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ABSTRACT Recent advancements in robots and deep learning have led to active research in human-robot
interaction. However, non-physical interaction using visual devices such as laser pointers has gained less
attention than physical interaction using complex robots such as humanoids. Such vision-based interaction
has high potential for use in recent human-robot collaboration environments such as assembly guidance,
even with a minimum amount of configuration. In this paper, we introduce a simple robotic laser pointer
device that follows an arbitrary planar path and is designed to be a visual instructional aid. We also
propose an image-based automatic path generation method using reinforcement learning and a sequential
pattern reduction technique. However, such vision-based human-robot interaction is generally performed
in a dynamic environment, and it can frequently be necessary to calibrate the devices more than once.
In this paper, we avoid the need for this re-calibration process through episodic randomization learning
and improved learning efficiency. In particular, contrary to previous approaches, the agent controls the
curriculum difficulty in a self-directed manner to determine the optimal curriculum. To our knowledge,
this is the first study of curriculum learning that incorporates an explicit learning environment control signal
initiated by the agent itself. Through quantitative and qualitative analyses, we show that the proposed self-
directed curriculum learning method outperforms ordinary episodic randomization and curriculum learning.
We hope that the proposed method can be extended to a general reinforcement learning framework.

INDEX TERMS Path generation, robotic laser pointer, deep reinforcement learning, curriculum learning.

I. INTRODUCTION
A. BACKGROUND
With the advancements in machine learning, research on
deep learning-based human-robot interaction has attracted
much attention recently [1]–[3]. Humans can interact with
robots in various forms, and these methods can be cate-
gorized into physical interactions and non-physical (untact)
interactions. For physical interactions (e.g., hand shaking,
high fives, and manipulating objects), complex and high-cost
robots such as humanoid robots are required. In contrast,
non-physical interaction requires a relatively simple and low-
cost robot such as a device that provides visual information
using a beam projector [4]–[6] and an artificial intelligence
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speaker [7], [8]. In particular, unlike the recently commercial-
ized artificial intelligence speaker, a visual-based interactive
robot such as beam projector-based robot is highly expected
to be useful in the future and should be studied and developed.

Such a visual-based interactive robot can be configured at
a relatively lower cost and with a simpler structure than a
humanoid robot or articulated manipulator. For human–robot
visual interaction in three-dimensional (3D) space, the robot
should have at least three degrees of freedom, and its sim-
plest incarnation is a robotic laser pointer (RLP) device that
consists of pan-tilt joints and a laser pointer. Although a
laser pointer cannot provide high-dimensional visual infor-
mation like a beam projector, effective provision of visual
information and interaction with humans is possible when it
is equipped with motorized laser control [9]. For example,
the RLP can provide visual information such as a warning
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signal or emotional expressions to users by generating repet-
itive motor trajectories for specific patterns. Moreover, when
combined with a camera sensor, it can be utilized in guidance
for assembly, path planning, and object finding applications.
For these applications, it is essential to equip the robot with
image-based path generation skills, which generate laser tra-
jectories from target patterns such as the contour of a target
object.

In previous approaches, image-based path generation
basically requires complex manual processes such as image
processing, curve fitting [10], path planning [11], and calibra-
tion [12]. In a dynamic environment in particular, frequent re-
calibration is expected because the positions and orientations
of the robot, camera sensor, and target objects are more likely
to change. Therefore, there is a high need for a learning-based
method so that the robot can perform path generation with
much less effort than would be needed for manual program-
ming in an uncalibrated environment.

In this paper, we propose an image-based path generation
method that is able to generate paths in an uncalibrated envi-
ronment using reinforcement learning. The path generation
process can be formulated as a sequential visiting problem
for each region of a given pattern, where the visitor (agent)
and the path are regarded as the pixels of laser point and the
pattern region respectively. We modeled this problem as a
sequential pattern reduction (SPR) problem in which the laser
pointer sequentially reduces the pattern (path). In addition,
we designed a Markov decision process (MDP) that includes
an SPR reward function to employ RL in our learning
system.

In the image-based path generation problem, the agent
should be able to generate paths even in an environment
that is not calibrated. To this end, we applied an episodic
randomization learning approach that randomizes the envi-
ronment parameters in every episode [13], [14]. However,
the method converges slowly because difficult tasks are given
from the initial state. Moreover, local minima can be a
problem. To solve these problems, this paper proposes a self-
directed curriculum (SDC) based learning. Through the pro-
posed SDC and reward function, the agent is able to choose
an appropriate level of task difficulty for itself considering
its capability and learns the target task effectively during
training. We experimentally show that the proposed SDC
outperforms other existing learning methods.

B. RELATED WORK
There have been many attempts to automatically generate
paths from the visual data of target patterns. In robotic path
generation based on 3D point cloud data [15]–[19], the target
object’s shape is scanned by a 3D scanner, the data are
converted to point cloud data, and these data are used to
generate the object’s surface. The surface is used to generate
tool paths in automatic computer numerical control (CNC)
machining [15]. These methods require precise 3D sensors
and reverse engineering, which transforms the point cloud
data into a CAD model.

Automatic robot path generation from 2D images, which
can be thought of as image-based visual servoing [20] have
been studied intensively in many previous studies. Pachidis
and Lygouras [21] studied a path generation method for
robotic arc welding from 2D images. Given a stereo-vision
image, the corresponding line segments are obtained by
image processing and a correspondence algorithm. Then,
from the detected edges, robot paths are generated by the
path point calculation algorithm. Aritos et al. [22] proposed
a robot path generation method from lines on a flat 2D planar
surface image using image processing and robot-camera cal-
ibration. Chang et al. [10] proposed an image-based motion
planning method using Pythagorean-hodograph (PH) splines.
Using this approach, they are able to follow the contours
of an object with proper acceleration/deceleration using a
PH quantic spline interpolator in an eye-to-hand camera
structure [23].

