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ABSTRACT Depth maps play an important role in the representation of 3D information. They are often
simultaneously acquired with color images; however, their resolution is significantly lower than that of color
images owing to hardware limitations. In this paper, we propose a novel approach to upsample depth maps by
using geometric deformation instead of pixel value refinement, which is employed in a majority of existing
methods. This approach, known as grid warping, displaces the position of blurred pixels around the edge
towards the center of the edge. The displacement vector for warping is obtained from an analysis of the
corresponding high-resolution color image. Furthermore, we propose an edge signal and displacement vector
modeling for a more effective analysis. The experimental results show that the proposedmethod significantly
improves the quantitative and visual performance, as compared to state-of-the-art methods. The source codes
of the proposed method will be available at https://github.com/yym064/DeepGridWarp.

INDEX TERMS Depth map upsampling, joint upsampling, grid warping, deep learning, CNN.

I. INTRODUCTION
Owing to the developments in 3D technologies, considerable
attempts have been made to apply 3D technologies to various
types of applications, including robotics and advanced driver
assistance systems [8], [35]. Depth information plays a crit-
ical role in these applications for internal as well as external
processing.

Passive and active methods are popularly used to acquire
depth maps [16], [33], [37], [39], [41]. In the passive method,
depth information is obtained indirectly; a typical example of
this method is stereo matching, wherein depth information is
estimated from two scenes with a binocular parallax. On the
contrary, in the active method, the depth map is acquired
directly. In this method, depth information is captured via
special devices such as laser range scanners or time-of-flight
cameras. Microsoft Kinect and SoftKinect are examples of
devices used to directly capture depth information [39], [41].
However, the resolution and quality of the acquired depthmap
is generally low; as compared to RGB color images, owing to
the limitations in the hardware technology.
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Even though insufficient resolution can be partially solved
by many of the existing upsampling schemes, its quality is
significantly lower than the quality of color images, espe-
cially when attempting to considerably increase the resolu-
tion. A popular approach to address this problem is joint
filtering, i.e., the upsampling filter is derived using the depth
map as well as its corresponding color image. In the concept
of joint filtering, it is assumed that the edge structure of the
depth map is highly correlated to its corresponding color
image. Therefore, a filter is designed to transfer meaningful
structural information in the color edge to the depth map.

These approaches commonly result in two problems during
information transfer. First, they transfer unwanted informa-
tion such as texture patterns. This is because the information
transfer is realized via the kernel method; however, the kernel
computation is sensitive to small pixel changes such as tex-
ture pattern. Second, these methods frequently cause under-
or over-shooting artifacts around the edge boundary due to
inaccurate kernel estimations.

To further investigate the proposed approach, we first
explore the existing works on image upsampling technology.
We classify the existing upsampling methods into the follow-
ing three categories: model-based kernel filtering, optimiza-
tion problem, and deep learning approaches.
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A. MODEL-BASED KERNEL FILTERING
Amajority of the methods falling under this category employ
the variational form of the adaptive nonlinear filter, such as
the bilateral filter (BF) [32] or guided filter [10]. In [19],
a joint bilateral upsampling (JBU) filter is proposed to incor-
porate the corresponding high-resolution (HR) color image
information. Kim et al. proposed a trilateral filter to reduce
the blurring artifact caused by the misalignment of the depth
edge and the color edge [18]. Jung proposed an adaptive
joint trilateral filter, wherein the color and depth maps are
simultaneously restored according to the classification of the
depth edge [15]. In [24], an extension of the joint bilateral
filter is proposed to avoid the textural copying artifact which
occurs when depth structure information is transferred to
the depth map. To prevent artifacts, it integrates local gra-
dient information during filtering. Chan et al. proposed a
noise-aware filter (NAF) for depth upsampling [3]. It acts as
a multilateral filter by adjusting the influence of color simi-
larity to prevent texture copying artifacts. In [27], Min et al.
proposed a weighted mode filter (WMF) that generates filter
coefficients based on local statistical information induced
by a histogram. Hua et al. proposed an extended guided
filter (EGF) by inserting an additional term by considering
the local 2nd order gradients of the depth map [12]. This
filter employs an onion peel-like filtering, which significantly
improves the performance of the filter. As an extension of
EGF, Yang et al. proposed a confidence-based joint guided
filter (CJGF) by controlling the filtering order using the con-
fidence map derived from the shape of the unreliable region,
depth map, and color pixel values [40].

