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ABSTRACT Wind energy plays an increasingly important role in economic development. In this study,
we propose a hybrid short-term wind-speed forecasting model comprising multiscale mathematical morpho-
logical decomposition (MMMD), K-means clustering algorithm, and stacked denoising autoencoder (SDAE)
networks. First, in contrast to traditional signal-decomposing tools, the original wind-speed sequence is
decomposed into a series of subsequences with different frequencies and fluctuant levels using the adaptive
multiscale mathematical morphological algorithm directly in the time domain. The signal does not need
to be transferred from the time domain to the frequency domain; hence, the accuracy can be considerably
improved. Moreover, this is the first study that uses a time domain signal-decomposing tool in a hybrid
wind forecasting model. Next, the data are split into different clusters of similar frequencies and fluctuant
level subsequences using the K-means algorithm. The characteristics of each cluster are then captured
using the SDAE as the core forecasting unit. Finally, the predictions of all subsequences are aggregated
to obtain the final wind speed. The data from two real wind turbines are used to evaluate the performance
of the proposed model, and the forecasting results are compared with five different benchmark models,
namely, backpropagation neural network (BPNN), stacked denoising autoencoder (SDAE), mathematical
morphology–backpropagation, mathematical morphology–SDAE, and K-means–SDAE for multiple scales,
and two novel hybrid wind forecasting models namely, wavelet transform (WT)-K-means-SDAE and
variation mode decomposition (VMD)-K-means-long short-termmemory networks (LSTMs). The results of
the comparison demonstrate that the proposed model provides a short-term wind-speed forecasting method
whose prediction accuracy decreases with time; however, the proposed model achieves a better performance
in comparison with other exiting models. At same time, the proposed model significantly increases the
prediction accuracy of wind-speed forecasting and can be a reference for future research in this area.

INDEX TERMS K-means clustering, multiscale mathematical morphological decomposition, short-term
wind-speed forecasting, stacked denoising autoencoders.

I. INTRODUCTION
Developing a low-carbon economy and striving for sustain-
able development has become a common aspiration of a
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rapidly progressing human society. Recent developments in
renewable energy have made wind the third-largest power
source after coal and hydropower. However, wind power
is naturally characterized by rapid fluctuations and inter-
mittency that severely restrict its large-scale development.
Therefore, formulating a reasonable wind power scheduling
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plan based on accurate prediction and making it cooperate
with traditional energy supplies are the most important steps
to realize wind power scaling and regularization [1]–[3].

Wind-speed forecasting forms the basis of wind power
forecasting and has been studied separately. The wind speed
not only characterizes abundant noise, nonlinearity, and non-
stationarity, but also, more importantly, presents wideband
multiscale characteristics. Therefore, extracting robust and
stable characteristics from complex wind-speed signals is
quite challenging. The current level of wind-speed prediction
is insufficient to meet the requirements of actual engineering
applications [4]. Many recent studies focused on wind-speed
forecasting models at multiple scales [5]. These forecast-
ing models can be separated into very short-term, short-
term, medium-term, and long-term forecasting based on time
scales. Very short-term forecasting ranges from a few seconds
to 30 min ahead. Short-term forecasting ranges from 30 min
to 6 h ahead. Medium-term forecasting ranges from 6 h to
1 day ahead. Lastly, long-term forecasting ranges from 1 day
to 1 week or more ahead. These models can be further clas-
sified into physical, statistical, intelligent, and hybrid models
based on forecasting approaches [6], [7].

Wind-speed prediction is performed by depicting detailed
physical discretion of the atmosphere using physical
approaches. The most common method is numerical weather
prediction (NWP), which has been widely adopted to pre-
dict wind-speed conditions. NWP predicts the atmospheric
motion state and weather phenomena for a certain period in
the future by solving the equations of fluid mechanics and
thermodynamics describing the weather evolution process
through numerical calculation. However, the computation
process is time-consuming, and the performance suffers for
short-term predictions [8], [9].

Statistical methods use statistical theory to establish the
forecasting model based on historical data. Such methods are
easy to model and are not based on any predefined conditions.
The conventional model is an autoregressive integrated mov-
ing average (ARIMA)model. Yatiyana et al. [10] constructed
a wind power forecasting model based on ARIMA time
series. Their method achieved good prediction results, but
the prediction process was time-consuming owing to a single
ARIMA model being employed to simultaneously complete
multiple tasks. In [11], many different statistical models are
proposed to predict wind speed and power. However, statisti-
cal methods are not suitable to deal with nonlinear patterns.

Intelligent models have demonstrated good performance
in processing nonlinear patterns, and artificial neural net-
works (ANNs) are the most prevalent predictors in intelligent
models. Peng et al. [12] proposed using a stacked denoising
autoencoder (SDAE)model to predict wind power. They used
the data from real wind turbines to evaluate the performance
of the proposed model compared to two different models,
namely backpropagation neural network (BPNN) and support
vector machines, in terms of prediction results. The compari-
son illustrated that SDAE has a more robust prediction ability
to deal with nonlinear data. A bidirectional gated recurrent

unit-based deep learning model demonstrated superior wind
power forecasting in [13], and the results were verified using
real data from a wind farm. Wang et al. [14] introduced a
deep belief network (DBN) on a multi-dimensional phase
space to predict wind power. Compared with other bench-
mark models, using data from a real wind turbine, the DBN
model showed better ability when processing nonlinear sys-
tems. Lin et al. [15] used an improved DBN model with
genetic algorithms for wind-speed prediction with increased
accuracy.

Conventional ANNs have serious drawbacks such as
falling into local minima and overfitting. Several hybrid
models combining different approaches have been widely
applied to solve these problems. The signal-decomposing
technique has been widely used to construct hybrid models.
Sun et al. [16] introduced a hybridmodel integrating variation
mode decomposition (VMD), K-means clustering, and long
short-term memory networks to forecast wind power. The
prediction result demonstrated its superior performance when
compared with six different benchmark models. In [17]–[19],
wavelet transform (WT) was used as a signal-decomposing
tool for the input signal. However, both VMD and WT
accomplish data processing in the frequency domain, which
requires transferring the data from the time domain to the
frequency domain and back, thereby increasing signal error.
Chen et al. [20] proposed wind-speed prediction model based
on multiscale mathematical morphology and support vec-
tor regression. The mathematical morphology algorithm can
decompose wind-speed sequences into a series of subse-
quences directly in the time domain with large improvements
in accuracy. However, the structure of their entire model is
simple and offers poor prediction performance.