Recently, there have been attempts to reduce the number
of calculations needed for curve fitting and path generation
during runtime based on a learning approach. Li et al. [24]
utilized RL to generate a fast and smooth tool path for a target
pattern in a calibrated environment for CNC applications.
Using deep RL, they replaced most steps of the previous
pre-planning smoothing method with a neural-network based
method and achieved the development of an algorithm involv-
ing fewer calculations than the usual solution. Jing et al. [25]
proposed a computational framework for robot path gen-
eration for surface/shape inspection application. They used
an RL-based tree search algorithm to efficiently generate
online paths based on the proposed MDP formulation to
solve the coverage planning problem [11]. In the research
cases mentioned above, RL has shown remarkable perfor-
mance in various studies including computer games [26]–[28]
and graphics [29], [30]. Especially in the robotics field,
RL is used to learn visuomotor skills [31], [32], path plan-
ning [33], navigation [34], [35], and human-robot interac-
tion [36]. In this paper, we also used RL as our main learning
method.

The aforementioned methods typically adopt the following
set of steps: point data extraction from the image, curve gener-
ation using curve fitting methods (using, e.g., B-splines [37]
or Bezier curves [38]), and then path planning for the curves.
This procedure has become the general approach of applica-
tions that require high precision such as CNC and computer
aided manufacturing [39], [40]. Moreover, in the learning-
based methods, deep learning is used as a subprocess of the
main algorithm. However, because our aim is to develop an
end-to-end learning-based method in the context of human-
robot interaction while minimizing the effort needed for man-
ual programming in uncalibrated environments, an evaluation
of the precision is outside the scope of this paper.

C. CONTRIBUTIONS
In this paper, we propose a deep RL-based robotic path
generation method that is efficient at learning and does not
require mathematical modeling for the target patterns or
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calibration. Our main contributions can be summarized as
follows:
• For given target patterns, we propose a deep RL-based
SPR method for automatic path generation without any
prior knowledge of mathematical and geometric models.

• We propose a system architecture characterized by a
novel reward function and distributed learning frame-
work for fast and effective learning.

• For learning unknown patterns in uncalibrated environ-
ments, we propose a SDC learning method that auto-
matically controls the level of difficulty of the task
considering the current capability of its own policy.
We experimentally verified the superiority of the SDC
learning method.

The remainder of the paper is organized as follows.
Preliminaries for our algorithm are presented in Section II.
In Section III, we describe the details of the proposedmethod,
including the SPR algorithm, MDP design, distributed learn-
ing environment, and SDC learning. Experiments and an
ablation study are presented in Sections IV and V, respec-
tively, along with their results, and finally the paper is
concluded in Section VI.

FIGURE 1. Kinematic diagram of the RLP. The kinematics of the RLP are
described by two revolute joints and a prismatic joint, where θ1 and θ2
correspond to pan and tilt and d3 is the laser pointer distance.

II. PRELIMINARIES
A. ROBOTIC LASER POINTER
We designed a simple RLP that consists of two revolute joints
(for pan and tilt) and a laser pointer (see Figs. 1 and 2).
The laser pointer’s on/off action and the pan-tilt motors are
controlled by an embedded processor board and the main PC
controls the device through serial communication. To control
the laser pointer in Cartesian space, we derived the analytic
inverse kinematics of the RLP using trigonometric functions
based on its kinematic structure. The kinematics are described
by the Denavit–Hartenberg parameter [41] of Table 1 and
Fig. 1 as follows:

xdr = (Rz(−π/2) · Rx(−π/2))−1 · (xdw − o
tilt
w ), (1)

θpan = arctan 2(−xdr .x , x
d
r .z), (2)

θtilt = arctan 2
(
−xdr .y,

√
xdr .z

2
+ xdr .x

2
)
, (3)

FIGURE 2. (Top left) RLP. (Bottom) Design of the RLP and its components.

TABLE 1. Denavit–Hartenberg parameter of the RLP device. The laser
pointer movement can be modeled by a prismatic joint.

where xdw = (xdr .x , x
d
r .y, x

d
r .z) represents the desired position of

the laser pointer in Cartesian space and otiltw is the origin of the
tilt joint. Moreover, Rz and Rx are 3×3 rotation matrices and
their inverse is multiplied by the desired position to produce
that position in robot coordinates. We set the origin of the pan
coordinate system to the origin of the world coordinates and
the pan and tilt joint angles are calculated by an arc tangent
function.

B. REINFORCEMENT LEARNING
In this paper, the robot agent generates paths only from the
observed target pattern images. Therefore, we model the
robotic pattern generation problem as a partially observable
MDP [42], [43] with a tuple M = {S,O,A, T , r, γ,S},
where each element represents a space for a partial observa-
tion of state, action, state transition probability T (st+1|st , at ),
reward function r : S × A → R, discount factor γ ∈ (0, 1],
and initial state distribution S, respectively. The agent learns
a deterministic rule π : O→ A that maximizes the expected
discounted reward from the initial reward R0 over a finite
horizon:

J = ES[R0|S]. (4)

The return at time t is defined by the discounted reward:

Rt =
T∑
i=t

γ i−tr(si, ai), (5)

where r(si, ai) returns a reward when the agent performs
an action ai at state si. The return Rt at time t is defined
by the sum of discounted rewards during T . In recent
RL-based studies, the actor–critic network [44] has become
a popular method for building the agent’s policy because its
performance is more stable and better than when using the
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actor policy alone. Based on this, we previously introduced
an asymmetric actor–critic network [45] to our policy for
Q-function-based policy evaluation. The critic network Qζ
estimates theQ-function, which describes the expected return
from action at at state st as follows:

Qπ (st , at ) = Eπ [Rt |st , at ]
= Eπ [r(st , at )+ γQπ (st+1, at+1)|st , at ], (6)

where (6) is the Bellman equation, which represents the
expected action-value (Q-value) of the current state st and
action at estimated by the discounted Q-function of the next
state st+1 and action at+1. The input to the critic is a feature
vector consisting of the current observation and state with
current action generated by the actor πω. The experiences of
the agent are gathered from the simulator and stored as a set of
tuples (ot , st , at , qt , rt ) in the rollout memory. Each element
of the tuple represents the current observation, state, action,
Q-value, and reward, which are described in a later section.