B. OPTIMIZATION PROBLEM
The methods falling under this category build the objective
function by considering various factors and attempt to min-
imize it. In [4], a depth upsampling problem is formulated
with the Markov random field (MRF), wherein the data term
is determined using a given depth map, and the smoothness
term is determined using estimated HR depth samples derived
from the HR color images. Based on MRF framework,
Park et al. [30] proposed to use an additional term known as
non-local mean regularization, which is implemented using
the anisotropic structure-aware filter. Similar to the non-local
mean filter, this term enables the contribution from faraway
pixels during processing. Another MRF formulation was
suggested by Lu et al. [25], wherein the truncated absolute
difference between the estimated and the input depth value is
employed for depth map upsampling. Liu and Gong proposed
to use anisotropic heat diffusion filtering (ADF) [23], where
the known pixels of depth maps are set as heat sources, and
depth enhancement is performed by diffusing depth value
from sources to unknown pixels based on color similarity.

C. DEEP LEARNING
The recent popularity of deep learning has motivated active
research in deep learning-based approaches. In [5], a single

image super resolution network based on a convolutional
neural network (CNN) was proposed. Lim et al. proposed
a deeper and more complicated network structure that con-
sists of several residual blocks to extract meaningful features
from the input image [22]. Harris et al. proposed a differ-
ent approach using deep back-propagation network (DBPN)
[9], where feature maps are first extracted using convolution
layer, and then upsampled and downsampled repeatedly to
feedback error in each stage. When multiple or multimodal
input data such as depth map upsampling with corresponding
color images are available, different deep network architec-
tures can be considered. Hui et al. proposed a network which
gradually upsamples the depth map by using color images
as a reference [13]. Li et al. proposed the deep joint filter-
ing (DJF) by using a two-stream network, wherein one stream
extracts feature maps from the color image and the other
stream extracts features from the depth map [21]. Then, the
extracted feature maps are combined using a shallow network
called the fusion network. In [36], Su et al. proposed a pixel
adaptive convolution (PAC), which mimics the bilateral filter.
Adopting a different approach, Kim et al. [17] focused on the
receptive field for depth map upsampling; the receptive fields
were enlarged using deformable kernel convolution (DKN).

In this paper, we propose a novel and distinct approach for
a joint depth map upsampling algorithm with a deep network.
Instead of directly inferring the HR depth map, or estimating
the local-adaptive kernel, the proposed method reconstructs
the low-resolution depth map by warping the pixel position
without changing the depth intensity. Themajor contributions
of the study are as follows:

• To the best of our knowledge, this is the first deep
learning-based approach to upsample depth map via the
image warping technique.

• We extract the displacement vector for grid warping
from the corresponding color image and design the net-
work for an efficient reconstruction of HR depth maps,
using the estimated deformation information.

• We validated the proposed approach via mathematical
edge modeling, which verifies the robustness of the
proposed displacement vector estimation.

The remainder of this paper is organized as follows.
In Section II, the warping method described in detail. The
proposed system and its theoretical analysis are introduced
in Section III. The implementation details and experimental
results are provided in Section IV. Finally, the conclusions of
the study are presented in Section V.

II. IMAGE RESTORATION BY GRID WARPING
For the purpose of image restoration, image warping methods
were proposed in [1], [20], [28], especially aimed toward
image deblurring. The basic assumption in these techniques
is that the blurring process distorts the edge by shifting the
pixels away from the true edge. Therefore, the remedy for
deblurring should be the inverse process of pixel shift, i.e.,
shifting the pixels back toward the edge, as shown in Fig. 1(a).
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FIGURE 1. Comparison of signal reconstruction from blurred (red) to
deblurred (blue): (a) pixel position shift (b) pixel value modification.

However, kernel based methods reconstruct the distorted
pixel by shifting the pixel value, as shown in Fig. 1(b). For
the convenience of explanation, we use the 1D edge profile
of 2D images. Mathematically, in the 1D domain, restoring
the blurred signal Ib(x) to the reconstructed signal Î (x) can be
performed by determining the displacement function d(x) as

Î (x) = Ib(x + d(x)) (1)

Therefore, the core approach of a warping based restora-
tion scheme is to determine the grid displacement function.
Nasonova et al. [28] considered that the ideal step-edge, i.e.,
1D edge, has the following profiles:

H (x) =

{
1 x ≥ 0
0 x < 0

(2)

If the blurring effect is modeled via Gaussian filtering, then
the blurred edge can be modeled as

Ib(x) = H (x) ∗ G(x, σ )

=

∫ x

−∞

δ(x) ∗ G(t, σ ) dt =
∫ x

−∞

G(t, σ ) dt (3)

where σ is the blurring parameter, ∗ indicates the convolution
operation, and δ(t) is the delta function. This model shows
that the edge profile modified due to blurring has the form
of a cumulative Gaussian distribution function, as shown in
Fig. 1.