This study introduces a novel short-term wind-speed
forecasting model based on multiscale mathematical mor-
phological decomposition, K-means clustering, and SDAE.
The contributions of this study can be summarized as
follows:
1. A multiscale mathematical morphology algorithm is

used to decompose wind-speed sequences into a series
of subsequences in the time domain.

2. A K-means clustering algorithm is applied to classify the
data into different clusters with similar frequencies and
fluctuant level subsequences.

3. SDAE, a deep learning method, is proposed as the core
forecasting unit to capture each cluster’s characteristics.

4. The predictions of all subsequences are aggregated to
obtain the final predicted wind speed.

5. Data from two real wind turbines are used to compara-
tively evaluate the performances of the proposed model,
five different benchmark models, and two novel hybrid
wind forecasting models.

The remainder of this article is organized as follows.
Section II presents the methodologies used in this study.
Section III evaluates the case studies of the proposed
wind-speed forecasting framework. Finally, Section IV
presents concluding remarks.
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II. METHODOLOGIES
A. MULTISCALE MATHEMATICAL MORPHOLOGICAL
DECOMPOSITION
Mathematical morphology (MM) is a nonlinear analysis
method based on strict mathematical theory. The basic
principle is to use a probe, called a structuring element
(SE), to move through the signal and perform basic opera-
tions to extract useful feature information. The basic oper-
ations of the MM include dilation, erosion, opening, and
closing [21]–[23].

In the decomposition process, the SE has a function similar
to that of a filtering window for general signal processing.
The signal is extracted when the shape of the signal matches
the shape of the SE. In practical applications, the shape of
the SE can be determined according to the target signal char-
acteristics. The common SE types include linear, triangular,
circular, and cosine.

Let f (n) be the pending signal, which is the discrete func-
tion over the domain Df = {0, 1, 2, · · · ,N} and let g (n) be
the 1-D SE, which is the discrete function over the domain
Dg = {0, 1, 2, · · · ,P }. Both N and P are integers, and
N ≥ P. The morphological operators (i.e., erosion and dila-
tion) can be defined as

(f ⊕ g) (n) = max
{
f (n− m)+ g (m) , n ∈ Df ,m ∈ Dg

}
(1)

(f2g) (n) = min
{
f (n+ m)− g (m) , n ∈ Df ,m ∈ Dg

}
(2)

where ⊕ and 2 denote the erosion and dilation opera-
tors, respectively. Two other basic morphological operators,
namely, the opening and closing, can be further defined based
on dilation and erosion, as follows:

(f ◦ g) (n) = [(f2g)⊕ g] (n) (3)

(f • g) (n) = [(f ⊕ g)2g] (n) (4)

where ◦ is the opening operator, and • is the closing
operator.

The nonlinear and nonstationary characteristics of the
wind determining the wind speed have multi-time scales.
We introduce a multiscale morphology analysis based on
the traditional single-scale morphology filter. By defining
different SE sizes, we perform omnidirectional scans of the
wind-speed curve and extracts fluctuation characteristics at
different scales. In this case, we can depict the morphological
characteristics of the wind-speed curve hierarchically.

Let f , g, and T denote a discrete pending signal, the SE of
the MM, and multiple morphological operator, respectively.
The multiscale morphological operation is based on the set
{Ts| s > 0, s ∈ Z}, where s is a positive integer representing
the scale of the SE, and

Ts (f ) = sT
(
f /s
)
, s > 0 (5)

Similarly, multiscaleMMoperator erosion and dilation can
be respectively expressed as follows:

(f2g)s (n) = s
[(
f /s
)
2g
]
(n) = f2sg (n) (6)

(f ⊕ g)s (n) = s
[(
f /s
)
⊕ g

]
(n) = f ⊕ sg (n) (7)

where sg = g⊕ g⊕ · · · ⊕ g (s-1 times). The open and closed
operations, respectively, of the multiscale morphology, are
defined as

(f ◦ g)s (n) = f2g2g2 · · ·2g⊕ g⊕ g⊕ · · · ⊕ g (8)

(f · g)s (n) = f ⊕g⊕ g⊕ · · ·⊕︸ ︷︷ ︸
s

g2g2g2 · · ·2︸ ︷︷ ︸
s

g (9)

The signal decomposition process can be regarded as a
multiple filtering process. The SEs of different scales can
adapt to different signal shapes. Before the signal decomposi-
tion, two preparatory works need to be performed: choosing
suitable size of the SE and filter.

The size of the SE is determined by the signal length
and height. The local peak values of the original signal
X = {xn | n = 0, 1, 2, · · · ,N − 1} are calculated, where N
is the signal length. Let P =

{
pn
∣∣ n = 0, 1, 2, · · · ,Np

}
be

the series of peaks, where Np is the number of peaks. The
peak interval I is defined as I = {in|in = pn+1 − pn,
n = 0, 1, 2, · · · ,Np-1}. Lmax and Lmin are defined as the
minimum and maximum lengths of the SEs, respectively:

Lmax = b(Imax − 1) /2c (10)

Lmin = d(Imin − 1) /2e (11)

where d e and b c represent the operators rounded toward
infinity and rounded toward minus infinity, respectively.

The length and height of the SEs at different scales j are
then obtained as follows:

Lj = Lmin + j, (j = 0, 1, 2, · · · ,Lmax − Lmin) (12)

hj = δ ∗ [hmin + j ∗ (hmax − hmin) / (Lmax − Lmin)] (13)

where δ (0 ≤ δ ≤ 1) is the proportionality coefficient.
A suitable filter must be selected afterward. Alternating

and hybrid alternating filters are the most common type of
filters used in the multiscale morphology. Alternating filters
are also known as morphologic open–close (OC) filters and
morphologic closed–open (CO) filters. These filters are com-
posed of morphological open and closed operations cascaded
in different sequences and are written as follows:

hoc (f )s (n) =
(
(f ◦ g)s • g

)
(14)

hco (f )s (n) =
(
(f · g)s ◦ g

)
(15)

To compensate for the shortcomings of the morphological
OC and CO filters, they are often combined to form a hybrid
alternating filter known as the OCCO filter, expressed as

hocco = 0.5 ∗
[
hoc (f )s (n)+ hco (f )s (n)

]
(16)
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In this study, the signal characteristics of each scale can
be effectively extracted. Moreover, more ideal morphologi-
cal features can be obtained using the weighted multiscale
morphology filter (WMMF).