C. PROXIMAL POLICY OPTIMIZATION USING
THE Q-FUNCTION
In recent RL-based studies, proximal policy optimization
(PPO) [46] has shown superior performances especially in
robotic tasks [47], [48] and character animation [29]. Because
our agent is a kind of robotic device, we also trained using
the PPO algorithm. PPO optimizes the actor–critic policy
network based on the following conservative policy iteration
LCPI , clipped surrogate objective LCLIP, and squaredBellman
error loss LQF as follows:

LCPI (ω) = Eπ [ϕt (ω)At ], ϕt (ω) =
πω(at |ot )
πωold (at |ot )

, (7)

LCLIP(ω) = Eπ [min(ϕt (ω)At ,

clip(ϕt (ω), 1− ε, 1+ ε)At )], (8)

LQF (ζ ) = (r(st , at )

+ γQζ (st+1, at+1)− Qζ (st , at ))2, (9)

where ϕt (ω) represents the ratio between the current and
previous policy’s action probability given an observation.
Instead of the value function error used in [46], we define
the Q-function error loss for evaluation by the critic network
during training [45]. The final objective is defined by the
weighted sum of those three objectives as

LCLIP+QF+S (ω, ζ )

= Eπ [LCLIP(ω)− c1LQF (ζ )+ c2S(πω, ot )], (10)

where S denotes an entropy bonus term, c1 and c2 are weights
for LQF and S, which are set to 1.0 and 0.01, respectively,
in this paper.

D. RANDOM ENVIRONMENTS AND CURRICULUMS
The episodically randomized environment (ERE) is widely
used in RL to handle task variance [13], [14].We also adopted
ERE in our solution to eliminate the need for re-calibration in
an unknown environment. However, the ERE makes policy

convergence difficult and slow because challenging tasks are
given from the early stages of learning and rewards are sparse.
To solve this issue, curriculum learning has been used inmany
papers. However, most previous work manually determines
the curriculum without considering the maturity of policy
learning [49]–[52]. While some recent studies consider the
policy capability [53]–[56], the update rules are still deter-
mined manually or based on temporal difference error [55].

Our proposed SDC learning, in contrast, focuses on self-
directedness: the policy actively controls the curriculum dif-
ficulty by itself; it is not controlled by a human. In particular,
our method is distinguished from others by the incorporation
of an explicit control parameter τ for curriculum difficulty.
To our knowledge, this is the first study of curriculum learn-
ing equipped with a self-directed control signal from an
agent to the learning environment. Details are described in
Section III-D.

TABLE 2. Property of each learning method in terms of random
environments and curriculums: EIE, ERE, LIC, and SDC.

In our experiments, we compare four methods character-
ized by their handling of random environments and curricu-
lum. Table 2 lists the properties of each learning method.
Episodically invariant environment (EIE) learning is based
on a fixed learning environment without randomness or a
curriculum. ERE learning episodically randomizes the envi-
ronment without a curriculum. Linearly increasing curricu-
lum (LIC) learning has both randomness and a curriculum,
but the level of randomness (curriculum) is linearly increased.
In SDC, randomized learning is performed with a curriculum
that is determined by the policy itself. The criteria for self-
curriculum determination is described in Section III-D.

For the random environments listed in Table 2, we ran-
domly reset the positions and orientations of the target plane,
camera, target pattern texture, and initial position of the laser
point with respect to their initial state during training. For the
target pattern texture, only the x- and y-directional position
(xp, yp) and orientation with respect to the z-axis (zp) in the
local coordinate of the target plane are considered in the
randomized reset (see Fig. 4). The randomization is triggered
at the beginning of every episode and the range of values for
each object is described in Table 3. We also randomized the
colors and pattern geometries of the background plane with a
Perlin noise texture [57].

III. METHOD
In this section, we describe the overall robotic path
generation method. Beginning with the target pattern
generation, we describe the SPR, MDP design including
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FIGURE 3. Fifteen target patterns generated by custom equations and the superformula. The (a) Circle, (b) Double Circle and (c) Lemniscate of Bernoulli
were created using their pre-defined equations. The rest were created by the superformula with parameters (ρ(φ);m,n1,n2 = n3). The scale value a = b
is set appropriately for each pattern. (d) Diamond (1;4,1,1) (horizontally stretched); (e) Nuphar Luteum (1;3,4.5,10); (f) Scrophularia nodosa
(1;4,12,15); (g) Equisetum Stem (1;7,10,6); (h) Raspberry (1;5,4,4); (i) Starfish 1 (1;5,2,7); (j) Starfish 2 (1;5,2,13); (k) Spiral 1
(e0.2φ;4,100,100,100); (l) Spiral 2 (e0.2φ;10,5,5,5); (m) Spiral of Archimedes (φ;6,250,100,100); (n) Modified Rose 1 (cos(mφ),2.5,1/1.3,2.7); and
(o) Modified Rose 2 (cos(mφ),2.5,5,5).

FIGURE 4. RLP simulation environment consisting of an RLP, camera, and
target plane. The position and orientation of the target plane, camera
sensor, target pattern texture, background plane color pattern, and initial
laser position are randomly reset in every episode. The resolution of the
camera image is 96 × 96 pixels.

network architecture, distributed learning framework, and
SDC learning.