In [28], the displacement function for (3) is obtained by the
spring model as

d(x, σ ) = κ
d
dx
G(x, σ ) (4)

where κ controls the sharpness of deblurring. The displace-
ment vector has a positive value when x < 0, a negative value
when x > 0, and a maximum value when x = ±σ . As shown
in (3) and (4), the overall performance of this scheme is
significantly dependent on the determination of the true edge
position (i.e., x = 0) and the optimal determination of σ .

III. PROPOSED METHOD
A. OVERALL SYSTEM STRUCTURE
The fundamental idea of the proposed scheme is to use the
grid warping technique for depth map upsampling. As the
conventional grid warping technique is designed to recon-
struct a blurred image, the input image is resized to achieve

the target resolution, and then the resized image is assumed
as the blurred version of the ground-truth. However, unlike
the conventional warping scheme stated in Section I, we con-
sider the case that a pair of HR reference color image and
low-resolution depth map is given, which enables us to infer
displacement vector flows in a different manner.

As mentioned in the detailed literature review in Section II,
the core step in deblurring via the warping scheme is the
determination and localization of the displacement function
d(x). In the proposed scheme, we directly obtain the displace-
ment vector from the given HR reference color image instead
of directly estimating them.

FIGURE 2. Overall system structure.

The overall process is depicted in Fig. 2. First, we down-
sample the HR color image I (x) to have the same resolution
of LR depth map D(x), and upsample it to generate Iu(x)
via simple, pre-determined downsampling and upsampling
methods, i.e.,

Iu(x) = f↑(f↓(I (x))) (5)

where f↑ and f↓ indicate the upsampling and downsampling
functions, respectively. Iu(x) is assumed to be the blurred
version of I (x). Subsequently, the displacement vector can be
extracted by analyzing the relationship between I (x) and Iu(x)
as

d̂(x) = argmin
d(x)
‖Iu(x + d(x))− I (x)‖2 (6)

Once d̂(x) are obtained, the target upsampled depth map D̂(x)
is computed in the same manner:

D̂(x) = Du(x + d̂(x)) where Du = f↑(D) (7)

B. ANALYSIS
In this Section, we present the theoretical investigation and
analysis of the proposed approach via signal modeling.
As previously introduced in [28], the modeling for 1D
edge profile is more focused on the analysis because edges
mainly affect the overall upsampling performance, especially
in depth maps.

First, it is preferable to use the ideal step edge model in (1),
but we generalize it by convolving the Gaussian filter as

I (x, σc) =
∫ x

−∞

G(t, σc) dt (8)
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Thus, the image edge varies smoothly rather than changing
abruptly, and the varying speed is controlled by a small value
σc (the step edge is the case of σc = 0). When the given
image edge is blurred by upsampling, it can be modeled by
convolution with another Gaussian filter as

Iu(x, σ1) = I (x, σc) ∗ G(x, σ )

=

∫ x

−∞

G
(
t, σ1 =

√
σ 2
c + σ

2

)
dt (9)

Similarly, the 1D depth map profile can be obtained as

Du(x, σ2) = I (x, σd ) ∗ G(x, σ )

=

∫ x

−∞

G
(
t, σ2 =

√
σ 2
d + σ

2

)
dt (10)

Based on the 1D modeling, it is concluded that the pro-
posed approach can appropriately upsample the depth map
by the following two properties.

Property I: The displacement vector is independent of the
edge signal scale.