Let the scale of SE be S = {S1, S2, · · · , Sk}.We can realize
the OCCO morphological filtering hocco (f )si at k different
effective scales, where i = 1, 2, · · · , k . The WMMF is
defined as,

hWMMF (f )s (n) =
∑k

i=1
ωsi × hoccofsi (n) (17)

ωsi =
σ 2
si∑k

i=1 σ
2
si

i = 1, 2, · · · k (18)

where ωsi and σ
2
si represent the weight factors and variances

of each SE, respectively. The corresponding ωsi is also small
because of the weak denoising ability of small-scale SEs. The
WMMF combines filters with different-scale SEs, ensuring
the preservation of the original signal characteristics as much
as possible. Fig. 1 shows the raw input wind-speed processing
after completion of the two preparatory works.

FIGURE 1. Raw wind speed processing.

Step 1: Choose triangular-type SEs to finish the filtering
task, then design the SEs in different scales, Gj = (SEtri)j.
From (12) and (13), we obtain

(SEtri)j = hj ∗
[
01 · · ·Lj−1LjLj−1 · · · 10

]
(19)

Step 2: Let the input signal be denoted as F; the output yj (x)
at scale j is obtained using (17).
Step 3: We obtain j(j = 0, 1, 2, · · · ,m) differently scaled

outputs according to Step 2.

F =
∑k

i=1
fk =


f0 = F-y0
fj = yj−i − yj, 1 ≤ j ≤ m
fm+1 = ym

(20)

After decomposition, the original signal sequence is
decomposed into a series of m+ 1 detail components, f0− fm
and a principal component fm+1 to obtain a total ofm+ 2 sub-
sequence layers. According to (19) and (20), m depends on j,

which is the scale coefficient of the SEs. Equations (10) – (12)
show that j depends on the peak interval of the original input
signal. In other words, the number of layers in subsequence
depends on the original input signal.

B. K-MEANS ALGORITHM
K-means is a simple and classical clustering algorithm based
on distance. The idea of K-means was first presented by
Hugo Steinhaus in 1957 [24]. As a data-mining approach,
the K-means algorithm automatically groups the input data
into the corresponding predefined clusters by minimizing
the distance function in an unsupervised manner. The points
in the cluster are connected as closely as possible. The
distance between the clusters is as large as possible [25], [26].
Figure 2 illustrates the procedure of the K-means
algorithm [27].

FIGURE 2. Flowchart of the K-means algorithm.

Step 1: Determine the k different clusters in advance.
Step 2: Randomly choose K points as the initial clustering

centers.
Step 3: Calculate the Euclidean distance D (x, y) between

each point xi and the clustering centers yi , and assign each
point to the cluster with the shortest distance using the
Euclidean distance formula as

D (x, y) =

√∑N

i=1
(xi − yi)2 (21)

Step 4: Redefine the cluster centers by calculating the mean
vectors based on the following equation:

µj =
1
Nk

∑Nk

i=1
dataki (22)

where µj is the center vector of the jth cluster; dataki is the i
th

data in cluster k; and Nk is the sample amount of each cluster.
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Step 5: Repeat steps 3 and 4 until the center vectors
converge.

The K-means algorithm can be used on each subsequence
of the decomposition result F to cluster the wind-speed data
into different categories.

C. STACKED DENOISING AUTOENCODER
The autoencoder (AE) is an ANN with three layers—the
input, hidden, and output layers—which are mainly used for
dimensionality reduction or feature extraction. The hidden
layer leads to dimensionality reduction and can help recon-
struct the input data. Fig. 3 displays the basic structure of an
autoencoder [28],[29].

FIGURE 3. General autoencoder structure.

The autoencoder maps the input data into a hidden repre-
sentation f using

y = fθ (x) = σ (Wx + b) (23)

where σ is the sigmoidal activation function. θf = {W, b}
is the parameter set containing the transformed weight
matrix W, and bias vector b. fθ (x) is a function that encodes
the features from the input layer to the hidden layer. Then,
the hidden layer maps back the feature to the output layer
based on

z = gv (y) = σ (W’x + b’) (24)

where vg = {W ′, b′} is the parameter set containing the
transformed weight matrix W’ and bias vector b’. The func-
tion gv (y) decodes the feature back to the output layer. The
decoding weight matrix W’ =WT. The AE system is trained
by minimizing the loss function as follows:

Lθ,v = argmin
θ,v

1
n

∑n

i=1

∥∥∥x(i) − gv (y)∥∥∥2 (25)

where n is the number of samples. However, the structure of
AE is very simple, leading to overfitting and thereby reducing
the efficiency of the feature extraction.

The denoising autoencoder (DAE) is an improved version
of the AE, with similar network structures and operating

FIGURE 4. SDAE. (a) Structure of DAE. (b) Unsupervised pretraining of
SDAE. (c) Supervised fine-tuning of SDAE.

process. However, DAE reconstructs the input signal by cor-
rupting one to get a more robust system (Fig. 4(a)) [30].

The original input x is stochastically corrupted to x̃, and
the encoding process of the corrupted input is

c (x̃) = sig (W’x̃ + b’) (26)

An SDAE is made up of multiple DAEs, with the aim of
building a deep architecture. In general, the SDAE has two
learning steps: an unsupervised pretraining step and a super-
vised fine-tuning step (Figs. 4(b) and (c), respectively). The
learning procedure starts with a greedy layer-wise pretraining
procedure. EachDAE layer is trained in the samemanner. The
output of eachDAE is the input of the next DAE. The first step
performs unsupervised training of each DAE layer separately
to minimize the error between the input and reconstruction
results. After pretraining of the DAEs, all hidden layers are
trained. A logistic regression layer is then added on top of the
hidden layers; subsequently, the data with labels are used to
fine-tune the network further through a BPNN algorithm.

D. OPERATING PROCEDURE OF PROPOSED MODEL
Fig. 5 demonstrates the framework of theMMMD–K-means–
SDAE model. The specific details are presented below.

(1) For the given training dataset, the input signals are
decomposed into a series of subsequences with different
frequencies and fluctuant levels using the MMMD. The tri-
angular SE shape and WMMF filters are then selected.

