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ABSTRACT Spatial sparsity of the target space has been successfully exploited to provide accurate range-
angle images by the methods based on sparse signal reconstruction (SSR) in Multiple-Input Multiple-Output
(MIMO) radar imaging applications. The SSR based method discretizes the continuous target space into
finite grid points and generates an observationmodel utilized in image reconstruction. However, inaccuracies
in the observation model may cause various degradations and spurious peaks in the reconstructed images.
In the process of the image formation, the off-grid problem frequently occurs that the true locations of targets
that do not coincide with the computation grid. In this article, we consider the case that the true location of
a target has both range and angle-varying two-dimensional (2D) off-grid errors with a noninformative prior.
From a variational Bayesian perspective, an iterative algorithm is developed for joint MIMO radar imaging
with orthogonal frequency division multiplexing (OFDM) linear frequency modulated (LFM) waveforms
and 2D off-grid error estimation of off-grid targets. The targets during multiple probing pulses are modeled
as Swerling II case and a unified generalized inverse Gaussian (GIG) prior is adopted for the target reflection
coefficient variance at all snapshots. Furthermore, an approach to reducing the computational workload of
the signal recovery process is proposed by using singular value decomposition. Experimental results show
that the proposed algorithm is insensitive to noise and has improved accuracy in terms of mean squared
estimation error under different computation grid interval.

INDEX TERMS Sparse Bayesian learning, multiple-input multiple-output (MIMO) radar imaging, multiple
probing pulses, orthogonal frequency division multiplexing (OFDM), two-dimensional (2D) off-grid error.

I. INTRODUCTION
Multiple-Input Multiple-Output (MIMO) radar is an emerg-
ing field of radar research which has attracted intensive
researches. MIMO radars with waveform diversity offer
unique advantages over conventional phased-array counter-
parts, such as extra degrees of freedom, higher resolution [1],
[2] and better parameter identifiability [3]. Besides, MIMO
radar which employs transmit Linear frequency modulated
(LFM) waveforms can achieve a better range resolution [4].
Different conventional phased-array, MIMO radar adopts
orthogonal waveforms transmitted from different antenna
elements, which avoids transmitting waveform interference
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from each other and enables each received signal separated by
using a bank of matched filters [5]. Recently, an orthogonal
frequency division multiplexing (OFDM) LFM waveform
has been applied to MIMO radar for high-resolution remote
sensing [6]. The OFDM scheme is introduced in [7], which
is one of the ways to accomplish simultaneous use of several
carriers. With each transmitter of the MIMO radar operating
at one of the OFDM carrier frequencies, OFDM-LFMMIMO
radar employingOFDMLFMwaveforms can generate range-
angle images of targets. This article aims at colocatedOFDM-
LFM MIMO radar imaging.

A. REVIEW OF EXISTING LITERATURE AND MOTIVATION
The goal of the MIMO radar imaging is to provide an esti-
mate of the radar cross sections (RCS) of targets at precise

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 147591

https://orcid.org/0000-0002-6894-8207
https://orcid.org/0000-0002-2184-8268
https://orcid.org/0000-0002-0552-073X
https://orcid.org/0000-0002-9468-2596
https://orcid.org/0000-0002-4548-282X


C. Wen et al.: MIMO Radar Imaging With Multiple Probing Pulses for 2D Off-Grid Targets via Variational Sparse Bayesian Learning

angular locations and distances relative to the radar. One of
the most important problems in MIMO radar imaging is to
obtain the two-dimensional (2D) range-angle images. In most
radar imaging applications, the number of targets in the
region of interest (ROI) is sufficiently less than the number
of potential source locations [8]. The sparsity of the target
scene has been successfully exploited to provide accurate
range-angle images in MIMO radar imaging applications,
owing to the development of methods based on sparse signal
reconstruction (SSR) or compressive sensing (CS) [9]. The
problem of synthetic aperture radar (SAR) image degradation
at low signal-to-noise ratio (SNR) has been addressed in [10]
where spatial sparsity has been utilized. Sparsity in transform
domain has also been exploited for image reconstruction in
[11] where smart sensing technique is proposed for online
and automatic evaluation of carbon fiber reinforced polymer
structure integrity. In these methods, e.g., [8], [10]–[12],
the angle or the range domain which is continuous space
in practice has to be discretized into a finite set, or equiv-
alently, the angles or the ranges of interest are constrained
on a fixed grid. The SSR problem can be formulated, where
target locations of interest constitute the support of the sparse
signal to be reconstructed. By assuming that all true target
locations are exactly on the selected grid, an observation
model is established for image reconstruction by the SSR
based method.

Under the assumption that the reflection coefficients of
the targets are constant varying from pulse to pulse, which
is also referred to as the single-measurement-vector (SMV)
case, `1 optimization is a favourable approach in MIMO
radar imaging [13] due to its guaranteed recovery accuracy
[9]. Further, `q optimization based on maximum a posteriori
(MAP) approach is proposed in [8] with the small values
of q promoting sparser solutions. However, these methods
are based on the conventional CS model which adopts the
fixed dictionary. Recently, the models combined with para-
metric dictionary are proposed in [10], [14]–[17]. They have
achieved improvements in SAR imaging [10], SAR autofo-
cusing [14], sparse array imaging [15], moving target imaging
[16] and time-frequency analysis [17], by optimizing both
the off-grid parameters and the sparse solution. Motived by
this idea, in this work, we focus on the off-grid problem
of MIMO radar imaging during multiple probing pulses,
with the reflection coefficients of the targets varying inde-
pendently from pulse to pulse where Swerling II model is
assumed [18]. It should be noted that the off-grid problem
is in multiple-measurement-vector (MMV) case. The MMV
case is often encountered in practical applications, such as
source localization and direction-of-arrival estimation (DOA)
[19]. In the MMV case, the sparse signals at all snapshots
share the same support [20]. Such joint sparsity has been
exploited to improve the probability of successful recovery
[21]. Furthermore, sparse Bayesian learning (SBL) algorithm
[22], [23] is another popular method for the SSR problems,
which induces less structural error and convergence error [24]

and flexibly models the possible structures of signals in order
to obtain improved performance [25], [26].

The MIMO radar imaging can be regarded as the estima-
tion of the target amplitude response on a two-dimensional
(2D) grid, with one dimension being the angular bin and
the other dimension being the range bin. It is worth noting,
however, that the SSR algorithms aforementioned involve
division of the 2D range-angle space of the potential tagets
into a mass of grids, and they are based on the on-grid
assumption that all targets should fall right on the prede-
fined computation grid so that reliable estimations can be
guaranteed [12]. Unfortunately, such on-grid scenario can
rarely be met in reality, where there is a gap between the true
location and its nearest computation grid which the estimated
range-angle points are constrained on. The employment of
a coarse grid set often leads to unsatisfactory estimation
accuracy because of the off-grid error. Although accurate
solution can be achieved by denser grid search following the
coarse grid search, this would bring about much more com-
putation burden. Furthermore, too dense grid set may result
in unacceptable degradation of computational efficiency as
well as highly coherent matrix that violates the condition for
the SSR. Another solution is to establish an off-grid model
and the improved estimation performance can be expected.
With the basis mismatch of the measurement matrix in the
observation model caused by the off-grid error taken into
account, an off-grid model with Gaussian prior on off-grid
error has been successfully applied to DOA estimation [27].
In fact, the noninformative off-grid error is more reasonable.
The uniformly distributed off-grid angluar error has been
well addressed in [28]. Furthermore, we focus on the off-grid
target imaging with the 2D noninformative range-angle error
in MMV case from variational Bayesian perspective.

B. CONTRIBUTIONS OF PRESENT WORK
A variational SBL algorithm and an acceleration scheme are
proposed for joint OFDM-LFMMIMO radar imaging and 2D
off-grid error estimation of targets. The off-grid errors are
considered as model errors that are estimated and compen-
sated during image formation, which enables our technique to
alleviate degradations and spurious peaks in the reconstructed
image. At Bayesian formulation stage, a hierarchical model is
developed with a unified generalized inverse Gaussian (GIG)
prior adopted for all snapshots. The GIG is referred to as
a family of distributions including Gaussian, Laplacian and
many other heavy-tailed distributions, which provides more
flexibility to model the prior information for target. This
is distinguished from simply assigning Laplacian prior for
coefficient variance [29], [30]. At Bayesian learning stage,
a variational Bayesian technique is incorporated in hyperpa-
rameters inference, where the sparsity regularizing param-
eter is learned rather than fixed. Since the reconstruction
process with measurement matrix based on the 2D imaging
model is usually a large computational burden. An acceler-
ation scheme is also incorporated in our algorithm by using
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sequential singular value decomposition (SVD) to reduce the
rows and the columns of measurement matrix rather than only
the columns [29]. The signal and the noise subspace induced
by SVD can be exploited to improve the image quality at low
SNR [10].