A. TARGET PATTERN GENERATION
To learn a robust path generation skill, various training
datasets are required. We prepared 15 classes of patterns
(Fig. 3) using custom equations and the following superfor-
mula [58]:

f (φ) = ρ(φ)
1

n1

√(∣∣∣ 1a cos
(m
4 φ
)∣∣∣)n2 + (∣∣∣ 1b sin

(m
4 φ
)∣∣∣)n3 ,

(11)

where m, n1, n2 = n3 are the parameters used to
form a particular pattern and f (φ) is represented using

TABLE 3. Randomization ranges for each target object. RLP: robotic laser
pointer. Subscripts w and p represent the world coordinates and local
coordinates of the target plane respectively.

polar coordinates. Except for the patterns in Figs. 3 (a)–(c), all
patterns are defined using [58], where the parameter details
are given in the figure’s caption.

B. SPR
As the name suggests, SPR is a method to reduce the target
patterns sequentially so that all pattern pixels are completely
removed and the corresponding full robotic paths can be
generated from the given images. SPR consists of pattern
reduction and repaint (PRR) and a reward function-based
rollout process.

1) PRR
In the initial state, the agent observes an initial target pattern
image It at time t . Then, it performs an action and observes
the next image frame It+1. At this stage, there are two impor-
tant steps in PRR that the agent should perform, which we call
pattern reduction and repaint, respectively (Algorithm 1 and
Fig. 6). In the pattern reduction, the target pattern region
that overlaps the region of the laser point is removed from
image It . To determine the location of the laser point on
the target plane, we first create a binary mask image Bplanet
of the target plane using image processing techniques [59]
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FIGURE 5. Overall system architecture including the actor–critic based SPR policy network. It consists of an Actor–CNN (convolutional neural
network), Actor–LSTM (long short-term memory), and Critic–LSTM, for encoding the image, performing an action, and evaluating the actor network,
respectively. The agent observes the pattern images from the simulator and sequentially reduces the pattern using the proposed algorithm. Based on
the processed observation, the agent performs the next action. In SDC, the frequency at which each element of action ât = {∂x

d
t , τt } is utilized

differs. The positional action xd
t is applied to the environment at full frequency whereas the curriculum control action τt is used at an episodic

frequency to determine the degree of randomization.

Algorithm 1 PRR
Input: Observed image pair It and It+1
Output: Pattern-reduced and repainted image I reducet+1

1 Convert I colort to Igrayt

2 Apply Gaussian blurring to Igrayt to obtain Iblurt

3 Apply thresholding to Iblurt to obtain binary image Bit
4 Apply morphology to Bit to obtain Bplanet

5 Convert I colort to Ihsvt

6 Apply colorslicing to Ihsvt to obtain Blasert

7 Set Blasert = Blasert ∩ Bplanet

8 Do reduction with I colort ,Blasert to obtain I−t

9 repeat 5 to 7 with I colort+1 to obtain Blasert+1
10 Do repaint with I−t ,B

laser
t+1 to obtain I reducet+1

11 return I reducet+1

such as Gaussian blurring, thresholding, and morphological
operations (lines 1 to 4). The region of the laser pointer is
represented by a binary mask image Blasert and detected by
color slicing [59], where the aim of this technique is to obtain
a binary image of the target color distribution based on color
thresholding.

The pattern-reduced image I−t is then obtained by making
the pixel colors of some region that overlaps with Blasert in
I colort equal to the background color (lines 5 to 8). The next
step is repainting, which paints the laser point region of

FIGURE 6. Pattern reduction and repaint process. For a given observation
image, the agent reduces the pattern region that overlaps the pixel region
of the laser point at time t . Then the pixel region of the laser point at
time t + 1 is repainted on the target pattern image.

the next observation It+1 on the pattern-reduced image I−t .
After repeating lines 5 to 7 on I colort+1 to acquire the masked
laser point image at the next time step, we use it to repaint
the laser point on I−t (lines 9 and 10). The final repainted
image is the pattern-reduced and repainted image I reducet+1 at
time t + 1.

2) OVERALL ALGORITHM FOR SPR
From the previous step, we obtain the pattern-reduced and
repainted image I reducet+1 . The SPR reward is then calcu-
lated based on the I reducet+1 , where the reward consists of
pattern reduction, combo, and miss rewards. Details of the
reward calculation are described in Section III-C. In this step,
the agent collects rollout experiences using PRR and then
calculates the reward. The overall SPR process is described in
Algorithm 2.
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We incorporated an early termination technique [29] into
our learning to avoid the collection of very poorly performing
experiences (e.g., when the agent points to regions outside
the target plane). Such experiences will hinder the robot from
learning the optimal policy and consequently, the policy can
overfit to local optima. Early termination was implemented
by the following processes: If the agent points to a location
inside the region of the target plane, a zero penalty r−t+1 = 0 is
given. In contrast, a negative penalty r−t+1 = −1 is given and
the environment is reset when the agent points to a location
outside the target plane.

Whenever the agent succeeds in reducing the target pat-
terns, the combo and miss count variables are increased and
reset, respectively. If the agent fails, the reverse operation is
conducted (lines 14 to 17 in Algorithm 2). If themiss count is
over 40 or the episode ends, early termination is implemented
so that the environment and all the variables are reset to the
initial state (lines 19 to 21).

3) SYNCHRONOUS DISTRIBUTED LEARNING FRAMEWORK
Recent RL studies train their policy network using a dis-
tributed learning environment [60]–[62] to reduce the sample
correlations and learning time. Our learning framework is
based on a distributed system that is similar to the A3C
algorithm [62]. However, ours is a synchronous distributed
system, in which the learning framework simultaneously
collects the experience data from N distributed processes
and updates the policy using the merged data, whereas the
A3C operates asynchronously. The authors of A3C claim
that the asynchronous operation improves performance, but
Wu et al. [63] disagreed and presented experimental results
supporting this counter-argument. Considering their claim
and the simplicity of synchronous implementation, we built
a synchronous distributed learning framework (see Fig. 7)
that can be regarded as a synchronously distributed version
of A2C [64] using a message passing interface (MPI) and
V-REP simulator [65]. During training, our framework cre-
ates multiple processes, each of which runs a V-REP simula-
tor. The training data and network parameters of the agent in
each process are shared via the MPI.