(2) The K-means algorithm is used for each subsequence
of the decomposition result F to cluster the wind-speed data
into several categories. The Euclidean distances between each
point and clustering centers are calculated, and each point is
assigned to the cluster with the shortest distance.

(3) Optimal SDAE models are established based on the
clustering result. The predictions of all subsequences from the
hybrid model are then aggregated to obtain the final result.

The model proposed in this study is for short-term wind-
speed forecasting; therefore, the effective prediction time
scale is 30 min to 2 h. Beyond this prediction range,
the prediction sensitivity decreases with time. When the
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FIGURE 5. Operating procedure of the proposed MMMD–K-means–SDAE
model.

time scale exceeds 48 h, the model will not provide a valid
prediction.

III. CASE STUDY
The experiments were run on a platform with the follow-
ing configuration: AMD Ryzen 2600 Six-Core Processor,
3.40 GHz, 16.0 GB RAM. The models were applied
on Python 3.7, TensorFlow-GPU 1.15.0, and Keras 2.1.4.
A comparison of the total computation time of different
models is shown in Table 1. As a three-layer hybrid model,
the computation time of the proposed model is 513 s; there-
fore, the computation efficiency of the proposed method is
very high compared to other models.

TABLE 1. Comparison of total computation time.

A. DATA DESCRIPTION
Data from two randomly selected wind turbines collected for
the last quarter of 2017 from Hebei Province, China were
used. Approximately 25,000 SCADA data were available for
each wind turbine. Of these, 15,000 data units were randomly
selected as the training data, and the remainder were used
as the testing data. The proposed method can be universally

applied to all wind farm scenarios; therefore, there are no
special requirements for the datasets. The cut-in wind speed
of the wind turbine was 2.5–3 m/s, the cut-off wind speed
was 25 m/s, and the rated speed of the wind turbine was set
to 11 m/s. The mean relative error (MRE), root-mean-square
error (RMSE), and mean absolute percentage error (MAPE)
were selected as indicators to compare the proposed model
with the benchmark models. TheMRE represents the average
of the absolute error between the predicted and actual values.
It is a linear function, and all individual differences have an
equal weight on average. The RMSE indicates the sample
standard deviation between the predicted value and the actual
value, demonstrating the dispersion degree of the predicted
value. TheMAPE is similar to theMRE, which represents the
percentage of the error in the actual value. All three indicators
are used to evaluate prediction accuracy, which decreases
with an increase in the values of these three indicators. They
can be calculated as follows:

MRE =

∑N
i=1

(∣∣∣x (t)− _x (t)
∣∣∣ /xr)

N
(27)

RMSE =

√√√√∑N
i=1

[
x (t)− _x (t)

]2
N

(28)

MAPE =
1
N

∑N

i=1

∣∣∣∣∣x (t)−
_x (t)

x (t)

∣∣∣∣∣ (29)

where x(t) is the actual data; xr is the rated value;
_x (t) is the

predicted data; and N is the number of forecasting samples.
For further comparison of the performances of two differ-

ent models, the improved performance of the MRE (PMRE),
RMSE (PRMSE), and MAPE (PMAPE) were introduced and
calculated as

PMRE =
|MRE1 −MRE2|

MRE1
(30)

PRMSE =
|RMSE1 − RMSE2|

RMSE1
(31)

PMAPE =
|MAPE1 −MAPE2|

MAPE1
(32)

The PMRE, PRMSE, and PMAPE represent the result of com-
paring two different forecasting models. The PMRE, PRMSE,
and PMAPE are presented as percentages; thus, the perfor-
mance of these two models can be further analyzed.

B. DECOMPOSITION RESULTS OF THE ORIGINAL
WIND-SPEED SIGNAL
The first step in the prediction process is the decomposition of
the original wind-speed sequences into several subsequences.
The wind-speed signal was decomposed into seven and five
subsequences for wind turbines #1 and #2, respectively,
based on the original input signal. The testing data of the
wind-speed sequences were obtained from the two wind tur-
bines (Fig. 6). Figs. 7(a) and (b) illustrate the decomposition
results of the two wind turbines using the MMMD tech-
nique. For wind turbine #1, f0–f5 are the detail components,

146906 VOLUME 8, 2020



W. Dong et al.: Short-Term Wind-Speed Forecasting Based on MMMD, K-Means Clustering, and SDAEs

FIGURE 6. Testing data of thirty-minute wind speed sequences.

and f6 is the principal component. For wind turbine #2,
f0–f3 are the detail components, and f4 is the principal
component.

C. EFFECT OF ESTIMATION OF THE PROPOSED MODEL
After signal decomposition, the wind signal was used to make
30 min, 1 h, and 2 h forecasting in the proposed model. The
forecasting results were compared with those obtained using
seven other approaches, namely, BPNN, SDAE, MMMD–
BPNN, MMMD–SDAE, K-means–SDAE, WT-K-means-
SDAE, and VMD-K-means-LSTM. Figs. 8–13 depict the
comparison results with different time scales. Tables 2 and 3
present the estimated errors of the different models.

Figs. 8–13 show that the results from all forecastingmodels
share the same characteristics. To further prove the perfor-
mance of the proposed hybrid model, PMRE, PRMSE, and
PMAPE were introduced to compare the eight different mod-
els. Tables 4–13 present the comparison results for wind tur-
bine #1, whereas Tables 14–23 show the comparison results
for wind turbine #2. Using the proposed model as a ref-
erence, a comparison of the PMRE, PRMSE, and PMAPE of
all the other models for the two wind turbines is shown
in Tables 24 and 25.

The following inferences can be drawn from the compari-
son results given in Tables 2–25.

1) SDAE VS. BPNN
The SDAE approach can provide more accurate forecasting
results than the BPNN, as indicated by the PMRE, PRMSE,

and PMAPE for the 30 min, 1 h, and 2 h time scales for
wind turbine #1. The improvements in PMRE were 14.97,
22.75, and 19.20, respectively, whereas those in PRMSE were
16.17, 21.47, and 20.72, respectively, and in PMAPE were
7.79, 12.10, and 10.20, respectively. For wind turbine #2 at
the same time scales, the SDAE model could improve PMRE
by 17.92, 14.81, and 14.56, respectively, PRMSE by 17.17,
15.48, and 15.66, respectively, and PMAPE by 9.40, 7.70, and
7.56 respectively. In other words, a deep learning network has
a better performance than a traditional ANN due to avoidance
of the local minimum and overfitting problems.