The proposed algorithm is named as 2D off-grid sparse
Bayesian learning with two SVDs (2DOGSBL-2SVDs).
We will compare our method with the widely used on-grid
MMV model based approaches, such as `1 optimization
based algorithms [12], [31] and `q optimization based algo-
rithms [32], [33], and the similar work of off-grid model
based method OGSBI [29] which has been extended to 2D
parameter estimation [30]. Note that it is difficult for these
typical methods to solve the problem to achieve good per-
formance, so they are combined with the proposed accel-
eration scheme in order to more fairly compete with the
proposed method. It is shown that the proposed method is
more accurate in terms of mean squared error (MSE) under
different computation grid interval as well as more insensitive
to Gaussian noise.

The remaining sections are organized as follows.
Section 2 presents the OFDM-LFM MIMO radar signal
model. Next, off-grid OFDM-LFM MIMO sparse imaging
model is studied in Section 3. Section 4 details the proposed
2DOGSBL-2SVDs algorithm with 2SVDs strategy. Our sim-
ulation results are shown in Section 5. Finally, the conclusions
on this article are provided in Section 6.
Notation: Bold-face letters are reserved for vectors and

matrices. (·)∗, (·)T and (·)H denote conjugate, transpose and
conjugate transpose operations, respectively. ‖·‖2 and ‖·‖F
denote the `2 norm and Frobenious norm, respectively. IN
represents a N × N identity matrix. A ∈ RM×N and R ∈
CM×N denote a real and complex-valued M × N matrix A,
respectively. diag(A) denotes a column vector composed of
the diagonal elements of a matrixA,and diag (x) is a diagonal
matrix with x being its diagonal elements. xi denotes the ith
entry of x. (A)i, (A)

j and Ai,j are the ith column, jth row and
(i, j)th entry of a matrix A. <(·) and =(·) take the real and
imaginary parts of a complex variable respectively.

II. OFDM-LFM MIMO RADAR SIGNAL MODEL
A. BASIC ASSUMPTION
Consider the scenario of the targets in the far field and a
narrowbandMIMO radar system composed byN transmitters
and M receivers. Due to the attractive ambiguity character-
istics, such as range resolution, adjacent band interference
and matched filtering sidelobe performance [6], OFDMLFM
waveforms are utilized to theMIMO radar. In fact, the OFDM
LFM waveform employed here can be regarded as a kind of
frequency stepped LFM waveform.

Assuming each transmitter transmit LFM signal with the
equal chirp rate γc and operates at one of the OFDM car-
rier frequency fn. Frequency intervals between the arbitrary
two adjacent transmitters 1f are assumed to be same. The
transmitted LFM waveform for the n-th transmitter can be

expressed as

sn (t) =

e
−j2π

(
fnt+ 1

2 γct
2
)
, −

TP
2
≤ t ≤

TP
2

0, otherwise
(1)

where fn = fc + (n− 1)1f , TP denotes the pulse width and
fc is the carrier frequency of the signal on the first transmit
channel. It can be easily shown that when 1f = κ0/Ts with
κ0 ∈ N† holds, the requirement of orthogonal multitransmis-
sion is satisfied with∫ TP/2

−TP/2
sn(t)s∗m(t)dt =


constant, n = m

0, n 6= m
(2)

For simplicity’s sake, a uniform linear array is applied to
both at the transmitter and receiver. The steering vectors can
be written as

a(θ ) =
[
1 e−j2πdt sin θ/λ · · · e−j2π (N−1)dt sin θ/λ

]T
(3)

and

b(θ ) =
[
1 e−j2πdr sin θ/λ · · · e−j2π (M−1)dr sin θ/λ

]T
(4)

where dt and dr denote the inter-element spacing of the
transmit and receive arrays, respectively, λ is the wavelength.
In this article, the targets in our scenario are modeled accord-
ing to Swerling II case [18], and are assumed to have no
translation relative to the radar so that a target can be modeled
as a peak in final range-angle image.. However, the model
allows for target spinning relative to the radar, with the RCS
fluctuations of targets fixing during a pulse and varying
independently pulse to pulse. The received signal at the m-
th receive element can be expressed as

D(m, τ, t) = σ (τ )bm(θ )
N∑
n=1

an(θ )sn

(
t −

2R(τ )
c

)
(5)

where c is the light velocity, bm(θ ) denotes the nth element of
b(θ ), an(θ ) denotes the nth element of a(θ ), R(τ ) denotes the
instantaneous distance from the scattering center to the radar,
σ (τ ) represents the complex reflection coefficients of the
targets which fix during a pulse and vary independently pulse
to pulse, t represents the fast time, ts = (τ − 1)Ts represents
the slow time, Ts denotes the pulse repetition interval, τ =
1, . . . ,T denotes pulse index and T denotes the number of
pulses.

B. MATCH FILTERING
For the τ th pulse,D(m, τ, t) can be filtered out as themth sig-
nal by the matched filter set [6] with multiplying by a phase
factor ej2π fnts . The matched filtering of each receive channel
with respect to the (n,m)th channel can be represented as

DMF (n,m, t, τ ) = σ (τ )bm(θ )an(θ )
sin[πB(t − 2R(τ )/c)]
πB(t − 2R(τ )/c)

× exp{j2π fn [ts − 2R(τ )/c]}
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= σ (τ )bm (θ) an(θ )
sin [πB(t − 2R/c)]
πB(t − 2R/c)

× exp{j2π fn [(τ − 1)Ts − 2R/c]} (6)

where B = γcTP, ts = (τ − 1)Ts represents the slow time
and the received signalDMF (n,m, t, τ ) corresponding to each
target has the same time delay 2R/c with the instantaneous
distance fixing from pulse to pulse, for the assumption that
target has no translation relative to the radar during T pulses.
We consider P range bins andK angular bins relative to the

radar, so that the grids
{
Rp
}P
p=1 and {θk}

K
k=1 divide the ROI.

Let σp,k (τ ) represent the complex reflection coefficients for
the targets in the ROI. Assuming the pth range cell containsK
scattering centers with K angle locations, the received signal
in the pth range cell corresponding to t = 2Rp/c during the
τ th pulse can be derived from (6) as follows:

DMF (p, n,m, τ ) =
K∑
k=1

σp,k (τ )bm(θk )an(θk )

× exp{j2π fn
[
(τ − 1)Ts − 2Rp/c

]
} (7)

by inserting B = 0. Thus, (7) can be rewritten as

Dout (p, n,m, τ )

=

K∑
k=1

σp,k (τ )e
j2π

[
fn((τ−1)Ts−

2Rp
c )− (mdr+ndt ) sin θk

λ

]
(8)

C. ON-GRID MODEL FOR IMAGING
With respect to (n,m)th channel, the received signal from the
ROI can be formed by a superposition of the received signal
from the (p, k)th position.

y(τ )n,m,τ

=

K∑
k=1

P∑
p=1

σp,k (τ )e
j2π

[
fn
(
(τ−1)Ts−

2Rp
c

)
−
(mdr+ndt ) sin θk

λ

]
(9)

The received signal can be represented in vector form

y(τ ) =
[
y(τ )1,1,1 . . . y(τ )N ,1,1 y(τ )1,2,1

. . . y(τ )N−1,M ,T y(τ )N ,M ,T
]T (10)

which leads to the on-grid observation model

y(τ ) = Gσ (τ )+ e(τ ) (11)

where e(τ ) denotes the measurement noise vector, σ (τ ) =
[σ1,1(τ ), · · · , σK ,1(τ ), σ1,2(τ ), · · · , σK ,P(τ )]T is a vector
representing the sampled and column-stacked version of the
range-angle image during the τ th pulse, τ = 1, · · · ,T and
G ∈ CNMT×PK is the true observation matrix composed of
the element in (9), which can be expressed as

g
(
Rp, θk

)
n,m,τ

= exp{j2π [fn((τ − 1)Ts − 2Rp/c)− (mdr + ndt ) sin θk ]}

(12)

which is the ((τ − 1)NM + (m− 1)N + n, (p− 1)K + k)th
element of G. It is evident that the observation element can

map any target location in terms of the range-angle plane to
the measurement, and the target is continously distributed at
the 2D space. As a result, the goal of the radar imaging is to
find σp,k (τ ) given y(τ ), where the key point is the accurate
modeling of the observation matrix. For many radar imaging
applications like air surveillance, the target of ROI is spatially
sparse.

