty parameters β1 and β2 are
of importance in guaranteeing stable solutions. In this work,
we propose to adopt the manual method, which experientially
tries several values within a predefined range of parameters,
to select the proper parameters. To explain how to select these
parameters, we performed exhaustive numerical experiments
to manually determine the satisfactory selections. According
to both quantitative and qualitative evaluations, we manually
selected the optimal parameters in our numerical experi-
ments, i.e., λ1 = 3, λ2 = 1, β1 = 1, β2 = 1, t = 0.5, γ0 =
1.429 and κ = 1.3. These selected parameters for low-light
image enhancement were used throughout the rest of this
article. Numerical experiments have shown that the image
enhancement results under the current parameter settings
were consistently promising. For the sake of fair comparison,
other competing enhancement methods were performed by
the authors’ codes with the optimized parameters.

To improve the imaging performance of blind denoising
network, we tend to select 2000 noise-free images as the
dataset. In particular, the synthetic versions are obtained
by adding white Gaussian noise with variance C ranging
between (0, 50) on the noise-free images. In our numerical
experiments, the learning network is trained for 80 epochs.
To increase the convergence rate, the learning rate of the first
40 epochs is set to 10−3 and the learning rate of the last 40
epochs is set to 10−4. In each epoch, the dataset is randomly
cropped into 34000 image patches of size 256 × 256. All
numerical experiments and training network models are con-
ducted in Python 3.7 and Matlab2019a environment running
on a PC with Intel(R) Core (TM) i7-9750H CPU a©2.60GHz
and a Nvidia GeForce GTX 2080 GPU. It takes about 40
hours to train the blind denoising network with the Pytorch
package [69].

C. INFLUENCE OF DEEP BLIND DENOISING ON IMAGE
ENHANCEMENT
This subsection mainly discusses the influence of deep blind
denoising proposed in Section IV-C on final enhancement
performance. It is well known the unwanted noise in low-light
images could easily be amplified during image enhancement.
To overcome this problem, deep blind denoising is able to
effectively remove the unsatisfactory artifacts. The impor-
tant problem in this work is how to adopt the blind denois-
ing network during low-light image enhancement. There are
mainly three strategies to incorporate deep blind denois-
ing into our low-light image enhancement framework. For
example, the first strategy (a.k.a., Ours1) adopts the deep
blind denoising to directly denoise the original image I . The
denoised low-light image will be enhanced using the refined
illumination map (in Section IV-A) and the optimized reflec-
tion map (in Section IV-B). According to the Retinex theory,
it is commonly assumed that the estimated reflection map
contains random noise. Therefore, the second strategy (a.k.a.,
Ours2) will adopt the deep blind denoising to handle the
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FIGURE 5. Six synthetic noisy low-light maritime images generated by multiplying the V channel of original sharp images with a coefficient of C = 0.1,
and then by adding additive Gaussian noise with variance of V = 25.

FIGURE 6. Comparisons of synthetic experiments on Image1 in Fig. 5. From left to right: (a) original sharp image, (b) low-light image, and enhanced
images generated by (c) denoising before image enhancement (i.e., Ours1), (d) denoising the separated reflection map (i.e., Ours2), and (e) denoising
after image enhancement (i.e., Ours3), respectively.

TABLE 1. PSNR, SSIM, FSIM, and LOE comparisons (mean±std) of three blind denoising strategies on six different test images visually shown in Fig. 5.

reflection map. The refined illumination and denoised reflec-
tion maps could then be accordingly combined to generate
the final enhanced images. The last strategy (a.k.a., Ours3),
shown in Section IV, will use the deep blind denoising to
directly optimize the enhanced images to further promote
imaging performance.

To investigate the influence of deep blind denoising
on image enhancement, six different high-quality maritime
images and their noisy low-light versions are illustrated
in Fig. 5. In this work, we first add the white Gaussian noise
with variance V = 25 to the original high-quality maritime
images. In the second step, we transform the noisy images
from RGB color space into HSV color space. The V channel
of each image is multiplied by a darkening coefficient C
of 0.1. The noisy low-light versions are synthetically gener-
ated by transforming from HSV color space into RGB color
space. To objectively evaluate the imaging performance, four
quality measures (i.e., PSNR, SSIM, FSIM, and LOE) will be
used simultaneously in our numerical experiments.