FIGURE 7. Thirty-minute decomposition results of the two wind turbines
using the MMMD technique. (a) Thirty-minute decomposition results of
wind turbine #1. (b) Thirty-minute decomposition results of wind
turbine #2.

2) MMMD–SDAE VS. SDAE
The SDAEmodel demonstrates a stronger generalized ability
when performing the MMM decomposition technique before
forecasting. Wind turbine #1 had time scales of 30 min,
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FIGURE 8. Comparison results of wind turbine #1 for the thirty-minute
time scale.

FIGURE 9. Comparison results of wind turbine #1 for the one-hour time
scale.

FIGURE 10. Comparison results of wind turbine #1 for the two-hour time
scale.

1 h, and 2 h. The improvements in PMRE were 72.01, 64.20,
and 56.62, respectively, whereas those in PRMSE were 70.84,
64.34, and 55.61, respectively, and those in PMAPE were
47.16, 40.17, and 34.14, respectively. For wind turbine #2

FIGURE 11. Comparison results of wind turbine #2 for the thirty-minute
time scale.

FIGURE 12. Comparison results of wind turbine #2 for the one-hour time
scale.

FIGURE 13. Comparison results of wind turbine #2 for the two-hour time
scale.

at the same time scales, the MMMD–SDAE model could
improve PMRE by 52.75, 59.38, and 48.39, respectively,
PRMSE by 49.59, 57.48, and 48.32, respectively, and PMAPE
by 31.26, 36.27, and 28.16, respectively. The MMMD algo-
rithm decomposes wind-speed sequences into a series of
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TABLE 2. Comparison of forecasting errors between the proposed and
benchmark models for wind turbine #1.

subsequences directly in the time domain; hence, it can avoid
errors during the signal transfer process and greatly increases
the forecasting accuracy and stability.

3) K-MEANS–SDAE VS. SDAE
Relative to the traditional SDAE model, the accuracy of the
prediction result will improve when adding the K-means
clustering algorithm. For wind turbine #1, the time scales
were 30 min, 1 h, and 2 h. The improvements in PMRE were
48.56, 42.61, and 40.83, respectively, whereas those in PRMSE
were 46.96, 42.68, and 40.37, respectively, and those in
PMAPE were 28.28, 24.25, and 23.08, respectively. For wind
turbine #2 at the same time scales, the K-means–SDAEmodel
could improve PMRE by 35.39, 41.25, and 35.17, respectively,
PRMSE by 34.61, 39.69, and 33.45, respectively, and PMAPE
by 19.62, 23.35, and 19.48, respectively.

4) MMMD–K-MEANS–SDAE VS. SDAE
Compared to the SDAE approach, the proposed hybrid
MMMD–K-means–SDAE produced a better forecasting per-
formance.Wind turbine #1 had time scales of 30min, 1 h, and
2 h. The improvements in PMRE were 83.80, 74.43, and 71.26,

TABLE 3. Comparison of forecasting errors between the proposed and
benchmark models for wind turbine #2.

TABLE 4. Comparison between SDAE and BPNN for wind turbine #1.

TABLE 5. Comparison between MMMD–SDAE and SDAE for wind
turbine #1.

respectively, whereas those in PRMSE were 82.24, 74.29, and
71.19, respectively, and those in PMAPE were 59.75, 49.43,
and 46.39, respectively. For wind turbine #2 at the same
time scales, the proposed hybrid model can improve PMRE by
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TABLE 6. Comparison between K-means–SDAE and SDAE for wind
turbine #1.

TABLE 7. Comparison between MMD–K-means–SDAE and SDAE for wind
turbine #1.

TABLE 8. Comparison between MMD–K-means–SDAE and BPNN for wind
turbine #1.

TABLE 9. Comparison between MMD–K-means–SDAE and MMMD–BPNN
for wind turbine #1.

TABLE 10. Comparison between MMMD–K-means–SDAE and
MMMD–SDAE for wind turbine #1.

TABLE 11. Comparison between MMMD–K-means–SDAE and
K-means–SDAE for wind turbine #1.

62.02, 69.97, and 63.05, respectively, PRMSE by 56.25, 66.70,
and 61.17, respectively, and PMAPE by 38.36, 45.19, and
39.21, respectively. The prediction results from the proposed

TABLE 12. Comparison between MMMD–K-Means–SDAE and
WT-K-Means–SDAE for wind turbine #1.

TABLE 13. Comparison between MMMD–K-means–SDAE and
VMD-K-means-LSTM for wind turbine #1.

TABLE 14. Comparison between SDAE and BPNN for wind turbine #2.

TABLE 15. Comparison between MMMD–SDAE and SDAE for wind
turbine #2.

TABLE 16. Comparison between K-means–SDAE and SDAE for wind
turbine #2.

MMMD–K-means–SDAE model were closer to the actual
values.

5) MMMD–K-MEANS–SDAE VS. BPNN
Compared to the BPNN approach, the proposed hybrid
MMMD–K-means–SDAE produces a better forecasting per-
formance. For wind turbine #1, the time scales were 30 min,
1 h, and 2 h. The improvements in PMRE were 86.22,
80.25, and 76.78, respectively, whereas those in PRMSE were
85.20, 79.81, and 77.16, respectively, and those in PMAPE
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TABLE 17. Comparison between MMD–K-means–SDAE and SDAE for
wind turbine #2.

TABLE 18. Comparison between MMMD–K-means–SDAE and BPNN for
wind turbine #2.

TABLE 19. Comparison between MMD–K-means–SDAE and
MMMD–BPNN for wind turbine #2.

TABLE 20. Comparison between MMMD–K-means–SDAE and
MMMD–SDAE for wind turbine #2.

TABLE 21. Comparison between MMMD–K-means–SDAE and
K-means–SDAE for wind turbine #2.

TABLE 22. Comparison between MMMD–K-means–SDAE and
WT-K-means–SDAE for wind turbine #2.

were 62.89, 55.56, and 51.81, respectively. For wind tur-
bine #2 at the same time scales, the proposed hybrid model
could improve PMRE by 68.82, 74.42, and 68.43, respectively,

TABLE 23. Comparison between MMMD–K-means–SDAE and
VMD-K-means-LSTM for wind turbine #2.

TABLE 24. Further comparison of forecasting errors between the
proposed and benchmark models for wind turbine #1.