The on-grid assumption based SSR algorithms like `1-
SVD and M-FOCUSS has successfully produce ange-angle
image by exploiting the sparsity in σ (τ ). However, these algo-
rithms obtain the accurate results only if the targets exactly
fall on the fixed computation grid. Any grid mismatch leads
to ambiguities in the estimation due to the leakage of energy
over all the grid cells which depends on the kernel used for
the construction of the observation matrix. To overcome this
problem, we develop the off-grid model for MIMO radar
imaging and show its relationship with the on-grid one.

FIGURE 1. Off-grid target in range-angle plane.

III. OFF-GRID OFDM-LFM MIMO SPARSE IMAGING
MODEL
The on-grid model adopts the discretization of the conti-
nous range-angle plane of potential targets into PK compu-
tation grids. P and K denote the number of points in the
range and the angle dimension, respectively. Let (R̃, θ̃ ) =
{(R̃1, θ̃1), . . . , (R̃P, θ̃K )} be the set of the fixed computation
grid points in range-angle plane. Without loss of general-
ity, let R̃ and θ̃ be the uniform grid with the grid interval
of range cell and angle cell being 1R and 1θ , respec-
tively, as is shown in Fig.1. By contrast, off-grid assumption
is adopted in this section that the true targets are dis-
tributed in a continuous manner and off the fixed com-
putation grid points. Suppose the lth location of the true
target (Rl, θl) /∈ {(R̃1, θ̃1), . . . , (R̃P, θ̃K )}, l ∈ {1, . . . ,L}
with the lth corresponding nearest grid (R̃pl , θ̃kl ), (pl, kl) ∈
{(1, 1), . . . , (P,K )}. Note that the grid point number should
be far greater than the true target number L, which is a kind of
sparse description of ROI. However, the off-grid error of the
true target leads to the fact that y(τ ) is not truly sparse with
respect to the observation matrix. To alleviate this problem,
the observation element g

(
Rp, θk

)
n,m,τ can be approximated
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via first-order partial derivative:

g(Rl, θl)n,m,τ

≈ g(R̃pl , θ̃kl )n,m,τ +
∂g(R̃pl , θ̃kl )n,m,τ

∂Rpl
(Rl − R̃pl ) (13)

where
∂g(R̃pl ,θ̃kl )n,m,τ

∂Rpl
= −j4π fn/c(Rl − R̃pl ) and

∂g(R̃pl ,θ̃kl )n,m,τ
∂θkl

= −j2π (mdr + ndt ) cos(θ̃kl )/λ(θl−θ̃kl ) denote
the twofixed kernels, and the true off-grid location ismodeled
with the fixed grid (the first term) and the 2D off-grid distance
(the last two terms). It is evident that, the true off-grid location
in terms of the observation during the τ th pulse is regarded
as a two-variable function.

Substitute (13) into (11), the off-grid observation model
can be obtained as

y(τ ) = G(α,β)σ (τ )+ e(τ ), τ = 1, . . . ,T . (14)

where

G (α,β) = G0 + B1α + C1β

= G
[
IPK diag(α) diag(β)

]T (15)

where G = [G0 B C], B and C ∈ CNMT×PK are the
matrices with the fixed kernels, and G (α,β) ∈ CNMT×PK

is parameterized by the off-grid range dependent vector

α= [α1, · · · , α1︸ ︷︷ ︸
K

, α2, · · · , αP]T ∈ [−1R/2,1R/2]PK (16)

and the off-grid anlge dependent vector

β = [β1, · · · , β1︸ ︷︷ ︸
K

, β2, · · · , βP]T ∈ [−1θ/2,1θ/2]PK (17)

For (p, k) ∈ {(1, 1), . . . , (P,K )}, we have

(αp, βk ) =

{
(Rl − R̃pl , θl − θ̃kl ), (p, k) = (pl, kl)
(0, 0), otherwise

(18)

which ensures the joint sparsity between the σ (τ ) and the two
off-grid distance dependent vectors.

It should be noted that the off-grid observation model is
closely related to the on-grid one. By setting (α,β) = (0,0)
and G (0,0) = G0, the on-grid observation model can be
obtained. The on-grid observation model only exploits the
observation matrix with the fixed kernel, which suffers from
the quantization error caused by the 2D discretization of
potential space. By contrast, the off-grid model incorporates
the 2D parameterized observation matrix with first-order
approximation of the true kernel. It is observed that off-grid
model has a smaller modeling error and higher accuracy than
the on-grid one under the same computation grid. Note that
higher order approximation of the kernel can be adopted in the
off-grid model to achieve less modeling error, but this would
lead to heavier computational burden and is out of the scope
of this research.

In order to form the image of MIMO radar, we need to
obtain not only the the support of coefficient vector, but also

the 2D off-grid error (α,β). Aimed at the joint estimation
of them, an iterative algorithm is developed from a Bayesian
perspective in the following section.

IV. 2DOGSBL AND 2DOGSBL-2SVDs
Since the complex valued reflection coefficients varies from
pulse to pluse, our variational SBL algorithm is derived in the
MMV case. For multiple snapshots, the off-grid OFDM-LFM
MIMO imaging model is given as follows:

Y = G (α,β)�+ E (19)

where Y = [y(1), . . . , y(T )] ∈ CNMT×T denotes the spatial-
time measurement, � = [σ (1), . . . , σ (T )] ∈ CPK×T rep-
resents the complex valued coefficient matrix and E =
[e(1), . . . , e(T )] ∈ CNMT×T stands for noise matrix.

A. SPARSE BAYESIAN FORMULATION
Some sparse prior has been frequently utilized for SSR based
parameter estimation. The variational SBL method is intro-
duced and developed to obtain the uncertainty information
during estimation, where the signal is hierarchically modeled
to impose a prior that promotes sparsity as well as learning.
Instead of using too dense grid, we adopt a set of coarse grids
to reduce the cost of computation, which is more practical.

1) GAMMA PRIOR FOR NOISE MODELING
From pulse to pulse, multiple reflection coefficient vectors
σ (τ ), τ = 1, . . . ,T and noise vectors e (τ ), τ = 1, . . . ,T ,
are assumed to be independently and identically complex
Gaussian distributed, i.e.,

p (Y |�, γ0,α,β) =
T∏
τ=1

CN
(
y (τ ) |G (α,β) σ (τ ) , γ−10 I

)
(20)

where γ−10 denotes the noise variance with γ0 being the noise
precision, I is an identity matrix with a proper dimension
and CN (µ,6) denotes the complex Gaussian probability
density function (PDF) of a random variable with mean µ
and covariance 6 [34].

Since γ0 is unknown, and we embed this unknown param-
eter in the hierarchical framework. For Gamma prior is a
conjugate prior of the Gaussian distribution, the perturbation
precision is modeled as a Gamma distribution

p (γ0; c, d) = G (γ0; c, d) , (21)

where G(γ0; c, d) = [0(c)]−1dcγ c−10 exp(−dγ0) and 0(�)
denotes the Gamma function.