Proof I: In (3), when the signal is scaled by h, i.e., the edge
signal is formed by a scaled step edge function given as

I ′(x) =
∫
hH (t) ∗ G(t)dt = h · I (x),

its blurred signal will be

I ′u(x) = (I ′ ∗ G)(x) = ((hI ) ∗ G)(x) = (h ∗ (I ∗ G))(x)

by the linear property of convolution operation. Therefore,

argmin
d(x)
‖I ′u(x + d(x))− I

′(x)‖2

= argmin
d(x)
‖h (Iu(x + d(x))− I (x)) ‖2 = d̂(x) (11)

Property II: The error caused by replacing the displace-
ment vector in the depth map with that of the color image is
approximately proportional to σc/σ . Thus, the error reduces
when the blurring artifacts are dominant (σc � σ ).
Proof II: As in (9), the edge parameter σc of the original

color signal is changed to
√
σ 2
c + σ

2 by blurring. Let the
edge parameter for depth map σd = sσc. Then, the edge
parameter in the blurred depth signal will have

√
s2σ 2

c + σ
2.

To determine the extent of the influence of the change of
edge parameter on the disparity vector, we consider the x-
directional variation by σ variation.We need to find dx/dσ =
dI−1/dσ in (8); however, its close-form solution cannot be
derived. Instead, we consider the sigmoid function for (8) as
in [42]

I (x, σ ) ≈
1

1+ e−x/pσ
(12)

where p−1 = 0.9
√
π is a constant. From this equation, we can

obtain its inverse function as

x = −p σ log
(
1−

1
y

)
(13)

Therefore,

dx
dσ
= −p log

(
1−

1
y

)
(14)

From (14), the x-directional variation according to σ is
only a function of y. Therefore, we can infer that the opti-
mal value for the displacement vector is proportional to the
difference of two edge parameters, i.e.,

dc(x) = k
(√

σ 2
c + σ

2 − σc

)
dd (x) = k

(√
s2σ 2

c + σ
2−sσc

)
(15)

where k is a proportional parameter. Intuitively, s = 1 (equiv-
alently σc = σd ) will provide an error-free result. When
s 6= 1, the relative error, Er , can be computed as

Er =
dc(x)− dd (x)

dd (x)
=

√
1+ C2 − 1
√
s2 + C2 − s

− 1

≈
C − 1
C − s

− 1 =
s− 1
C − s

(16)

where C = σ/σc � 1 (i.e., the blurring parameter for
upsampling is significantly larger than the edge parameter)
is used for the approximation. Furthermore, 0 ≤ s < 1
(i.e., the depth map has a more rapidly varying edge than the
color image), and C � s in most cases. As a result, we can
conclude that |Er | � 1. Additionally, this derivation provides
a numerical model of the estimated relative error.

C. NETWORK ARCHITECTURE
The function blocks of the proposed system are presented
in Fig. 2 and implemented in the deep networks. The left
network, called displacement network, seeks the displace-
ment vectors from the HR color image. The right network,
called fusion network, attempts to reconstruct the depth map
using the transferred displacement vector. Both networks are
concatenated and trained end-to-end. Additional details on
the network design are presented in below.

1) DISPLACEMENT NETWORK
The displacement network is designed to estimate the dis-
placement vector at each pixel position. As stated in Section I,
signal blurring is assumed to be the outward shift of pixels
from the true edge. Obtaining displacement vectors between
two views is similar to obtaining an optical flow. Therefore,
we adopt a state-of-the-art optical flow FlowNetS structure,
as shown in Fig. 3(a) [6].

As stated in Section II, the previous approaches in [20],
[28] attempted to localize the true edge before applying
grid warping. This is because it determines the image warp-
ing direction around the true edge and significantly affects
overall performance. However, the proposed approach does
not involve this constraint because the corresponding color
image is used as a reference, thereby sufficiently guid-
ing deformation direction. Here, we assume the color and
depth maps to be perfectly aligned. However, slight mis-
alignments can also be managed due to its multiresolution
architecture.
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FIGURE 3. (a) Displacement network, (b) fusion network.

2) FUSION NETWORK
The fusion network consists of three steps: feature extraction,
feature warping, and reconstruction, as presented in Fig. 3(b).

In the feature extraction part, we adopt an architecture
similar to the encoder of the autoencoder. It consists of five
convolutional layers. The first two convolutional layers use
the common convolution, and the remaining three layers
employ the stride convolution to extend a receptive field with
small network parameters. The input of this network is the
upsampled depth map Du, and 64 feature maps are extracted
in each resolution. During the feature warping step, the
extracted feature maps are shifted by the displacement vector
obtained from the displacement network. In this process, the
spatial transformer network is adopted for the realization
of the shifting operation, because it is eligible to represent
various operations including scaling, cropping, rotation, and
non-rigid deformations [14]. It can be also trained with a
standard backpropagationmethod, whichmakes the proposed
system end-to-end trainable. Using the spatial transformer
network, feature maps are shifted to align the center edge
position in each resolution level.