For the sake of better visual comparison, the synthetic
experiments for Ours1, Ours2, and Ours3 on one image are
visually shown in Fig. 6. It can be observed that the enhanced

image yielded by Ours1 still suffers from the unwanted noise,
leading to visual quality degradation. The reason behind this
phenomenon is that the luminance statistics between normal
and low-light images are significantly different in essence.
It is thus difficult to effectively remove the random noise
in low-light regions since the structural information is often
ignored. The enhanced image obtained by Ours2 not only has
the problem of over enhancement, but also suffers from the
serious color distortion. In contrast, our proposed Ours3 can
effectively suppress the noise and produce satisfactory visual
appearance. The advantage of Ours3 is further confirmed by
the values of PSNR, SSIM, FSIM, and LOE summarized
in Table 1. It is obvious that Ours3 generates the best objective
evaluation under all imaging conditions.

D. EXPERIMENTAL RESULTS ON SYNTHETIC
MARITIME IMAGES
This subsection is devoted to compare our proposed method
(i.e., Ours3) with nine popular low-light image enhance-
ment methods, i.e., DePAMEF [61], BCP [22], JIEP [39],
FFM [62], SRIE [24], LIME [48], EETL [63], Retinex-Net
[34], and MBLLEN [64]. Due to the unsatisfactory results,
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FIGURE 7. Three different original sharp images (i.e., Image7, Image8 and Image9) adopted to manually generate synthetic low-light images with additive
Gaussian noise. From left to right: (a) original images, and noisy low-light images with (b) C = 0.5/V = 5, (c) C = 0.5/V = 15, (d) C = 0.5/V = 25,
(e) C = 0.3/V = 5, (f) C = 0.3/V = 15, (g) C = 0.3/V = 25, (h) C = 0.1/V = 5, (i) C = 0.1/V = 15, and (j) C = 0.1/V = 25, respectively.

FIGURE 8. Comparisons of synthetic enhancement experiments on Image7 in Fig. 7. From top-left to bottom-right: (a) original sharp image, (b) synthetic
low-light image with C = 0.1/V = 25, and enhanced images generated by (c) DePAMEF [61], (d) BCP [22], (e) JIEP [39], (f) FFM [62], (g) SRIE [24], (h) LIME
[48], (i) EETL [63], (j) Retinex-Net [34], (k) MBLLEN [64], and (l) Our method, respectively.

FIGURE 9. Comparisons of synthetic enhancement experiments on Image8 in Fig. 7. From top-left to bottom-right: (a) original sharp image, (b) synthetic
low-light image with C = 0.1/V = 25, and enhanced images generated by (c) DePAMEF [61], (d) BCP [22], (e) JIEP [39], (f) FFM [62], (g) SRIE [24], (h) LIME
[48], (i) EETL [63], (j) Retinex-Net [34], (k) MBLLEN [64], and (l) Our method, respectively.

the imaging performance of DeHZ [25] is not considered
in this subsection. The synthetic experiments are performed
using three different original sharp images shown in Fig. 7.
To evaluate the stability of our enhancement method, we pro-
pose to add the white Gaussian noise with variance V ∈
{5, 15, 25} and multiply the darkening coefficient C ∈

{0.1, 0.3, 0.5} to synthetically generate the degraded images.
To quantitatively evaluate the enhancement performance,
four metrics (i.e., PSNR, SSIM, FSIM, and LOE) are adopted
simultaneously in our synthetic experiments.

For the sake of better visual comparisons, we only dis-
play the image enhancement results under the worst imaging
condition, i.e., V = 25 and C = 0.1. The low-light image
enhancement results can be visually found in Figs. 8-10.
It can be observed that Retinex-Net [34] leads to obvious
color distortions and blocking artifacts, resulting in visual
quality degradation. The essential reason is that the training
datasets adopted may not contain the similar features existed
in maritime images to be enhanced. The restored results
produced by JIEP [39] and FFM [62] obviously suffer from
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FIGURE 10. Comparisons of synthetic enhancement experiments on Image9 in Fig. 7. From top-left to bottom-right: (a) original sharp image, (b) synthetic
low-light image with C = 0.1/V = 25, and enhanced images generated by (c) DePAMEF [61], (d) BCP [22], (e) JIEP [39], (f) FFM [62], (g) SRIE [24], (h) LIME
[48], (i) EETL [63], (j) Retinex-Net [34], (k) MBLLEN [64], and (l) Our method, respectively.

TABLE 2. PSNR comparisons (mean±std) of various image enhancement methods on all test images shown in Fig. 7.