2) UNIFIED GIG FOR REFLECTION COEFFICIENT MODELING
Each column of � is jointly sparse. In this case, the sparse
reflection coefficient vectors σ (τ ) share the same support.
The spatial distribution of the nonzero coefficients is substan-
tially sparse, so the hierarchical prior is adopted which favors
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most elements of being zeroes. First, we append a complex
Gaussian prior to �:

p (�|γ ) =
T∏
τ=1

CN (σ (τ ) |0,3) (22)

where3 = diag (γ ) and γ = [γ1, . . . , γPK ]T ∈ RPK with γη
being the variance of ση (τ ), η = 1, 2, . . . ,PK . Depending
on the choice of the prior distribution for the variance param-
eters in γ at the second level of hierarchy, various sparsity
promoting distributions may arise for σ (τ ). To unify these
distributions in a single model and take the nonnegative value
of γ into consideration, the variance parameters in γ are
assumed to follow a GIG distribution [35]

p
(
γη |ρ, κ, λ

)
=

(ρ/κ)λ/2

2Kλ
(√
ρκ
)γ λ−1k exp

[
−
1
2

(
ργk + κγ

−1
k

)]
(23)

where Kλ(�) is the modified Bessel function of the second
kind, the hyperparameters λ, κ and ρ can be selected so as
to formulate the widely used heavy-tailed priors. According
to (23), the marginal distribution of σ (τ ) can be obtained
by integrating out the latent variables as the generalized
hyperbolic distribution:

p
(
ση(t) |ρ, κ, λ

)
=

√
ρ

2π
(κ)−λ/2

Kλ
(√
ρκ
) Kλ−1

(√
ρ
(
κ + 2

∣∣ση(t)∣∣2))(
κ + 2

∣∣ση(t)∣∣2)1/2−λ/2 . (24)

And the resulting marginal distribution, the generalized
hyperbolic distribution, covers a large number of distributions
as special cases. Heavy-tailed prior distributions have been
exploited for sparsity inducing, due to the fact that their heavy
tails favor a few large coefficients and severely attenuate the
substantial noise. Instead of fixing the sparsity regularizing
parameter ρ, we infer it from the data and assume it to follow
a Gamma distribution with parameters a and b at the third
level, i.e.

p(ρ; a, b) = G(ρ; a, b) (25)

which provides more adaptiveness regarding ρ during the
learning process. Thus, the proposed modeling constitutes a
the three-level hierarchical prior that is equivalent to assign-
ing an almost Jeffrey’s prior distribution over γ . The first
two levels of this hierarchical prior (22) and (23), and the
last level (25) is embedded to calculate ρ. Note that the
hyperparameters a, b, c and d at the highest level are set to
be trivial values to induce non-informative prior on ρ and γ ,
respectively, which means their posterior depends only on the
data and not the prior knowledge. In this article, a = b = c =
d = 10−6. Although various other heavy-tailed distributions
can be generated by the unifiedGIG function, the related deep
study is not covered in this work.

3) NONINFORMATIVE PRIOR FOR 2D OFF-GRID ERROR
MODELING
Since there is usually no additional a priori knowledge of
(α,β) with the two independent variables α and β. We use
its boundedness as the prior information. A 2D uniform dis-
tribution is defined on the 2D off-grid error

(α,β) ∼ {(U [−1R/2,1R/2],U [−1/2,1θ/2])}PK (26)

By combining the stages of the hierarchical model, the pos-
terior distribution is given

(�, γ0, γ ,α,β |Y )

=
p(Y |�, γ0,α,β)p(�|γ )p(γ |ρ)p(ρ)p(γ0)p(α)p(β)

p(Y )
(27)

with α and β being independent of each other. The problem
in (27) is often intractable to calculate explicitly, since a
multidimensional integral is required. In most cases, it is
either impossible or very difficult to compute the integral
in closed form. Instead of solving it directly, a determin-
istic approximation method is utilized through variational
Bayeisan approximation.

B. BAYESIAN LEARNING
According to the variational Bayeisan technique [36],
the posterior in (28) is calculated with �, γ , ρ and γ0
treated as latent variables, and α and β being the parameters.
The approximated posterior is factorizable under the mean-
field assumption. Furthermore, by minimizing the KL diver-
gence between the true posterior and the approximated one,
the approximated posterior w.r.t. the individual variable can
be updated via alternate operation. The piteratively updating
rocedures of the individual variables and the parameter as
follows.

1) UPDATING FOR THE MOMENTS OF COEFFICIENT
The approximated posterior w.r.t. σ (τ ) can be given by

q(σ (τ )) ∝ e

〈
lnCN

(
y(τ )|G(α,β)σ (τ ),γ−10 I

)
CN (σ (τ )|0,3)

〉
(28)

where 〈�〉 denotes the expectation operation. The approxi-
mated posterior distribution of σ (τ ) is a complex Gaussian
distribution:

q(σ (τ )) ∝ exp
{
−(y (τ )− µ (τ ))H6−1(y (τ )− µ (τ ))

}
(29)

where

6=
(
γ0GH (α,β)G (α,β)+3−1

)−1
(30)

and

µ(τ ) = γ06GH (α,β) y (τ ) , τ = 1, . . . ,T (31)

where 6 = 3 − 3GH (α,β)2−1G (α,β)3 and 2 =

γ−10 I + G (α,β)3GH (α,β), according to the Woodbury
matrix identity. The updating 6 requires a PK × PK matrix
inversion.
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2) UPDATING FOR COEFFICIENT VARIANCE
The approximated posterior w.r.t. γ is given by

q(γ ) ∝ exp {〈ln p (�|γ ) p(γ |ρ)〉} . (32)

Substituting (22) and (23) into (32), the approximated pos-
terior for each γη obeys a GIG distribution [19] and the hth
moment of the GIG distrbution is obtained as〈
(γη)h

〉

=

(〈
2‖�η‖22 + κ

〉
〈ρ〉

)h/2 Kλ−1+h
(√
〈ρ〉

〈
2‖�η‖22 + κ

〉)
Kλ−1

(√
〈ρ〉

〈
2‖�η‖22 + κ

〉) ,

(33)

where 〈‖�η‖22〉 = ‖U
η
‖
2
2+6η,η,U = U/

√
T withUη is the

ηth row of U = [µ(1), . . . ,µ(T )] = γ06GH (α,β)Y .

3) UPDATING FOR ρ
The approximated posterior w.r.t. ρ is given by

q(ρ) = exp {〈ln p (γ |ρ ) p (ρ)〉} . (34)

Substituting (23) and (25) into (34), the approximated poste-
rior for ρ obeys a Gamma distribution and the mean of ρ is
given by

〈ρ〉 =
λPK + a

PK∑
η=1

〈
γη
〉
/2+ b

. (35)

4) UPDATING FOR NOISE VARIANCE
The approximated posterior w.r.t. γ0 is given by

q(γ0) ∝ exp {〈p (Y |�, γ0,α,β) p (γ0; c, d)〉} . (36)

Substituting (20) and (21) into (36), the approximated poste-
rior distribution of γ0 is given by

〈γ0〉 =
MT + c

T‖Y − G(α̂, β̂)�‖2F + Tr(GSG)+ d
(37)

where GSG = G(α̂, β̂)6G(α̂, β̂), � = �/
√
T and Y =

Y/
√
T .

5) Updating FOR 2D OFF-GRID PARAMETERS
Since no informative prior for the off-grid difference (α,β)
is available, the inference of (α,β) can be obtained by mini-
mizing the negative expected log-likelihood function as

ϕ = arg min
(α,β)
〈− ln p (Y ,�, γ ;α,β)〉

= arg min
(α,β)

〈
1
T

T∑
t=1

‖y (τ )− G (α,β) σ (τ )‖22

〉
= arg min

(α,β)∈2
{ϕTPϕ − 2vTϕ + C} (38)

where ϕ =
[
αT ,βT

]T
, C is a constant term independent

of ϕ, 2 = {([−1R
2 ,1

R
2 ], [−1

θ
2 ,1

θ
2 ])}

PK
, P is a positive

semidefinite matrix and

P = <

{(
G′HG′

)∗
�

([
U
U

] [
U
U

]H
+

[
6 6

6 6

])}
(39)

v = <

{
1
T

T∑
τ=1

diag
([
µ(τ )
µ(τ )

]∗)
G′H (y(τ )− G0µ(τ ))

}

−<

{
diag

([
BHG06

CHG06

])}
(40)

where G′
= [B,C]. Next, the joint sparsity of ϕ with σ (τ ) is

exploited so that the dimension ofϕ can be reduced according
to the number of true targets L for efficiently computing ϕ.
The sparse prior information is exploited, only L entries of α
and β that correspond to locations of the L maximum entries
of α and β are calculated. It should be noted that we estimate
the 2D off-grid error denoted as α and β simultaneously
rather than separately in our frame. Because ϕ is obtained
by stacking α and β, 2L entries of ϕ that correspond to the
maximum 2L entries of γ should be preserved and others be
set to zeroes. As a result, ϕ, v and P can be truncated into
dimension of 2L × 1 or 2L × 2L. Their truncated versions
are still denoted by ϕ, v and P hereafter just for simplicity.
Specifically, if P is invertible and ϕ̂ = P−1v ∈ R2L×1.
Otherwise, ϕ̂ is updated element wise, i.e., at each step we
update one ϕi by fixing up the other entries of ϕ. For i =
1, . . . , 2L,