FIGURE 7. MPI-based distributed learning framework. Experience data of
the agent are collected from distributed simulators and merged to update
the root policy. The updated hyperparameter of the root (P0) policy is
transferred to the other child policies.

In the main learning process, N distributed processes
including the policy network and other variables are first
created and initialized using the MPI. Given a total number
of learning frames T and rollout frames per iteration M ,

Algorithm 2 SPRWith the Distributed Learning Frame-
work
1 Create N distributed processes
2 Initialization: Parameters of policies
{π0,Q0, · · · , πN−1,QN−1, },
rollout frames per iteration M ,
total number of learning frames T
frames per episode S, rollout memory D0,··· ,N−1

3 for j← 0 to T/M do
4 o0, s0← reset environment
5 Set combo = 0,miss = 0
6 for t ← 0 to M/N do
7 Select at = π (ot ), qt = Q(ot , st )
8 Execute action at in simulator and obtains

observation ot+1, state st+1,
penalty reward r−t+1, done dt+1

9 Convert tensors ot , ot+1 to images It , It+1
10 PRR with It , It+1 to obtain I reducet+1
11 Convert image I reducet+1 to tensor ot+1
12 Calculate reward using It , It+1, combo,miss

to obtain rt+1, reduction flag freduce
13 Set final reward rfinalt+1 = r−t+1 + rt+1
14 if freduce == true then
15 Increase combo by 1 and set miss = 0
16 else
17 Increase miss by 1 and set combo = 0

18

19 if miss > 40 or dt+1 == true then
20 Reset environment to obtain ot+1, st+1
21 Set dt+1 = true; combo = miss = 0

22 Store transition (ot+1, st+1, at , qt , rfinalt+1 ) in Dn

23 D0← gather(D0,··· ,N−1)
24 π0,Q0← update(D0)
25 π

temp
n ,Qtemp

n ← broadCast(π0,Q0)
26 πn,Qn← softTargetUpdate(π temp

n ,Qtemp
n )

T/M iterations are performed to update the policy. In each
of the M rollout processes, the experience data is simulta-
neously acquired from the N distributed processes for rapid
data collection; thus, the total number of rollout frames per
iteration is M/N . From the initial observation and state,
the agent performs an action in the environment and obtains
the resulting observation, state, reward, and episode-end-flag
dt+1 at the next time step. When the episode reaches the end
or early termination is activated, the episode finish flag dt+1
is set to true and at this moment, the current target pattern
is randomly changed to another one. The current and next
observations are then converted to images and input to the
PRR process (Algorithm 1) to obtain I reducet+1 . We defined the
reward function for the SPR method so that it accepts images

147796 VOLUME 8, 2020



T. Kim, J.-H. Lee: Reinforcement Learning-Based Path Generation

corresponding to the current and next observations as well
as additional variables such as combo and miss for learning
sequential behavior generation.

After finishing M/N rollout steps, the rollout data col-
lected by the N processes are merged to the root node P0
and used to update the root policy. Then, the weight param-
eters of the root policy are broadcasted to all child nodes
(P1,P2, · · ·PN−1) and used for updating their policies using
the following soft target update [66]:

ωnew = β ωold + (1− β) ωnew, (12)

ζnew = β ζold + (1− β) ζnew, (13)

where β(= 0.05) is a balancing constant between the previ-
ous parameters, ωold and ζold, and new parameters, ωnew and
ζnew, of the actor and critic network, respectively.

C. MDP DESIGN
1) POLICY NETWORK
As shown in Fig. 5, the policy network consists of Actor-
CNN πω, Actor-LSTM πω† , and Critic-LSTM Qζ networks,
where the ω,ω†, and ζ represent the hyper-parameters of
each policy network respectively. The Actor-CNN takes an
image frame ot = I(3×96×96) of the target pattern at time t
and encodes it to a feature vector vft = I(1×4608) by flattening
the last convolved image tensor I(32×12×12). This feature
vector is fed to the Actor-LSTM network and an action is
sampled. The input of the Critic-LSTM is a concatenated
vector vct = I(1×4637) consisting of a feature vector, action
at = I(1×4), and the agent’s state st = I(1×25) obtained
from the simulator. Then, it outputs an estimated Q-value
Qζ (at |st , ot ). All networks use the ReLU activation function.

2) STATE AND ACTION
The state of the agent consists of the information of the agent
and other related objects. Specifically, the 25-dimensional
state st = I(1×25) includes the angular values and angular
velocities of the pan and tilt joints, the position and orien-
tation of the RLP device with respect to world coordinates,
the position and orientation of the camera and the target plane,
and the position of the laser point. This state information is
only used in the training phase.

Given an observation, the Actor-LSTM samples an action
at = {∂xdt , τt }, where the first element represents the desired
positional differences ∂xdt = {∂xt , ∂yt , ∂zt } of the laser
pointer in world coordinates. To calculate the desired posi-
tion, the sampled action, which is the output from the actor
based on a Gaussian distribution, is scaled and added to
the current position of the laser pointer using the following
equation:

µt , σt = πω†(πω(ot )), (14)

at = µt + σt ∗ ε, (15)

x̄dt = xt−1 + η ∂xdt , (16)

where ε is a random noise constant to ensure explo-
ration. During the test phase, the agent performs a deter-
ministic action by considering µ only. The scale factor
η = 2.5 × 10−3 was introduced to stabilize the learning.
We found that without the proper scaling factor, the learning
curve of training becomes very unstable and performance
may degrade because of the distribution of actions specified
by the initial weight parameters of the policy network. The
desired relative position of (16) is input to the inverse kine-
matics of (1) to obtain the desired angles, which are then input
to the PID controller of the RLP in the simulator. The last
element of the action is the randomization control parameter
τt , which is used in the proposed SDC learning method.
We describe the details of τt in Section III-D.