During the reconstruction step, the network fuses the
warped feature maps to reconstruct the HR depth map image.
This network has an architecture similar to the decoder of
the autoencoder and contains five convolutional layers as
feature extraction. From the lowest to the highest resolutions,
the warped feature maps are upsampled via bilinear inter-
polation and concatenated with the feature map having the
next resolution; they are then sequentially convolved in each
convolutional layer. In the conventional autoencoder network,
skip-connection and feature maps concatenation techniques
are commonly used for fast training and to avoid gradient
vanishing, especially when the network structure is consider-
ably deep. However, note that the proposed method does not
employ these techniques in the middle of the reconstruction
network, because the extracted feature maps in the encoder
are deformed by warping; therefore; skip-connection would
degrade the performance.

3) LOSS FUNCTION
For the network training, the L1 norm is used. For a given
network output Dp and the ground truth depth map Dgt , the
loss function can be formulated as

L =
1
N

N∑
i=1

∑
j

∥∥∥Dip(j) − Digt (j) ∥∥∥1 (17)

where N and j are the number of training samples and the
pixel position, respectively.

IV. EXPERIMENT
In this Section, the implementation details and test datasets
are introduced. Subsequently, the proposed method is com-
pared with various state-of-the-art depth map upsampling
methods, quantitatively and visually. Furthermore, we con-
ducted extensive experiments to further analyze the proposed
method in various situations.

A. IMPLEMENTATION DETAILS
Similar to [17], we trained the network to upsample depth
maps for scale factors of 2, 4, 8, and 16, with random ini-
tializations, respectively. We used the Adam optimizer with
β1 = 0.9 and β2 = 0.999. The learning rate starts at 1e−4

and is divided by 5 at every 5 epochs. The batch size is 1.
Our experiments were performed on an Ubuntu operating
system. We trained a network by using a GTX 1080Ti GPU
card. The network is trained in an end-to-end manner using
PyTorch [31].

B. DATASETS
For a fair comparison, we collected four popular datasets. The
first two datasets were divided into training and evaluation
sets. The other two were only used for evaluation. The details
on the datasets are given below:

1) Sintel dataset [2]. This is a computer graphic video with
fine textures. It provides color and depth map pair video
sequences. Each sequence consists of either 50 or 40
frames. The resolution of the sequences is 1024 × 438.
The color image and the depth map are well aligned.
A total of 1000 color-depth image pairs are used as the
training dataset, and a total of 300 color-depth image
pairs as the testing dataset.

2) NYU v2 dataset [34]. This dataset consists of RGB/D
image pairs captured with the Microsoft Kinect. The
resolution of the image pairs is 640 × 480. We split
the image pairs into 800 training dataset and 600 testing
datasets.

3) Lu dataset [26]. Six RGB/D image pairs were provided.
The resolution of the LU dataset is 640×480. They were
acquired using the ASUSXtion Pro camera. This dataset
was only used for evaluation.
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TABLE 1. Quantitative performance comparisons in terms of RMSE.

TABLE 2. Quantitative performance comparisons in terms of MAE.

4) Middlebury dataset [11]. It consists of 30 RGB/D image
pairs from the 2001-2006 datasets. It is only used for
evaluation.

From the sampled image, we generate image patches of
size 150 × 150 for training models. To enrich constructed
image patches more, we adopt data augmentation techniques,
including vertical/horizontal flip, 90◦ rotation, and random
crop. For a fair comparison, we retrain the reference algo-
rithm using our training dataset.

C. QUANTITATIVE EVALUATION
For the evaluation of the proposed method, a few supe-
rior upsampling schemes are selectively compared, including
model-based filtering, optimization, and deep learning-based
methods. As mentioned in the previous Section, we evaluate
our model using four different evaluation datasets, which
have different resolutions and different color-depth alignment
quality.

Tables 1 and 2 exhibit the average root mean square
error (RMSE) and mean absolute difference error (MAE)

value for each scheme, respectively. The lowest RMSE and
MAE values are presented in bold red, and the second lowest
are presented in blue. It is observed that the proposed method
achieves the best performance for almost all test cases in
terms of the both RMSE and MAE. The only exemption
shows the second-best performance with negligible differ-
ence. For the upsampling factor of four, DKN is comparable
with the proposed method, whereas the proposed method
outperforms for all other upsampling factors.