ϕi =
vi − ((P)i)

T
−i ϕ−i

Pi,i
=

{
αi, i ≤ L
βi−L , i > L

(41)

where
(
α̂l, β̂l

)
∈ ([−1R/2,1R/2], [−1θ/2,1θ/2])

should be satisfied, and the subscript −i of the vector stands
for the vector with the ith entry being zero.
Thus, the proposed 2DOGSBL algorithm is implemented

as follows. First, the hyperparameters γ , γ0, α and β are
initialized, and 6 and µ (τ ), τ = 1, . . . ,T , are calcu-
lated by (30) and (31) respectively. Then γ , ρ, γ0, α and
β are updated by (33), (35), (37) and (38), respectively.
The process is repeated until the convergence criterion that
‖γ iter+1−γ iter‖2
‖γ iter‖2

< tol or the maximum number of iterations
is reached is satisfied, where tol is a user-defined tolerance
and the superscript iter refers to the iteration. According
to the property of expectation-maximization algorithm [37],
the convergence of the algorithm is guaranteed since the
function p (γ , γ0,α,β|Y) increases with iteration.

C. 2DOGSBL-2SVDs
In the practical implement of the 2DOGSBL algorithm,
the computation burden is often huge, which is mainly caused
by the large number of pulses T . In [29], SVD is used to
reduce the columns of the measurement matrix Y . In this
section, another SVD is used to reduce its rows. We refer
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to this scheme of use of SVD twice as 2SVDs. The dimen-
sionality reduction of the measurement matrix Y ∈ CNMT×T

preserves the most significant components while it reduces
the computation of the signal reconstruction process and the
sensitivity to the measurement noise.

Consider the imaging model in (14) where G (α,β) =
G
[
IPK 1α 1β

]T . There is a correlation among the row ele-
ments used for constructing G with respect to τ and that
Rank (G) ≤ NM < NMT can be satisfied when T > 1.
To some extent, the information in G does not significantly
increase with a larger T . It calls for the dimensionality reduc-
tion ofG. Performing the SVD of the observation matrixG =[
G0 B C

]
∈ CNMT×3PK without unknown α and β, we have

G = UGSGVH
G , where SG = diag(λ1, . . . , λmin{MNT ,3PK })

with λ1 ≥ λ2 ≥ . . . ≥ λmin{MNT ,3PK } > 0. The optimal
rank-kr approximation of G, denoted as Gr , is computed by
Gr = UkrSkrV

H
kr , where Ukr consists of the leftmost kr

columns of UG, VH
kr consists of the rightmost kr rows of VH

G
and Skr = diag(λ1, . . . , λkr ) is a diagonal matrix.
According to the theory of principal component analy-

sis (PCA) [38], Gr can be obtained by preserving most
energy of G in [39]. In our work, we consider that the
leakage of the energy of G is so small that it can be neg-
ligible. Given λi > 0, kr can be obtained by approximat-

ing δ =
kr∑
i=1
λi/

min{MNT ,3PK }∑
i=1

λi to 1, where kr represents the

number of the largest kr singular values of G. Thus, the left
singular values can be discarded as noise components. Then,
with the projection matrix UH

G , the dimensionality reduction
version of G can be obtained as

GSr = UH
GG = SkrV

H
kr =

[
UH
GG0 UH

GB UH
GC

]
(42)

Most of the energy of Y can be preserved as a good represen-
tation with fewer rows, and we have

Y r = UH
GY = GSr

[
IPK 1α 1β

]T
�+ EL (43)

where Y r ∈ Ckr×T and EL = UH
GE ∈ Ckr×T .

Another dimensionality reduction is implemented on the
number of columns of Y r . A similar subspace-based analysis
in [29] is adopted. In the noise-free case of (41), we have
Y r = GSr

[
IPK 1α 1β

]T
� with L ≤ T and Rank (Y r ) ≤

Rank (�) ≤ L. We use the SVD of the measurement matrix
Y r = UcScVH

c . Let V c =
[
VL VTL

]
, where VL and VTL are

matrices that consist of the first L and the other T−L columns
of V c, respectively. Then we have that Y rc = Y rVL ∈ Ckr×L

preserves all signal information. Let �c = �VL and Erc =
ELVL . From (41), we have totally new version of (19) which
can be expressed as

Y rc = GSr
[
IPK 1α 1β

]T
�c + Erc (44)

where Y rc, GSr , �c and Erc are all new. The joint sparsity
still holds in �c and the proposed 2DOGSBL algorithm can
be applied. As the resulting algorithm, 2DOGSBL-2SVDs is
used to solve (42) to estimate �c with α and β.

The complexity for the computation of the proposed
method is analyzed. It can be shown that 2DOGSBL-
2SVDs has a computational complexity in order of
O(krP2K 2) per iteration while that for 2DOGSBL is
O(max(NMTP2K 2,N 2M2T 2PK )) per iteration. The addi-
tional computational workloads of O(max(k2r T , krT

2)) and
O(max(9NMTP2K 2, 3N 2M2T 2PK )) are for the SVDs of
Y r and G in 2DOGSBL-2SVDs, respectively. Given PK >

NM ≥ kr , it can be shown that the whole computa-
tional workload of 2DOGSBL-2SVDs is less than that
of 2DOGSBL.

D. RANGE-ANGLE IMAGE FORMATION
Since the reflection coefficients of targets � are assumed to
be complex-valued, the power estimate of � in range-angle
plane is used to form the range-angle image. The locations
of the highest peaks in the range-angle image with off-grid
error (α̂, β̂) are used to estimate the target locations. Let
�̂ = �cVH

L , Û and 6̂ be the estimates of the reflection
coefficient matrix�, and the meanU and the covariance 6̂ of
�c, respectively. Then the PDF of the reconstructed reflection

coefficients p(�̂) =
T∏
t=1

CN
(
σ̂ (τ )|µ̂(t),6

)
. Consider �̂

row by row, We have (�̂)
η
∼ CN ((Û )

η
VH
L , 6̂η,ηVLVH

L ),
η = 1, . . . ,PK . Let ψ be the vector representation of the
gridded map (R̃, θ̃ ) of the range-angle plane. ψη denotes the
power of the ηth location which corresponds to the (p̂, k̂) =
(ceil(η/K ),mod(η,K ))th element of (R̃, θ̃ ), where

(p̂, k̂) =

{
(ceil(η/K ),mod(η,K )) , mod(η,K ) 6= 0

(ceil(η/K ),K ) , others
(45)

where ceil(·) and mod(·), which are matlab functions,
denote the operations of rounding toward positive infinity and
returning modulus after division, respectively.

The estimate of the power ψη can be obtained by comput-
ing the expectation

ψ̂η =
1
T

〈
‖�̂η‖22

〉
=

1
T

(
‖ÛηVH

L ‖
2
2 + Tr

{
6̂η,ηVLVH

L

})
=

1
T

(
‖Ûη
‖
2
2 + L6̂η,η

)
. (46)

Thus, the locations of the nearest grid points are estimated
using the locations of the highest peaks of the spectrum.
Suppose that the grid point indices of the highest L peaks
of ψ̂ = [ψ1, . . . , ψPK ]T are (p̂l, k̂l), l = 1, . . . ,L, and the
estimated locations are (R̂p, θ̂k ) = (R̃p̂l , θ̃k̂l )+ (α̂p̂l , β̂k̂l ).