PRMSE by 63.76, 71.86, and 67.25, respectively, and PMAPE
by 44.16, 49.41, and 43.81, respectively. The prediction
results from the proposed MMMD–K-means–SDAE model
were closer to the actual values.

6) MMMD–K-MEANS–SDAE VS. MMMD–BPNN
Compared to the MMMD–BPNN approach, the proposed
hybrid MMMD–K-means–SDAE produced a better forecast-
ing performance. For wind turbine #1, the time scales were
30 min, 1 h, and 2 h. The improvements in PMRE were 77.99,
68.96, and 63.05, respectively, whereas those in PRMSE were
76.84, 69.11, and 63.54, respectively, and those in PMAPE
were 53.08, 44.28, and 39.21, respectively. For wind tur-
bine #2 at the same time scales, the proposed hybrid model
could improve PMRE by 52.49, 60.68, and 55.58, respectively,
PRMSE by 45.63, 57.31, and 54.38, respectively, and PMAPE

VOLUME 8, 2020 146911



W. Dong et al.: Short-Term Wind-Speed Forecasting Based on MMMD, K-Means Clustering, and SDAEs

TABLE 25. Further comparison of forecasting errors between the
proposed and benchmark models for wind turbine #2.

by 31.07, 37.29, and 33.35, respectively. The prediction
results from the proposed MMMD–K-means–SDAE model
were closer to the actual values.

7) MMMD–K-MEANS–SDAE VS. MMMD–SDAE
Compared to the MMMD–SDAE approach, the proposed
hybrid MMMD–K-means–SDAE produced a better forecast-
ing performance. For wind turbine #1, the time scales were
30 min, 1 h, and 2 h. The improvements in PMRE were 42.00,
28.59, and 33.75, respectively, whereas those in PRMSE were
39.09, 27.91, and 35.09, respectively, and those in PMAPE
were 23.84, 15.49, and 18.60, respectively. For wind tur-
bine #2 at the same time scales, the proposed hybrid model
could improve PMRE by 19.61, 26.05, 28.40, respectively,
whereas PRMSE could improve by 13.23, 21.69, and 24.87,
respectively, and PMAPE by 10.34, 14.00, and 15.38, respec-
tively. The prediction results from the proposed MMMD–K-
means–SDAE model are closer to the actual value.

8) MMMD–K-MEANS–SDAE VS. K-MEANS–SDAE
Compared to the K-means–SDAE approach, the proposed
hybrid MMMD–K-means–SDAE produced a better forecast-
ing performance. For wind turbine #1, the time scales were
30 min, 1 h, and 2 h, respectively. The improvements in PMRE
were 68.51, 55.45, and 51.43, respectively, whereas those in

PRMSE were 66.52, 55.15, and 51.68 respectively, and those in
PMAPE were 43.84, 33.25, and 30.31, respectively. For wind
turbine #2 at the same time scales, the proposed hybrid model
could improve PMRE by 41.20, 48.88, and 43.00, respectively,
whereas PRMSE could improve by 33.10, 44.79, and 41.65,
respectively, and PMAPE by 23.32, 28.51, and 24.16, respec-
tively. The prediction results from the proposed MMMD–K-
means–SDAE model are closer to the actual values.

9) MMMD–K-MEANS–SDAE VS. WT-K-MEANS-SDAE
MODELS
Compared to the WT-K-means-SDAE model, the proposed
hybrid MMMD–K-means–SDAE produced a better forecast-
ing performance. For wind turbine #1, the time scales were
30 min, 1 h, and 2 h, respectively. The improvements in
PMRE were 14.20, 13.60, and 23.86, respectively, whereas
those in PRMSE were 12.29, 10.12, and 15.35 respectively,
and those in PMAPE were 7.38, 7.04, and 12.74, respectively.
For wind turbine #2 at the same time scales, the proposed
hybrid model could improve PMRE by 2.81, 18.19, and 25.67,
respectively, PRMSE by 2.23, 15.57, and 24.09, respectively,
and PMAPE by 1.41, 9.55, and 13.79, respectively. The pre-
diction results from the proposed MMMD–K-means–SDAE
model are closer to the actual values.

10) MMMD–K-MEANS–SDAE VS. VMD-K-MEANS-LSTM
MODELS
Compared to the VMD-K-means-LSTMmodel, the proposed
hybrid MMMD–K-means–SDAE produced a better forecast-
ing performance. For wind turbine #1, the time scales were
30 min, 1 h, and 2 h, respectively. The improvements in
PMRE were 13.45, 12.92, and 23.04, respectively, whereas
those in PRMSE were 11.94, 9.62, and 15.26, respectively,
and those in PMAPE were 6.96, 6.69, and 12.27, respectively.
For wind turbine #2 at the same time scales, the proposed
hybrid model could improve PMRE by 2.55, 17.31, and 25.62,
respectively, PRMSE by 1.32, 14.01, and 23.37, respectively,
and PMAPE by 1.28, 9.06, and 13.76, respectively. The pre-
diction results from the proposed MMMD–K-means–SDAE
model are closer to the actual values.

IV. CONCLUSION
This article proposed a hybrid MMMD–K-means–SDAE
model for short-term wind-speed forecasting on multiple
scales. In the proposedmodel,MMMDanalysis andK-means
clustering are used as signal-decomposing and data-mining
algorithms, respectively, and SDAE is utilized as the core
forecasting unit to capture the characteristics of each cluster.
The predictions of all subsequences are then aggregated to
obtain the final predicted wind speed. The complexity of the
proposed model is constant, and it does not vary with the size
of the datasets. However, when the amount of data increases,
the operating cost of the model, such as the computing time
and hardware cost, will increase; therefore, the total cost of
the model will change with the size of the datasets.
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Five different benchmark models and two novel hybrid
wind forecasting models were implemented for compari-
son with our proposed model. First, the results show the
superior ability of the SDAE in processing nonlinear and
nonstationary wind-speed signals compared to the tradi-
tional BP network. Second, we use MMMD technology to
decompose wind-speed sequences into time-domain subse-
quences in order to avoid errors during the signal transfer
process and significantly promote the reliability and precision
of wind-speed forecasting. Third, the K-means algorithm,
as a clustering analysis approach, can further enhance the
prediction ability of the MMMD–SDAE model. Finally,
the main advantage of the proposed model is that its predic-
tion accuracy is higher than that of five benchmarks models,
particularly two novel hybrid models. Furthermore, we use
MMMD to decompose the original wind-speed sequence
directly in the time domain; this is the first time a time
domain signal-decomposing tool has been used in a hybrid
wind-speed forecasting model

However, many outliers exist in the data owing to the
natural characteristics of wind speed. When the volatility of
wind speed is high, the amount of outlier data will increase,
and the accuracy of the prediction results as well as reliability
of the entire system will be significantly reduced. Further-
more, the effective prediction time range is short (30 min
to 2 h). Beyond this prediction range, the prediction sen-
sitivity decreases with time. When the time scale exceeds
48 h, the model cannot provide a valid prediction. These two
limitations are the main topics that will be addressed in future
research.