For the computational complexity, we measure the runtime
for the deep learning-based schemes of DJF, PAC, DKN, and
the proposed method on the same machine. The proposed
scheme took an average of 15 ms for theMiddlebury datasets,
which was slower than DJF and PAC, but significantly faster
than DKN.

Finally, we investigated how much the proposed grid-
warping-based scheme could improve the upsampling perfor-
mance. To evaluate the potential of the proposed approach,
we replaced the input of the displacement network I and Iu
by Du and Dgt , and the network was trained with the same
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FIGURE 4. Visual comparisons for the 8× upsampled Lu, Temple 3, Temple 2, and Art depth maps by various methods: BF [32], EGF [12], CJGF [40], DJF
[21], PAC [36], DBPN [9], DKN [17], Ours, and ground-truth (from left to right).

TABLE 3. Run-time comparisons for joint deep learning-based
approaches.

approach. This experiment assumed that ground-truth dis-
placement vectors could be derived byDu andDgt . As shown
in Table 4, it is reported that the warping-based approach
was able to recover almost error-free upsampled depth maps.
It shows there is still room for improvement, especially for
large-scale factors.

D. VISUAL COMPARISON
We examined the effectiveness of the proposedwarping based
scheme in handled challenging cases in joint depth upsam-
pling. As shown in Fig. 4, we chose a few complicated
regions from various images and compared the performance
in the zoomed images. In most cases, our scheme was capable
of maintaining a sharper shape of the depth map edge as
compared to the other schemes. For example, as shown in
the first row in Fig.4, the proposed method achieved the
sharpest depth edge while well preserving the overall shape
of the object. In the case of multiple overlapped objects in

the fifth row, each object is clearly separated in our proposed
scheme. We also test our scheme in more challenging situ-
ation such as low-resolution images. In general, upsampling
a low-resolution image is more challenging than upsampling
a high-resolution image, because low-resolution image has
more complicated patterns than high-resolution image in the
same size of region. Although, we did not train our model
using low-resolution datasets, the proposed scheme achieved
relatively sharper depth edge compared to any other schemes
as shown in second and third row of Fig 5. However, when
small objects disappeared during downsampling, as shown in
the last row of 4, similar to the other schemes, the proposed
method was unable to sufficiently restore the depth map.
Another weakness of our scheme is color image dependency.
When the proposed method restores edge of depth map,
it tends to mimic the shape of color image, not the shape of
depth map. For example, Although the visual results in Fig.4
are predicted by one model, sharpness of each visual result is
different. This phenomenon is more clearly when comparing
the real image with the computer graphic image. as shown in
Fig.4, the second row result is much blurred than the third row
result. It is because the sharpness of third row color image is
much sharp than the second row.
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FIGURE 5. Visual comparisons for the 8× upsampled Middlebury and NYU v2 depth maps by various methods: BF [32], EGF [12], CJGF [40], DJF [21], PAC
[36], DBPN [9], DKN [17], Ours, and ground-truth (from left to right).

TABLE 4. RMSE of the proposed system using the displacement vector derived from the ground-truth depth map.

E. DISPLACEMENT VECTOR ANALYSIS
In this Section, we visualized the displacement vector field
to verify the assumption of grid warping. The displacement
vector field was displayed in the same manner as the conven-
tional optical flow visualization in Fig. 6. Overall, displace-
ment vectors were formed around the edge at orthogonal and
opposite directions with respect to the edge. These two obser-
vations are consistent with our hypothesis. However, some
unexpected chessboard patterns were observed. We ana-
lyzed these types of patterns that would be generated by the

transpose convolution operation that was used to increase the
resolution of feature maps. It was reported that the transposed
convolution often caused chessboard patterns in the output
image owing to uneven overlaps [29]. To further confirm the
effect of the transpose convolution, we replaced the transpose
convolution layer with the bilinear interpolation. As shown in
Fig. 6, the modified model with bilinear interpolation yielded
the pattern-free displacement vector fields. However, wewant
to maintain use of the transpose convolution owing to its
higher performance.
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FIGURE 6. Displacement vector field visualization (scale 8×): ground-truth depth map, displacement vector field with transpose convolution, and its
pattern-free vector field without transpose convolution (from left to right).

TABLE 5. Complexity comparisons for joint deep learning-based
approaches.