V. EXPERIMENT RESULTS
The MIMO radar under consideration contains N = 5
transmit antennas and M = 5 receive antennas. The anten-
nas are arranged to form a uniform linear array (ULA),
with dt = dr = 0.5λ. Carrier frequency fc is 10GHz.
Transmitted pulse width Ts is 2µs. Bandwidth B is 15MHz.
Frequency interval 1f between two adjacent channels is
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15MHz with κ0 = 30 which meets the requirement of
orthogonal multitransmission. The angle grid interval is
ϑ · 1θ , where 1θ = 0.1◦ denotes a constant and ϑ is
the factor. A uniform sampling is adopted. The uniform
computation grids in angle and range dimension can be
written as {−1.6◦ · ϑ, (−1.6◦ +1θ ) · ϑ, . . . , 1.6◦ · ϑ} and
{998.6m, 998.6m+1R, . . . , 1001.5m} with 1R = 0.1m.
Besides, we set the reference range and frequency to 1000m
and fc, respectively, in order to reduce the approximation error
in (13). The number of snapshots is set to T = 100 in the
MMV case. The targets are modeled as Swerling II case.
We assume that the coefficients of the targets are standard
complex normally distributed. For the proposed 2DOGSBL-
2SVDs, we initialize ρ = 10−4, λ = κ = 0, α = β = 0,
γ0 = 1 and γ is initialized as a vector with all entries being 1.
In our method, the large energy loss of G is not expected and
δ > 0.9999 with λi > 0.1, i = 1, . . . , kr is approximately
required. For the sake of simplicity, kr = MN is set in our
experiment.

We take L1 and Lq as the representatives of `1 and themore
general `q (0 < q ≤ 1) optimization methods based on on-
grid MMVmodel, respectively. The value of 0 < q ≤ 1 gives
sparser solution and it can be chosen according to [32]. For
small values of q have been found to have a higher likelihood
of getting trapped in local minima. It should be noted that
the large dimensionality of G0 in our on-grid model leads to
a huge burden during signal reconstruction process. Besides,
the employment of subspace-idea based SVD [12] can allevi-
ate the sensitivity to the measurement noise in theMMV case.
For fair comparison,G0 used in on-grid model basedmethods
in our experiment is replaced by GSr0 = UH

GG0 obtained by
2SVDs. With the off-grid error (α,β) being zero, the on-grid
version of the model in (42) solved by both of L1 and Lq can
be written as

Y rc = GSr0�+ Erc. (47)

Then, L1 and Lq are used to solve (45) estimate �, and
they are referred to as L1-2SVDs and Lq-2SVDs in our
experiment.

In addition, we also compare our method with the off-
grid MMV model based method, i.e. OGSBI [29]. It should
be noted that the large dimensionality of G (α,β) =
G
[
IPK 1α 1β

]T in our off-gridmodel of (19) leads to a great
complexity for OGSBI which only models the angle error
and 1α = diag (0) is assumed in problem (19). Although
the measurement matrix can be thinner via the employment
of subspace-idea based SVD in [29] which to some extent
reduces the computation, it is still difficult to solve the prob-
lem in (19). For fair comparison, the dimensionality reduction
has been preprocessed via the employment of 2SVDs in
Section IV. Then, a similar model with (42) solved by OGSBI
can be expressed as

Y rc = GSr
[
IPK 1α 1β

]T
�c + Erc (48)

where 1α = diag (0). As the result, OGSBI is used to solve
(46) to estimate �c with only angle error β and hence it is
referred to as OGSBI-2SVDs in our experiment.

In subsection 5.1, we present the imaging results on three
targets in both on-grid and off-grid cases with different SNRs
and demonstrate the improvements in visual image quality,
as compared with the on-grid model based methods. In sub-
section 5.2, we provide a quantitative comparison of our
approach with on-grid model based methods.

A. VISUALLY QUALITATIVE RESULTS
In the range-angle image, the locations of the targets are
usually the nearest grid points. In this subsection, we compare
`1-2SVDs, M-FOCUSS-2SVDs and 2DOGSBL-2SVDs on
the imaging results with the estimated nearest grid points
in both the on-grid and the off-grid cases. The factor of the
angle grid interval ϑ = 4 is set. We consider three on-
grid targets at the locations (R̃1, θ̃1) = (999.5m,−1.2◦),
(R̃2, θ̃2) = (1001.0m, 1.6◦) and (R̃3, θ̃3) = (1001.0m, 2.0◦).
Correspondingly, the three targets in the off-grid case with 2D
off-grid errors are considered with the locations (R1, θ1) =
(999.47m,−1.18◦), (R2, θ2) = (1000.98m, 1.55◦) and
(R3, θ3) = (1001.01m, 2.09◦). Two SNR cases of SNR =
20dB and SNR = 0dB are considered. In this subsection,
the user-defined tolerance tol = 10−3 with the maximum
number of iterations being 500 is set.

Figs. 2(a) and (b) show the comparative results for the
on-grid and the off-grid targets respectively with the SNR
of 20dB. We observe that all the methods perform successful
in on-grid case at the relatively high SNR of 20dB in Fig. 2(a).
However, in off-grid case, spurious peaks appear in the results
of L1-2SVDs and Lq-2SVDs in Fig. 2(b). Lq-2SVDs shows
its good property of sparsity promoting but sensitivity to
the off-grid error, and the off-grid error even causes its
misestimation of one target location parameter. By contrast,
2DOGSBL-2SVDs method provides high resolution as well
as spurious peak suppression in off-grid case. It is shown that
the superior results of 2DOGSBL-2SVDs method benefits
from the accurate estimation and correction of the 2D off-grid
error.

Figs. 3(a) and (b) show the comparative results for the on-
grid and the off-grid targets respectivelywith the SNR of 0dB.
It is shown from Figs. 2(a) and Figs. 3(a) that almost all
the methods benefit from their denoising effects, which are
closely related to their sparsity promoting and the common
2SVDs. As is shown in Figs. 3(a) and (b), under the relatively
low SNR of 0dB, Lq-2SVDs shows its good property of
sparsity promoting in low SNR case but sensitivity to the off-
grid error. As is shown in the middle column of Figs. 3(b),
Lq-2SVDs misestimates the location and amplitude of one
target in off-grid case. On the other hand, both in off-grid
case and at relatively low SNR, 2DOGSBL-2SVDs method
provides high resolution as well as relatively well spurious
peak suppression. In fact, both of the noise and the off-grid
error may lead to degraded quality of imaging and spuri-
ous peaks, which also degrades the accuracy of parameter
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FIGURE 2. Left-Images reconstructed by L1-2SVDs. Middle-Images reconstructed by Lq-2SVDs. Right-Images reconstructed by
2DOGSBL-2SVDs. The circle represents the on-grid location of a true target, and the filled square represents a target estimate. The darkness
represents the normalized amplitude of the target coefficients, and the observed amplitude range is 25dB. The darker the filled square is,
the larger the amplitude is.

estimation. The results demonstrate that the proposed method
is more robust to Gaussian measurement noise and 2D off-
grid errors than L1-2SVDs and Lq-2SVDs. All the three
sparse reconstruction based methods may utilize the SVD
to improve the performance at low SNR, but it is difficult
for only SVD to handle well with the observation model
inaccuracies caused by off-grid errors which may lead to
degradations and spurious peaks in the reconstructed images.
Themain reason for the superior performance of the proposed
method is that the 2D off-grid errors are carefully modeled
with a noninformative prior and well estimated within our
framework. It can be seen from Fig. 3 that 2DOGSBL-2SVDs
method can handle with both of the 2D off-grid error and the
low SNR.

B. QUANTITATIVE COMPARISON
In this subsection, we compare 2DOGSBL-2SVDs with the
on-grid model based methods L1-2SVDs and Lq-2SVDs
and the off-grid model based method, i.e., OGSBI-2SVDs,
in terms of MSE with respect to the grid interval and
SNR. We assume there are L = 2 targets. The true range
coordinates R1 and R2 are uniformly generated with inter-
vals [999.8m − 1R/2, 999.8m + 1R/2] and [1000.2m −
1R/2, 1000.2m + 1R/2] respectively, and the true angle
coordinates θ1, θ2 are uniformly generated with intervals
[−2.4◦ − ϑ · 1θ/2,−2.4◦ + ϑ · 1θ/2] and [2.4◦ − ϑ ·
1θ/2, 2.4◦ + ϑ ·1θ/2] respectively, where the factor of the
angle grid interval ϑ = 2, 4, 6, 8. Two SNR cases of SNR =

10dB and SNR = 0dB are considered. We set tol = 10−3 and
the maximum number of iterations to 1000.