3) REWARD
For RL-based path generation, the reward function should be
able to determine the SPR skill of the agent. We defined the
reward function in terms of three sub-rewards. The first is
pattern reduction reward rp, which is proportional to the area
of the pattern reduction obtained by the laser pointer. Based
on the binary images B, the ratio of the area of the reduced
pattern to the area of the laser point is defined as

e =

∑
Blasert+1 −

∑(
Bpatternt ∩ Blasert+1

)
+ ε∑

Blasert+1 + ε
, (17)

rt+1=ωprp + ωcrc + ωmrm, (18)

rp = exp(−3.0 ∗ e), (19)

rc = exp(−5.0 ∗ (combo+ ε)−1), (20)

rm = exp(−5.0 ∗miss), (21)

ωp= 0.7, ωc=0.15, ωm=0.15, ε=1.0×10−6, (22)

where ε is used to avoid the division by zero.Moreover, Blasert+1
and Bpatternt represent the binary image of the laser point at
time t + 1 and pattern at time t respectively. The second sub-
reward is the combo reward rc, which reflects the sequen-
tial reduction skill. If the agent consecutively succeeds in
reducing a pattern, the combo count increases, and this in
turn leads to a high combo reward, which is expressed as
shown in (20). The last sub-reward is the miss reward rm,
which gives the agent a higher penalty if it fails to reduce
the pattern (represented in (21)). All sub-rewards are nor-
malized by an exponential function. The weighted sum of
these three sub-rewards is the next reward rt+1 (line 13 in
Algorithm 2). The final reward is calculated by adding the
penalty term r−t+1 to the reward, as described in line 13 of
Algorithm 2.

D. SDC LEARNING
In SDC learning, the following modified reward function is
used to learn the curriculum control skill:

r̂p = rp ∗ (1− rc), (23)

rc = exp(−20.0 ∗ τ ), (24)
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FIGURE 8. Path generation result for a circle pattern. The robot agent sequentially performs the target pattern reduction so that the series of actions form
the complete path of the circle pattern.

where τ is the last element of an action at = {∂xdt , τt } to
control the degree of randomization. The curriculum reward
rc is normalized between 0 and 1 using an exponential func-
tion, and the agent can obtain a higher reward if τ in (24) is
close to 1. This means that if the agent succeeds in reducing
the pattern in a more challenging environment, a high reward
is given to take into account its level of difficulty. Therefore,
the agent should be able to effectively learn the SPR policy
in a relatively larger dynamic environment by controlling the
curriculum for itself (see Fig. 5).

The value of τ is rescaled to a value between 0 and 1 by the
sigmoid function when it is input to the environment. If this
value is set to 1, the agent requests a full randomization of
Table 3 for the environment. In contrast, a value of 0 indicates
an initial fixed environment without randomization. Each ele-
ment of action at is utilized at different frequencies, where the
positional action ∂xdt is applied to the environment at the full
frequency (every frame) whereas the randomization action
τt is used at an episodic frequency (only at the beginning
of every episode) because a randomized environment setup
should be maintained for the duration of at least one episode.
In short, for efficient learning, the agent learns the curriculum
control skill by the curriculum reward rc, which is a feedback
from the environment incorporating the task difficulty control
signal τ .

IV. EXPERIMENTS
In this section, we first describe the experimental details.
Then, the SPR results in known and unknown environments
are presented. We then describe the comparative analysis
on learning strategy and quantitative analysis in terms of
Hausdorff similarity and pattern reduction ratio.

A. EXPERIMENTAL DETAILS
For the experiments, experience data were simultaneously
collected from eight distributed processes in a single machine
equipped with an i7-8700K CPU, 64 GB RAM, and Titan
Xp and 1080ti GPUs. Because of the memory capacity lim-
itations of the GPUs, the rollout processes were conducted

by splitting the tasks among the two GPUs and updating the
network parameters using the merged rollout data.

For Algorithm 2, we set the rollout frames M = 4, 096,
total learning frames T = 1.0× 107, and frames per episode
S = 256. The rest of the learning parameters were set
as follows: the learning rate for actor ηa = 5.0 × 10−5,
the learning rate for critic ηc = 1.0 × 10−3, mini batch
size = 256, the number of PPO epochs = 5, discount
factor = 0.99, and entropy coefficient = 0.01. We also
used generalized advantage estimation [67] for temporal
difference-based policy optimization.

If the training is conducted using a single process, the over-
all learning time for each policy will take almost 11 days for
an LSTM with a single recurrent layer and a total number of
rollout frames of 10M. Owing to the eight distributed pro-
cesses, in contrast, we are able to reduce the overall training
time to about 1.5 days for each policy on a single machine.

B. PATH GENERATION IN A KNOWN ENVIRONMENT
To verify the SPR algorithm, we first evaluated the EIE
policy in a fixed environment. Evaluations were conducted
for 50 episodes in the simulator (see Fig. 8) and the results
are shown in Fig. 9. For each pattern, the left image shows
the whole path of the laser pointer during one episode and
the right image shows the visual patterns reconstructed by the
laser pointer. Through the proposed SPR method, we show
that the SPR policy is able to perform image-based path
generation for various patterns including convex (Circle) and
concave (Starfish) shapes without using additional manual
programming, geometrical modeling of the target patterns, or
curve fitting algorithms.