TABLE 3. SSIM comparisons (mean±std) of various image enhancement methods on all test images shown in Fig. 7.

the problem of insufficient enhancement, which causes the
loss of fine visual details. In addition, BCP [22] can effec-
tively enhance the illumination of low-light images, but it is
intractable to effectively suppress the unwanted noise. Due to
the structure-aware smoothing model introduced, LIME [48]
is able to generate higher-quality enhanced images. The
residual noise, however, fails to be effectively suppressed
in the sky regions, leading to unnatural visual appearance.
In contrast, our proposed method is able to enhance the
low-light images and suppress the unsatisfactory artifacts in
enhanced versions. Our superior performance can be further
confirmed by the quantitative results PSNR, SSIM, FSIM,
and LOE shown in Table 2-5. It can be found that our method
outperforms other competing methods under consideration in
most of the cases.

E. EXPERIMENTAL RESULTS ON REALISTIC
MARITIME IMAGES
Due to the distinctness between synthetic and realis-
tic images, this subsection mainly focuses on low-light
enhancement experiments on realistic images. Our pro-
posed method will be compared with ten different imag-
ing methods, i.e., DeHZ [25], DePAMEF [61], BCP [22],
JIEP [39], FFM [62], SRIE [24], LIME [48], EETL [63],
Retinex-Net [34], and MBLLEN [64]. To reflect the imaging
performance more intuitively, the low-light image enhance-
ment results and their associated magnified views are shown
in Figs. 11-13.

From the visual comparisons, we find that DeHZ [25] and
Retinex-Net [34] suffer from obvious color distortions and
unnatural appearances, which cause the degradation of visual
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TABLE 4. FSIM comparisons (mean±std) of various image enhancement methods on all test images shown in Fig. 7.

TABLE 5. LOE comparisons (mean±std) of various image enhancement methods on all test images shown in Fig. 7.

FIGURE 11. Comparisons of realistic enhancement experiments on Image10. From top-left to bottom-right (NIQE and BTMQI for text in brackets):
(a) original low-light image (6.2918, 4.1801), enhanced images yielded by (b) DeHZ [25] (8.3304, 3.3604), (c) DePAMEF [61] (7.0134, 4.3556), (d) BCP [22]
(4.4693, 3.1606), (e) JIEP [39] (6.6720, 2.7411), (f) FFM [62] (6.3025, 2.7312), (g) SRIE [24] (6.1703, 2.5353), (h) LIME [48] (4.1544, 4.0813), (i) EETL [63]
(4.2124, 2.6075), (j) Retinex-Net [34] (5.6486, 3.5642), (k) MBLLEN [64] (3.7250, 2.6775), and (l) Our method (3.8786, 2.9748), respectively.

image quality. BCP [22] easily produces white false light at
the junction of bright and dark regions, especially in Fig. 13.
The enhancement results yielded by JIEP [39] and FFM [62]
have the risk of insufficient enhancement. LIME [48] and
our proposed method can obtain satisfactory enhancement
results compared with the other competing imaging methods.
However, our method can achieve better visual effects on

the balance of suppression of unwanted random noise and
preservation of fine structural details. Our superior perfor-
mance can be further confirmed by the quantitative results
NIQE and BMTQI. It can be found that our results can obtain
excellent index evaluation values. The superior performance
of our method benefits from the regularized illumination
optimization and deep noise suppression.
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FIGURE 12. Comparisons of realistic enhancement experiments on Image11. From top-left to bottom-right (NIQE and BTMQI for text in brackets):
(a) original low-light image (7.1883, 3.6943), enhanced images yielded by (b) DeHZ [25] (9.2618, 3.7155), (c) DePAMEF [61] (7.6561, 5.1725), (d) BCP [22]
(5.0638, 2.3075), (e) JIEP [39] (7.4099, 1.9083), (f) FFM [62] (7.1266, 1.3251), (g) SRIE [24] (6.6622, 1.9807), (h) LIME [48] (4.4044, 4.4075), (i) EETL [63]
(3.7407, 1.7183), (j) Retinex-Net [34] (5.5713, 3.5419), (k) MBLLEN [64] (4.0765, 3.0483), and (l) Our method (3.6826, 2.6244), respectively.

FIGURE 13. Comparisons of realistic enhancement experiments on Image12. From top-left to bottom-right (NIQE and BTMQI for text in brackets):
(a) original low-light image (7.1937, 4.1920), enhanced images yielded by (b) DeHZ [25] (7.6638, 4.3166), (c) DePAMEF [61] (8.0244, 3.0026), (d) BCP [22]
(5.5081, 2.1617), (e) JIEP [39] (7.5620, 1.1777), (f) FFM [62] (7.2641, 1.2374), (g) SRIE [24] (7.2899, 1.4066), (h) LIME [48] (5.3992, 3.2538), (i) EETL [63]
(4.9691, 2.1234), (j) Retinex-Net [34] (7.2269, 4.4598), (k) MBLLEN [64] (4.7048, 4.1862), and (l) Our method (5.1281, 1.7688), respectively.