For each case of SNR and (ϑ ·1θ,1R) with ϑ = 2, 4, 6, 8,
the MSEs of the angle and the range estimations are averaged
respectively over 200 trials:

MSE_angle =
1

200L

200∑
i=1

L∑
l=1

(θ̂ il − θl)
2

(49)

and

MSE_range =
1

200L

200∑
i=1

L∑
l=1

(R̂il − Rl)
2

(50)

where the superscript i refers to the ith trial. It should be
noted that there exists a lower bound for the MSE of on-grid
MMV model based methods like L1-2SVDs and Lq-2SVDs
regardless of the SNR since the best locations estimate that
they can obtain is the grid point nearest to the true location.
Since the angle and the range of true targets are uniformly dis-
tributed, the lower bounds can be calculated as LB_angle =
(ϑ ·1θ )2/12 and LB_range = (1R)2/12 which are the
expectation in the case of limited trials. However, the lower
bounds here are computed independently without the cou-
pling effect between the 2D off-grid errors taken into account.
This means that the lower bounds may be lower than the
actual ones.

Fig. 4 presents our experimental results of comparisonwith
both on-grid and off-grid model based methods. In almost
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FIGURE 3. Left-Images reconstructed by L1-2SVDs. Middle-Images reconstructed by Lq-2SVDs. Right-Images reconstructed by
2DOGSBL-2SVDs. The circle represents the on-grid location of a true target, and the filled square represents a target estimate. The darkness
represents the normalized amplitude of the target coefficients, and the observed amplitude range is 25dB. The darker the filled square is,
the larger the amplitude is.

FIGURE 4. MSEs of L1-2SVDs, Lq-2SVDs, OGSBI-2SVDs and 2DOGSBI-2SVDs. (a) The MSEs of the angle estimations. (b) The MSEs of
the range estimations.

all scenarios under consideration, 2DOGSBL-2SVDs has
more accurate angle and range estimations than L1-2SVDs,
Lq-2SVDs and OGSBI-2SVDs. This demonstrates that the
proposed 2D off-grid model based method is superior to
the on-grid model based methods; what’s more, the off-grid
model with 2D off-grid errors taken into account is more
accurate than the one with only one-dimensional error mod-
eled like OGSBI-2SVDs. It is seen that the estimation errors
of the off-grid model based methods become smaller with

decreasing grid interval, while the estimation performance
of on-grid model based methods like L1-2SVDs and Lq-
2SVDs degrades with the grid interval being smaller than
0.2◦. This demonstrates that although a dense computation
grid is necessary for on-grid model based methods like L1-
2SVDs and Lq-2SVDs to obtain an accurate estimation of
the target location since the gap between the true location
and its nearest grid point can be narrowed, this would lead
to the sensitivity to noise of the observation matrix used for
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the SSR. However, this can be largely overcome through the
off-grid model which has a good performance on describing
the true observation model.

It is shown in Fig. 4 that 2DOGSBL-2SVDs has bet-
ter precision than OGSBI-2SVDs in different grid intervals
and SNRs. The main reason is that 2DOGSBL-2SVDs has
modeled the 2D off-grid errors as the range-angle depen-
dent variables of the parameterized observation matrix, rather
than OGSBI-2SVDs with range dependent variables being
zeros. The off-grid modeling error may result in the degraded
performance of the method without range dependent off-
grid error incorporated. Besides, the proposed method adopts
variational Bayesian learning framework with a unified GIG
prior for coefficient variance, which has more degrees of
freedom to mimic a kind of heavy-tailed distribution so that
better adaptive modeling of the sparsity. The lower bound can
be viewed as the expectation of the off-grid error between the
true location and the computation grid under the assumption
that the off-grid errors are not modeled in the observation
process and they are uniformly distributed. The off-grid error
can be compensated with high probability using our method,
because the proposed off-grid model can be viewed as the
first order approximation to the true observation model with
the two variables. However, there is still coupling between the
two dimensional off-grid errors that is difficult to model and
compensate, so the MSEs of the proposed algorithm is still
difficult to exceed the lower bound.

All experiments are carried out in Matlab on a PC with
3.6 GHzCPUs. For the three off-grid target case with 500 iter-
ations, the average computation time of L1-2SVDs, Lq-
2SVDs, OGSBI-2SVDs and 2DOGSBL-2SVDs are 31.19s,
0.04s, 33.13s, 53.64s, excluding the 2SVDs preprocessing
that takes about 13.51s in our case. The computational load
of 2DOGSBL-2SVDs is relatively more than the on-grid
model and one-dimensional off-grid based methods, but this
can be justified through the benefits provided by our imaging
framework, as demonstrated in our experiments.

VI. CONCLUSION
In this article, an off-grid imaging framework of OFDM-
LFMMIMO radar with multiple probing pulses is presented.
The orthogonal transmission property of the OFDM LFM
waveform is employed in order to obtain the image in range
dimension. The targets are modeled as Swerling II case that
the reflection coefficients of the targets is fixed during a pulse
while varying independently from pulse to pulse. Different
from the mostly proposed on-grid model for SSR, we studied
the off-grid sparse imaging model for OFDM-LFM MIMO
radar. The true off-grid location is modeled with the first-
order partial derivative of a two-variable function, which is
exploited to reduce the modeling error due to discretiza-
tion of a continuous range-angle plane. From a variational
Bayesian perspective, an iterative algorithm is developed for
joint MIMO radar imaging and 2D position error estimation
and autocorrection of off-grid targets. Besides, a subspace-
like method referred to 2SVDs is used to reduce the com-

putational complexity of the signal recovery process and the
sensitivity to noise. Simulation results demonstrate that the
proposed approach outperforms existing on-grid and off-grid
model based methods.

In future, further experimental validation, including using
dedicated samples can be investigated on not only imaging
the static point targets with only frequency domain features,
but also more complex and dynamic targets using time-
frequency representations and their micro doppler character-
istics [16].

REFERENCES
[1] K. W. Forsythe, D. W. Bliss, and G. S. Fawcett, ‘‘Multiple-input multiple-

output (MIMO) radar: Performance issues,’’ in Proc. 38th Asilomar Conf.
Signals, Syst., Comput., Pacific Grove, CA, USA, vol. 1, Nov. 2004,
pp. 305–309.

[2] D. W. Bliss and K. W. Forsythe, ‘‘Multiple-input multiple-output (MIMO)
radar and imaging: Degrees of freedom and resolution,’’ in Proc. 37th
Asilomar Conf. Signals, Syst., Comput., Pacific Grove, CA, USA, vol. 1,
Nov. 2003, pp. 54–59.

[3] J. Li, P. Stoica, L. Xu, and W. Roberts, ‘‘On parameter identifiability of
MIMO radar,’’ IEEE Signal Process. Lett., vol. 14, no. 12, pp. 968–971,
Dec. 2007.

[4] R. Entezari and A. Rashidi, ‘‘Incoherent waveform design for compressed
sensing radar based on pulse-train scenario,’’ IETCommun., vol. 12, no. 17,
pp. 2132–2136, Oct. 2018.

[5] Y. Zhu, Y. Su, and W. Yu, ‘‘An ISAR imaging method based on
MIMO technique,’’ IEEE Trans. Geosci. Remote Sens., vol. 48, no. 8,
pp. 3290–3299, Aug. 2010.

[6] W.-Q. Wang, ‘‘Space–time coding MIMO-OFDM SAR for high-
resolution imaging,’’ IEEE Trans. Geosci. Remote Sens., vol. 49, no. 8,
pp. 3094–3104, Aug. 2011.

[7] A. Pandharipande, ‘‘Principles of OFDM,’’ IEEE Potentials, vol. 21, no. 2,
pp. 16–19, Apr. 2002.

[8] X. Tan, W. Roberts, J. Li, and P. Stoica, ‘‘Sparse learning via iterative
minimization with application to MIMO radar imaging,’’ IEEE Trans.
Signal Process., vol. 59, no. 3, pp. 1088–1101, Mar. 2011.

[9] E. J. Candès, J. K. Romberg, and T. Tao, ‘‘Stable signal recovery from
incomplete and inaccurate measurements,’’ Commun. Pure Appl. Math.,
vol. 59, no. 8, pp. 1207–1223, 2006.

[10] M. D. Buhari, G. Y. Tian, R. Tiwari, and A. H. Muqaibel, ‘‘Multicar-
rier SAR image reconstruction using integrated MUSIC-LSE algorithm,’’
IEEE Access, vol. 6, pp. 22827–22838, 2018.

[11] C. Tang, G. Y. Tian, K. Li, R. Sutthaweekul, and J.Wu, ‘‘Smart compressed
sensing for online evaluation of CFRP structure integrity,’’ IEEE Trans.
Ind. Electron., vol. 64, no. 12, pp. 9608–9617, Dec. 2017.