The proposed SPR method, however, has several limi-
tations on some patterns that involve multiple intersecting
points such as the modified rose (Figs. 9(n) and (o)), or
elaborate patterns. In the former case, the agent may lose
direction when it revisits the intersecting point because the
pattern region is already removed in the previous visit. For
this reason, the path generation results of those patterns are
less accurate than those of the others. In the latter case,
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FIGURE 9. SPR results of the EIE policy in a fixed environment. For each pattern ((a)–(o)), the left image is the complete path for each pattern represented
by connecting each point whereas the right image is the visualization of the laser pointer traces during one episode. The gray region represents the
background.

FIGURE 10. SPR results using the policy trained by the SDC learning in a randomized environment. For each pattern ((a)–(o)), the left side image shows
the generated paths of the laser pointer for each target pattern placed in arbitrary positions and orientations whereas the right side image is the
visualization of the laser pointer traces during one episode.

the scale difference between the pixel region of the pattern
and the laser point is the cause for this problem. In Starfish2
(Fig. 9(j)), only a single path of the bottom protrusion was
generated because the relatively large pixel region of the laser
point unintentionally reduced the neighboring pattern region
so that the agent could not find the source for path generation
when it revisited that place. We call this the over-reduction
problem and in future work, we plan to find a solution for it.

During evaluation, we found that the agent accelerates the
laser pointer at initial state until it reaches the pattern region
(see Fig. 12). This is because the policy is trained tomaximize
the expected rewards by reducing the pattern as quickly as
possible during an episode. Once the laser point contacts

the pattern, the agent sequentially reduces it at a relatively
slower speed due to the observation-action sampling time
frequency (20 Hz).

C. PATH GENERATION IN AN UNKNOWN ENVIRONMENT
We evaluated the SPR policy in an uncalibrated environ-
ment, where the positions and orientations of the camera,
target plane, RLP, and initial laser position were initialized
to random values in each episode within the ranges listed
in Table 3. Figure 10 shows the evaluation results of the
SPR policy, which was trained by the SDC learning. In most
cases, the agent was able to generate the paths for target
patterns even though the robot, camera, and target objects
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FIGURE 11. SPR results for unlearned patterns: (a) Line. The remaining patterns were created by the superformula with parameters (ρ(φ);m,n1,n2,n3).
(b) Eye (1;2,0.5,0.5,0.5); (c) ConcaveStar (1;5,1,1,1); (d) Bean (1;2,1,4,8); (e) Spark (1;6,1,4,8). The first row shows the unlearned target pattern
images. In the second row, the left side image represents the paths of the laser pointer whereas the right side image is the visualization of the laser
pointer traces during one episode.

FIGURE 12. (Bottom left) Normalized velocity of the pixel laser pointer
with respect to the Spiral of Archimedes. (Top right) 3D plot of the
normalized velocity during one episode.

were uncalibrated. In terms of the pattern reduction ratio
(described in Section IV-E), the average performance of the
SDC greatly exceeds other methods (see Table 8 in the
Appendix).

To evaluate the generality of the path generation skill,
we further tested the SDC policy on unlearned patterns.
Figure 11 shows the evaluation results for unlearned patterns
such as Line, Eye, ConcaveStar, Bean, and Spark. Although
the generated paths are not perfect, the overall performance
seems better than other methods. Moreover, in Fig. 11(a),
the agent attempted to begin the pattern reduction from the
end of the line instead of the middle or somewhere close to
the starting position. This indicates that the agent learns how
to obtain higher rewards for a given pattern even if that pat-
tern has never been observed before. From this experiment,
we confirmed that the proposed SPR, reward design and SDC
learning method are an effective way to learn a robust path
generation skill for arbitrary target patterns in an uncalibrated
environment.

D. COMPARATIVE ANALYSIS ON LEARNING STRATEGY
We compared the performances of the four models (EIE,
ERE, LIC, and SDC) during the learning phase in a fully ran-
domized environment. As shown at the top of Fig. 13, the LIC
policy converges quickly in the early phase of training;

however, the performance degenerates as learning progresses
because of the discrepancy between the learning speed of the
policy and the difficulty of the given task. As expected, ERE
converges slowly whereas the proposed SDC outperforms
others as learning progresses.

We analyzed the tendency of the randomization control
τ to determine the relationship between the randomization
constant and learning curve. Figure 14 shows the change
in the randomization constant for each learning method for
every 100 training epochs, where each epoch corresponds to
4,096 rollout frames. Because of its constant full randomiza-
tion, the learning curve of ERE is the slowest to converge.
The learning curve of LIC shows better performance in the
beginning and poor performance at the end because LIC
merely increases the randomness without consideration for
the learning capability of the policy network. In the SDC
learning, in contrast, the agent appropriately controls the
randomization constant for itself by taking into account its
learning capability. Thus, we expected SDC to perform the
best.

We evaluated the four learning methods in the test phase
to demonstrate the performance of the SDC in terms of
reward. Evaluationswere conducted using only pattern reduc-
tion reward rp during 50 episodes, where each episode con-
sists of 256 frames. The results shown at the bottom of
Fig. 13 indicate a tendency that is identical to the one
above. The proposed SDC outperforms the other methods,
and the EIE policy performs the worst because it has never
observed varied scenes during training. From these evalua-
tion results, we can conclude that the proposed SDC learn-
ing approach could be effective in a randomized learning
environment.

E. QUANTITATIVE ANALYSIS
1) HAUSDORFF SIMILARITY
For a more objective evaluation of the proposed method,
we quantitatively analyzed the four policies (EIE, ERE, LIC,
and SDC) using the Hausdorff similarity measurement [68].
We first extracted the point set of each target pattern and
measured the Hausdorff distance between the extracted point
set and the points of the generated path using Euclidean dis-
tance. Tables 6 and 7 respectively in the Appendix show the
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FIGURE 13. (Top) Comparison on the learning strategy including EIE, ERE,
LIC, and SDC during training. The Y-axis represents the normalized
reward, and each policy was trained by 1× 107 rollout frames. (Bottom)
Evaluation results of the learning strategy over 50 episodes. Each episode
consists of 256 frames and the values represent the pattern reduction
reward per frame. Evaluations were conducted in a fully randomized
environment.