REFERENCES

[1] F. Blaabjerg and K. Ma, ‘‘Future on power electronics for wind turbine
systems,’’ IEEE J. Emerg. Sel. Topics Power Electron., vol. 1, no. 3,
pp. 139–152, Sep. 2013.

[2] M. Hossain, B. Rekabdar, S. J. Louis, and S. Dascalu, ‘‘Forecasting the
weather of nevada: A deep learning approach,’’ in Proc. Int. Joint Conf.
Neural Netw. (IJCNN), Jul. 2015, pp. 1–6.

[3] C. Skittides andW.-G. Früh, ‘‘Wind forecasting using principal component
analysis,’’ Renew. Energy, vol. 69, pp. 365–374, Sep. 2014.

[4] G. Q. Zhang and B. M. Zhang, ‘‘Wind speed and wind turbine output fore-
cast based on combination method,’’ Autom. Electr. Power Syst., vol. 33,
no. 18, pp. 92–96, Sep. 2009.

[5] J. Yan, H. Zhang, Y. Liu, S. Han, L. Li, and Z. Lu, ‘‘Forecasting the
high penetration of wind power on multiple scales using multi-to-multi
mapping,’’ IEEE Trans. Power Syst., vol. 33, no. 3, pp. 3276–3284,
May 2018.

[6] S. S. Soman, H. Zareipour, O. Malik, and P. Mandal, ‘‘A review
of wind power and wind speed forecasting methods with differ-
ent time horizons,’’ in Proc. North Amer. Power Symp., Sep. 2010,
pp. 1–8.

[7] M. Lei, L. Shiyan, J. Chuanwen, L. Hongling, and Z. Yan, ‘‘A review on the
forecasting of wind speed and generated power,’’ Renew. Sustain. Energy
Rev., vol. 13, no. 4, pp. 915–920, May 2009.

[8] Q. Xu, D. He, N. Zhang, C. Kang, Q. Xia, J. Bai, and J. Huang, ‘‘A short-
term wind power forecasting approach with adjustment of numerical
weather prediction input by data mining,’’ IEEE Trans. Sustain. Energy,
vol. 6, no. 4, pp. 1283–1291, Oct. 2015.

[9] M. G. Lobo and I. Sanchez, ‘‘Regional wind power forecasting based
on smoothing techniques, with application to the spanish peninsular
system,’’ IEEE Trans. Power Syst., vol. 27, no. 4, pp. 1990–1997,
Nov. 2012.

[10] E. Yatiyana, S. Rajakaruna, and A. Ghosh, ‘‘Wind speed and direction
forecasting for wind power generation using ARIMA model,’’ in Proc.
Australas. Universities Power Eng. Conf. (AUPEC), Nov. 2017, pp. 1–6.

[11] I. Colak, S. Sagiroglu,M. Yesilbudak, E. Kabalci, and H. I. Bulbul, ‘‘Multi-
time series and -time scale modeling for wind speed and wind power
forecasting—Part I: Statistical methods, very short-term and short-term
applications,’’ in Proc. Int. Conf. Renew. Energy Res. Appl. (ICRERA),
Nov. 2015, pp. 209–214.

[12] P. Xiaosheng, W. Bo, Y. Fan, F. Gaofeng, W. Zheng, and C. Kai, ‘‘A deep
learning approach for wind power prediction based on stacked denoising
auto encoders optimized by bat algorithm,’’ inProc. China Int. Conf. Electr.
Distrib. (CICED), Sep. 2018, pp. 945–948.

[13] Y. Deng, H. Jia, P. Li, X. Tong, X. Qiu, and F. Li, ‘‘A deep learning method-
ology based on bidirectional gated recurrent unit for wind power predic-
tion,’’ in Proc. 14th IEEE Conf. Ind. Electron. Appl. (ICIEA), Jun. 2019,
pp. 591–595.

[14] X. Wang, Y. Yang, and C. Li, ‘‘Deep belief network based multi-
dimensional phase space for short-term wind speed forecasting,’’ in Proc.
Int. Conf. Sens., Diagnostics, Prognostics, Control (SDPC), Aug. 2018,
pp. 204–208.

[15] K.-P. Lin, P.-F. Pai, and Y.-J. Ting, ‘‘Deep belief networks with
genetic algorithms in forecasting wind speed,’’ IEEE Access, vol. 7,
pp. 99244–99253, 2019.

[16] Z. Sun, S. Zhao, and J. Zhang, ‘‘Short-term wind power forecasting on
multiple scales using VMDdecomposition, K-means clustering and LSTM
principal computing,’’ IEEE Access, vol. 7, pp. 166917–166929, 2019.

[17] C. Yu, Y. Li, and M. Zhang, ‘‘An improved wavelet transform using sin-
gular spectrum analysis for wind speed forecasting based on elman neural
network,’’ Energy Convers. Manage., vol. 148, pp. 895–904, Sep. 2017.

[18] L. Wang, L. Dong, Y. Hao, and X. Liao, ‘‘Wind power prediction using
wavelet transform and chaotic characteristics,’’ in Proc. World Non-Grid-
Connected Wind Power Energy Conf., Sep. 2009, pp. 1–5.

[19] R. Ye, Z. Guo, and R. Liu, ‘‘Wind speed and wind power forecasting
method based on WPD and improved Elman neural network,’’ Trans.
China Electrotech. Soc., vol. 32, no. 21, pp. 103–111, Jul. 2017.

[20] P. Chen, H. Y. Chen, and R. Ye, ‘‘Wind speed forecasting based on multi-
scale morphological analysis,’’ Power Syst. Protection Control., vol. 38,
no. 21, pp. 12–18, Nov. 2010.

[21] L. Zhang, J. Xu, J. Yang, D. Yang, and D. Wang, ‘‘Multiscale morphology
analysis and its application to fault diagnosis,’’Mech. Syst. Signal Process.,
vol. 22, no. 3, pp. 597–610, Apr. 2008.