F. EXPERIMENTAL RESULTS ON REALISTIC
BENCHMARK IMAGES
To verify that our method can handle various low-
light images robustly, we use three benchmark low-light
images for experiments, and verify the superiority of our
method by comparing with ten different imaging methods,
i.e., DeHZ [25], DePAMEF [61], BCP [22], JIEP [39],
FFM [62], SRIE [24], LIME [48], EETL [63], Retinex-
Net [34], and MBLLEN [64]. Fig. 14 shows the low-light
image enhancement results and their associated magnified
views generated by various methods.

By comparison, it can be clearly found that BCP [22]
and Retinex-Net [34] have obvious color distortions and
blocking artifacts. As can be seen from the magnified
views of Image13 and Image14, DeHZ [25], LIME [48],
and MBLLEN [64] fail to preserve the image details. The
enhanced results yielded by EETL [63] have a certain degree
of color deviation. However, the enhancement results gener-
ated by JIEP, FFM, and SRIE. From the magnified view of
Image15, JIEP [39], FFM [62], and SRIE [24] have the risk
of insufficient enhancement. However, Our method can not
only enhance the details of dark regions, but also preserve
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FIGURE 14. Comparisons of realistic enhancement experiments on Image 13-15 (From top to bottom: Image13, Image14, and Image15). From left to right:
(a) original sharp image, enhanced images yielded by (b) DeHZ [25], (c) DePAMEF [61], (d) BCP [22], (e) JIEP [39], (f) FFM [62], (g) SRIE [24], (h) LIME [48],
(i) EETL [63], (j) Retinex-Net [34], (k) MBLLEN [64], and (l) Our method, respectively.

TABLE 6. NIQE and BTMQI comparisons of various image enhancement methods on all test images shown in Fig. 14.

the texture structure. To further prove the superiority of our
method, we use two non-reference metrics (i.e., NIQE and
BMTQI) to evaluate the enhanced image and organize the
evaluation results in Table 6. It can be seen that although our
evaluation results on the single image fail to obtain optimal
values, the average value of the evaluation results is optimal
due to the robustness of our method.

G. COMPARISONS OF RUNNING TIME
To analyze the computational time under different imaging
conditions, we select three low-light images with sizes of
480 × 640, 640 × 800, and 720 × 1280 as test images. Our
method will be compared with ten different image enhance-
ment methods, i.e., DeHZ [25], DePAMEF [61], BCP [22],
JIEP [39], FFM [62], SRIE [24], LIME [48], EETL [63],
Retinex-Net [34], and MBLLEN [64], by calculating the run-
ning time for three experimental images with different sizes.
The computational time of the competing image enhance-
ment methods is summarized in Table 7. LIME yields the

TABLE 7. Comparisons of running cost of several image enhancement
methods for three low-light images with different sizes (unit: second).

lowest computational cost due to the fast variational method,
but it sometimes suffers from slight artifacts in enhanced
images. The relatively lower computational time could be
generated using the deep learning-based image enhance-
ment methods (i.e., EETL, Retinex-Net, and MBLLEM)
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since it is efficient to perform the well-trained networks.
In contrast, our method takes a longer time to perform
low-light image enhancement. However, our method is able
to generate the superior enhancement performance in terms
of both quantitative and qualitative image quality evalua-
tions. Fortunately, the graphics processing unit (GPU) [70]
has rapidly evolved into a cost-effective parallel computing
platform, which has been successfully adopted to acceler-
ate regularized variational model [71] and low-light image
enhancement [72], [73]. Thus, there will be a great incentive
to accelerate our image enhancement method for real-time
imaging applications in the GPU computing platform.

VI. CONCLUSION
In this work, we proposed to enhance low-light images by
performing regularized illumination optimization and blind
noise reduction. In particular, the hybrid regularized varia-
tional model was presented to perform structure-preserving
illumination refinement. The final enhanced images were
generated by combining the refined illumination and opti-
mized reflection maps. The deep learning method was further
introduced to eliminate the negative effect of unwanted noise
on imaging performance. Owing to the regularized illumi-
nation optimization and deep noise suppression, our image
enhancement method has the capacity of generating more
natural-looking enhanced images under different low-light
conditions. Comprehensive experiments on both synthetic
and realistic maritime images have illustrated the effective-
ness of our proposed method.
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