TABLE 6. Complexity analysis of each network in the proposed scheme.

F. COMPLEXITY COMPARISON
In this Section, more intensive complexity analysis and com-
parisons are conducted. We measure the run-time, the num-
ber of parameters, and the floating-point operations per sec-
ond (FLOPs), where FLOPs are measured with upsampled
256 × 256 input depth map. As exhibited in Table 5, the
proposed scheme has largest number of parameters compared
to other schemes, especially approximately 30 times more
than DKN. On the other hand, the proposed scheme has about
60% FLOPs compared to DKN. It is because the proposed
scheme deals with feature maps in lower resolution, and it
results in fewer operations. For the further analysis of the pro-
posed scheme, the complexity of each network is measured.
As reported in Table 6, the displacement network accounts
for 97% of the total number of parameters, whereas the fusion
network performs more FLOPs. It is analysed that the larger
resolution feature maps are more processed in the fusion
network.

G. NOISY ENVIRONMENT EVALUATION
In this Section, we consider more challenging test scenarios
for practical applications. First, we tested the case when the
edge of color image is more blurred. In the proposed system,
the computation of displacement vector highly relies on the
quality of HR color image and could degrade the performance
when its quality is low. We consider that the given image is
distorted by blurring, and it was simplymodeled via Gaussian

TABLE 7. Performance variation for Gaussian blurred (with σb) reference
color image (Middlebury, 16× scaling, RMSE).

blurring with σb. As shown in Table 7, the blurred color
image slightly decreases the performance. For the weakly
blurred case (e.g., σb ≤ 2), the performance degradation
of the proposed system was small compared to other deep
learning-based joint upsampling methods. However, the per-
formance worsens when σb is large. It is well matched with
the proposed mathematical modeling in Section III.B, i.e., the
overall performance degradation is still small for σ � σb,
whereas performance worsens for larger σb. It is also note-
worthy that the proposed method is slightly more robust
toward the blurry reference image than other joint upsam-
pling methods are more sensitive towards the blurry reference
image.

Second, we test the case of a color-depth misalignment
situation. Most of the joint depth map schemes assume that
color and depth map are well aligned. However, this is not
true for some practical situations. To generate the misalign-
ment, we shifted the color images in the test dataset to the
n pixel in the horizontal and vertical directions. As shown
in Table 8, the proposed model does not degrade much for
small pixel shift, but the performance drop becomes larger
for large misalignment as all other joint upsampling methods
do. It is analyzed that slight misalignment can be managed by
multiresolution structure, while misuse of the displacement
vector by large misalignment is unavoidable, which results in
large performance degradation.

H. JOINT SALIENCY MAP UPSAMPLING
In this Section, we explore how effectively the proposed
scheme can be applied to saliency map upsampling [38].
To measure the accuracy of upsampled saliency map,
we use RMSE and structure-measure(S-measure) metric [7].
Here, S-measure evaluates region-aware and object-aware
structural similarity between ground truth and predicted
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FIGURE 7. Visual comparisons of 16× upsampled saliency map results: Color image, DJF [21], PAC [36], DKN [17], Ours, and ground-truth (from left to
right).

TABLE 8. Performance variation by misalignment with pixel shift (with n)
of color image (Middlebury, 16× scaling, RMSE).

TABLE 9. Quantitative comparisons on saliency map upsampling.

upsampled saliency map. DUT-OMRON dataset is used
for the evaluation. As reported in Table 9, the proposed
scheme shows the best performance among the joint deep
learning-based approaches in terms of RMSE (lower is better)
and S-measure (higher is better). Fig. 7 shows the visual
comparisons. We observe that fine-details and its structures
are well preserved compared to any other schemes.

V. CONCLUSION
In this paper, we proposed a novel depth map upsampling
technique by the image warping approach. The displace-
ment vector for the image deformation was computed by
the corresponding HR color information, which is the major
contribution of the study. Furthermore, we also provided
the theoretical edge signal modeling to verify the robust-
ness of the proposed approach. As a result, the proposed
scheme outperformed model-based approaches and exhibited
the best performance, as compared to other state-of-the-art
deep learning-based schemes, in terms of the RMSE and
MAE. The visual results also validate the superiority of the
proposed scheme. Furthermore, more intensive experiments
are provided to analyze the proposed method with various
situations. However, the performance of the proposed method

relies on the similarities of the color images and depth maps.
This limitation will be addressed in a future work.
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