[22] Y. F. Wan, J. Jiang, Z. Y. Zhen, and P, Zhu, ‘‘Multiscale morphology
based SVD noise reduction method,’’ Electron. Opt. Control, vol. 27, no. 1,
pp. 21–25, Jan. 2020.

[23] J. A. Bangham, P. Chardaire, C. J. Pye, and P. D. Ling, ‘‘Mul-
tiscale nonlinear decomposition: The sieve decomposition theorem,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, no. 5, pp. 529–539,
May 1996.

[24] R. M. Esteves, T. Hacker, and C. Rong, ‘‘Competitive K-means, a
new accurate and distributed K-means algorithm for large datasets,’’ in
Proc. IEEE 5th Int. Conf. Cloud Comput. Technol. Sci., Dec. 2013,
pp. 17–24.

[25] L. Yang and M. Deng, ‘‘Based on k-Means and fuzzy k-Means algorithm
classification of precipitation,’’ in Proc. Int. Symp. Comput. Intell. Design,
Oct. 2010, pp. 211–218.

[26] Y. Zhang, Z. Xiong, J. Mao, and L. Ou, ‘‘The study of parallel K-means
algorithm,’’ in Proc. 6th World Congr. Intell. Control Autom., Jun. 2006,
pp. 5868–5871.

[27] F. Yi and I. Moon, ‘‘Extended K-means algorithm,’’ in Proc. 5th Int. Conf.
Intell. Hum.-Mach. Syst. Cybern., Aug. 2013, pp. 263–266.

[28] Z. Sun and H. Sun, ‘‘Stacked denoising autoencoder with density-grid
based clusteringmethod for detecting outlier of wind turbine components,’’
IEEE Access, vol. 7, pp. 13078–13091, 2019.

[29] Z. Li and X. Dang, ‘‘A stock forecasting method based on combination of
SDAE and BP,’’ in Proc. Int. Conf. Orange Technol. (ICOT), Oct. 2018,
pp. 1–6.

[30] E. K. Wang, X. Zhang, and L. Y. Pan, ‘‘Automatic classification of CAD
ECG signals with SDAE and bidirectional long short-term network,’’ IEEE
Access, vol. 7, pp. 182873–182880, 2019.

[31] G. Jiang, H. He, P. Xie, and Y. Tang, ‘‘Stacked multilevel-denoising
autoencoders: A new representation learning approach for wind turbine
gearbox fault diagnosis,’’ IEEE Trans. Instrum. Meas., vol. 66, no. 9,
pp. 2391–2402, Sep. 2017.

VOLUME 8, 2020 146913



W. Dong et al.: Short-Term Wind-Speed Forecasting Based on MMMD, K-Means Clustering, and SDAEs

WEICHAO DONG was born in Shijiazhuang,
Hebei, China, in 1989. He received the B.Sc.
degree in electrical engineering and the M.Sc.
degree in electrical and computing engineering
from Cornell University, NY, USA, in 2012 and
2013, respectively. He is currently pursuing the
Ph.D. degree in control theory and control engi-
neering with the Hebei University of Technology,
Tianjin, China. He is a Lecturer with the College
of Electrical Engineering, Hebei University of Sci-

ence and Technology, China. He has published two articles on SCI. His
research interests include optimization of wind engine structure, wind power,
and the application of deep learning in wind energy.

HEXU SUN (Senior Member, IEEE) received the
Ph.D. degree in automation from Northeastern
University, Shenyang, China, in 1993.

He has been a Professor with the School of Con-
trol Science and Engineering, Hebei University
of Technology, Tianjin, China, and the School of
Electrical Engineering, Hebei University of Sci-
ence and Technology, Shijiazhuang, China. He has
authored five books and more than 130 journal and
conference papers. He holds 13 U.S. patents and

five computer software copyrights. His current research interests include
robotics and complex engineering systems.

Dr. Sun was a recipient of many prestigious national awards from China.
He has been the Director in many societies and committees in China. He is
currently the invited Plenary Speaker and the General Co-Chair of many
international conferences.

ZHENG LI (Member, IEEE) was born in
Shijiazhuang, Hebei, China, in 1980. He received
the B.Sc. and Ph.D. degrees in electrical engineer-
ing and power electronics and electric drive from
the Hefei University of Technology, Hefei, China,
in 2002 and 2007, respectively.

Since 2007, he has been a Lecturer, an Associate
Professor, and a Professor with the School of Elec-
trical Engineering, Hebei University of Science
and Technology. From July 2013 to July 2014,

he was a Visiting Scholar and a part-time Faculty with the College of
Engineering, Wayne State University, USA. He is the author of more than
160 published articles. His current research interests include design, analysis,
and control of novel motors and actuators, intelligent control, and power
electronic.

Dr. Li is an Active Reviewer for the IEEE TRANSACTIONS ON INDUSTRIAL
ELECTRONICS, the IEEE TRANSACTIONS ON ENERGY CONVERSION, the IEEE
TRANSACTIONS ON MAGNETICS AND ELECTRIC POWER COMPONENTS AND SYSTEMS,
and so on.

JINGXUAN ZHANG (Graduate Student
Member, IEEE)was born in Hebei, China, in 1982.
He received the B.Sc. degree in electrical automa-
tion and the M.Sc. degree in control science and
engineering from the Hebei University of Tech-
nology, Tianjin, China, in 2007 and 2010, respec-
tively, where he is currently pursuing the Ph.D.
degree in control theory and control engineering.
He is also currently a Lecturer with the College of
Electrical Engineering, North China University of

Science and Technology, China. He has published two articles on SCI and
EI journals. His research interests include fault diagnosis, switched systems,
and power systems. He is a PES Member.

HUIFANG YANG was born in Shijiazhuang,
Hebei, China, in 1964. She received the Ph.D.
degree, in 2007.

She has been a Professor with the School of
Chemical Engineering, Shijiazhuang Tiedao Uni-
versity, since 2002. In 2012, she was a Visiting
Scholar and a part-time Faculty with the College
of Chemical Engineering, University of Delaware,
USA. She has authored more than 30 journal and
conference papers. Her current research interests

include nanomaterial, materials science, and application of materials science
in new energy sources. She was a recipient of many prestigious national
awards from China.

146914 VOLUME 8, 2020