[12] D. Malioutov, M. Cetin, and A. S. Willsky, ‘‘A sparse signal reconstruction
perspective for source localization with sensor arrays,’’ IEEE Trans. Signal
Process., vol. 53, no. 8, pp. 3010–3022, Aug. 2005.

[13] Y. Yu, A. P. Petropulu, and H. V. Poor, ‘‘MIMO radar using compressive
sampling,’’ IEEE J. Sel. Topics Signal Process., vol. 4, no. 1, pp. 146–163,
Feb. 2010.

[14] N. Ö. Onhon and M. Çetin, ‘‘A sparsity-driven approach for joint SAR
imaging and phase error correction,’’ IEEE Trans. Image Process., vol. 21,
no. 4, pp. 2075–2088, Apr. 2012.

[15] H. Zamani and M. Fakharzadeh, ‘‘1.5-D sparse array for millimeter-wave
imaging based on compressive sensing techniques,’’ IEEE Trans. Antennas
Propag., vol. 66, no. 4, pp. 2008–2015, Apr. 2018.

[16] Y. Zhao and Y. Su, ‘‘Sparse recovery on intrinsic mode functions for
the micro-Doppler parameters estimation of small UAVs,’’ IEEE Trans.
Geosci. Remote Sens., vol. 57, no. 9, pp. 7182–7193, Sep. 2019.

[17] W. He, G. Wang, J. Hu, C. Li, B. Guo, and F. Li, ‘‘Simultaneous human
healthmonitoring and time-frequency sparse representation using EEG and
ECG signals,’’ IEEE Access, vol. 7, pp. 85985–85994, 2019.

[18] I. S. Merrill, Introduction to Radar Systems. New York, NY, USA:
McGraw-Hill, 2001.

[19] M.M. Hyder and K.Mahata, ‘‘A joint sparse signal representation perspec-
tive for target detection using bistatic MIMO radar system,’’ in Proc. 17th
Int. Conf. (DSP), Jul. 2011, pp. 1–5.

147602 VOLUME 8, 2020



C. Wen et al.: MIMO Radar Imaging With Multiple Probing Pulses for 2D Off-Grid Targets via Variational Sparse Bayesian Learning

[20] S. M. Hosseini, R. A. Sadeghzadeh, and B. S. Virdee, ‘‘DOA estimation
using multiple measurement vector model with sparse solutions in linear
array scenarios,’’ EURASIP J. Wireless Commun. Netw., vol. 2017, no. 1,
p. 58, Dec. 2017.

[21] Y. C. Eldar and H. Rauhut, ‘‘Average case analysis of multichannel sparse
recovery using convex relaxation,’’ IEEE Trans. Inf. Theory, vol. 56, no. 1,
pp. 505–519, Jan. 2010.

[22] S. D. Babacan, R. Molina, and A. K. Katsaggelos, ‘‘Bayesian compressive
sensing using Laplace priors,’’ IEEE Trans. Image Process., vol. 19, no. 1,
pp. 53–63, Jan. 2010.

[23] M. E. Tipping, ‘‘Sparse Bayesian learning and the relevance vector
machine,’’ J. Mach. Learn. Res., vol. 1, pp. 211–244, Sep. 2001.

[24] Z.-M. Liu, Z.-T. Huang, and Y.-Y. Zhou, ‘‘An efficient maximum like-
lihood method for Direction-of-Arrival estimation via sparse Bayesian
learning,’’ IEEE Trans. Wireless Commun., vol. 11, no. 10, pp. 1–11,
Oct. 2012.

[25] L. He and L. Carin, ‘‘Exploiting structure in wavelet-based Bayesian
compressive sensing,’’ IEEE Trans. Signal Process., vol. 57, no. 9,
pp. 3488–3497, Sep. 2009.

[26] L. Qin, J. Tan, Z. Wang, G. Wang, and X. Guo, ‘‘Exploiting the
tree-structured compressive sensing of wavelet coefficients via block
sparse Bayesian learning,’’ Electron. Lett., vol. 54, no. 16, pp. 975–976,
Aug. 2018.

[27] H. Zhu, G. Leus, and G. B. Giannakis, ‘‘Sparsity-cognizant total least-
squares for perturbed compressive sampling,’’ IEEE Trans. Signal Pro-
cess., vol. 59, no. 5, pp. 2002–2016, May 2011.

[28] A. Abtahi, S. Gazor, and F. Marvasti, ‘‘Off-grid localization in MIMO
radars using sparsity,’’ IEEE Signal Process. Lett., vol. 25, no. 2,
pp. 313–317, Feb. 2018.

[29] Z. Yang, L. Xie, and C. Zhang, ‘‘Off-grid direction of arrival estimation
using sparse Bayesian inference,’’ IEEE Trans. Signal Process., vol. 61,
no. 1, pp. 38–43, Jan. 2013.

[30] Z. Cao, L. Zhou, and J. Dai, ‘‘Sparse Bayesian approach for DOD
and DOA estimation with bistatic MIMO radar,’’ IEEE Access, vol. 7,
pp. 155335–155346, 2019.

[31] J. Shi, G. Hu, X. Zhang, and F. Sun, ‘‘Sparsity-based DOA estimation of
coherent and uncorrelated targets with flexible MIMO radar,’’ IEEE Trans.
Veh. Technol., vol. 68, no. 6, pp. 5835–5848, Jun. 2019.

[32] S. F. Cotter, B. D. Rao, K. Engan, and K. Kreutz-Delgado, ‘‘Sparse
solutions to linear inverse problems with multiple measurement vectors,’’
IEEE Trans. Signal Process., vol. 53, no. 7, pp. 2477–2488, Jul. 2005.

[33] P. Gong and Z. Shao, ‘‘Target estimation by iterative reweighted LQ
minimization for MIMO radar,’’ Signal Process., vol. 101, pp. 35–41,
Aug. 2014.

[34] N. R. Goodman, ‘‘Statistical analysis based on a certain multivariate com-
plex Gaussian distribution (An introduction),’’ Ann. Math. Statist., vol. 34,
no. 1, pp. 152–177, Mar. 1963.

[35] Z. Zhang, S. Wang, D. Liu, and M. I. Jordan, ‘‘EP-GIG priors and appli-
cations in Bayesian sparse learning,’’ J. Mach. Learn. Res., vol. 13, no. 1,
pp. 2031–2061, 2012.

[36] D. G. Tzikas, A. C. Likas, and N. P. Galatsanos, ‘‘The variational approxi-
mation for Bayesian inference,’’ IEEE Signal Process. Mag., vol. 25, no. 6,
pp. 131–146, Nov. 2008.

[37] G. McLachlan and T. Krishnan, The EM Algorithm and Extensions.
New York, NY, USA: Wiley, 1997.

[38] I. T. Jolliffe, Principal Component Analysis, 2nd ed. New York, NY, USA:
Springer-Verlag, 2002.

[39] G. Shi, C. Chen, J. Lin, X. Xie, and X. Chen, ‘‘Narrowband ultrasonic
detection with high range resolution: Separating echoes via compressed
sensing and singular value decomposition,’’ IEEE Trans. Ultrason., Ferro-
electr., Freq. Control, vol. 59, no. 10, pp. 2237–2253, Oct. 2012.

CHAO WEN received the Ph.D. degree from Xid-
ian University, China, in 2017. He is currently a
Lecturer with the Institute of Big Data Science and
Industry, Shanxi University, China. His research
interests include array signal processing, passive
sensing, and artificial intelligence.

LU CHEN received the M.S. and Ph.D. degrees
from Northwestern Polytechnical University,
in 2015 and 2019, respectively. He is currently a
Lecturer with the Institute of Big Data Science and
Industry, Shanxi University. His research interests
include machine learning, robotic vision, and low-
light image enhancement.

PENGTING DUAN received theM.S. degree from
Xidian University, China, in 2014. She is cur-
rently an Engineer with the North Automatic Con-
trol Technology Research Institute, China. Her
research interests include parameter estimation
and multi-station communication.

XUEFENG CUI received the M.S. degree from
Southeast University, China, in 2012. He is cur-
rently a Senior Engineer with the North Automatic
Control Technology Research Institute, China.
His research interests include electromagnetic
field and microwave technology, and network
communication.

VOLUME 8, 2020 147603