Hausdorff distances between the point sets of the learned and
unlearned target patterns and the paths generated using the
four learning methods. In each column of Table 6, baseline
is the evaluation result using the EIE policy in the fixed
environment and the distances aremeasured from the result of
Fig. 9 for reference. Wemarked the minimum distance values
in bold in all columns (excluding the baseline). The number
of minimum distances for each learning method is shown
in Table 4, which shows that the proposed SDC outperforms
other methods on both the learned and unlearned patterns.

2) PATTERN REDUCTION RATIO
In addition to the Hausdorff similarity, we present a quantita-
tive analysis of the four learning methods based on the ratio
between the original and reduced pattern regions, calculated
as follows:

λ =

∑
I reducei∑
Ipatternj

, (25)

where I reducei and Ipatternj represent each pixel of the reduced
pattern and original pattern respectively. The pattern reduc-
tion ratio λ is calculated by the sum of their pixels.

TABLE 4. Number of maximum similarities measured by Hausdorff
distance (see Tables 6 and 7, and Figs. 17–20 in the Appendix).

FIGURE 14. Progress of the randomization constant during a single
rollout iteration of 4,096 frames with respect to every 100 training
epochs.

TABLE 5. Number of minimum ratio values of the reduced pattern with
respect to original pattern area (see Tables 8 and 9, and Figs. 17–20 in the
Appendix).

Table 5 presents the number of minimum values of the
pattern reduction ratio for each learning method, where the
detailed data are shown in Tables 8 and 9 of the Appendix.
The statistical data demonstrate that for the learned patterns,
the SDC obtains average pattern reduction ratios that are
81.6%, 13.7%, and 20.6% less than those of EIE, ERE,
and LIC, respectively. Similarly, it obtains ratios that are
81.5%, 37.8%, and 29.2% less for the unlearned patterns.
The corresponding images for the reduced patterns are shown
in Figs. 17–20 of Appendix.

V. ABLATION STUDIES
In this section, we present the ablation studies for components
of the network architecture and reward function to verify their
effectiveness in learning.

A. NETWORK ARCHITECTURE
Although the agent performs a frame-by-frame action,
the SPR task should be considered in terms of a series
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FIGURE 15. Training result with respect to the network architecture. The
x-axis and y-axis represent the number of training frames and normalized
reward, respectively. The network architectures are a fully connected
network, ordinary LSTM, and two and three stacked LSTMs. The ordinary
LSTM with a single recurrent layer performs the
best.

of actions. From this point of view, we assume two things:
the first is that the LSTM network performs better than a
fully connected network because of its recurrence property.
However, it is not clear how many recurrent layers the LSTM
should have for the best performance. This leads to the second
assumption: increasing the number of recurrent layers as a
stacked LSTM will improve the SPR performance because
the multiple recurrent layers allow the agent to learn more
abstract feature representations.

To verify these assumptions, we compared the training
results obtained with fully connected, LSTM, and stacked
LSTM layer architectures in a randomized environment. We
verified the first assumption: the normal LSTM performs
better than a fully connected network, as shown in Fig. 15.
However, in the case of the stacked LSTM, the result dis-
proves our second assumption. The result instead shows
that as the number of recurrent layers increases, the perfor-
mance decreases and is even worse than that of the fully
connected network. It can be interpreted that using more
than one recurrent layer increases the overfitting problem
and thus is too much for our task. However, we still believe
that introducing a multi-layered LSTM may be advanta-
geous for longer and more complex patterns. To sum up,
it is best to use a single-layered LSTM network in our
SPR task.

B. REWARD FUNCTION
In addition to the network architecture, we performed an
ablation experiment on the reward function to determine the
effects of each term. As described in (18), the reward function
consists of three sub-rewards: pattern reduction reward rp
(PR), combo reward rc (CB), and miss reward rm (MS). The
experiments were conducted by manipulating the set of these
sub-reward weights {ωp, ωc, ωm} while keeping their range
between 0 and 1, where (PR+CB+MS) : {ωp = 0.7,
ωc = 0.15, ωm = 0.15}, (PR+CB) : {ωp = 0.7,

FIGURE 16. Training result represented by the normalized reward. The
x-axis and y-axis represent the number of training frames and normalized
reward, respectively. Reward (PR+CB+MS), which is a weighted sum of
the three sub-rewards (pattern reduction, combo, and miss rewards),
performs the best. Reward (PR+CB) is a weighted sum of the pattern
reduction and combo rewards. Reward (PR) only considers the pattern
reduction reward and performs the worst.

ωc = 0.3, ωm = 0.0}, and (PR) : {ωp = 1.0, ωc = 0.0,
ωm = 0.0}.
The results of the ablation experiments verify that each

term of the sub-rewards has a positive effect on learning in
the SPR policy. As shown in Fig. 16, the weighted sum of the
three sub-rewards (PR+CB+MS) performs better than the
other combinations. Moreover, (PR), which uses only the pat-
tern reduction reward, performs the worst. From this, we can
infer that rp is an insufficient reward for learning the SPR
policy effectively because the corresponding rewards of con-
secutive pattern reduction and independent pattern reduction
are not distinguishable. Moreover, no penalties are imposed
on the agent when it misses a pattern; thus, nothing exists
to force the agent not to miss. Even though the agent can
learn appropriate consecutive actions from the discounted
rewards, this is very inefficient. Although (PR+CB) yields
a better result than (PR) owing to the combo reward, its
performance is lower than that of (PR+CB+MS). From this
result, we can verify the positive effect of rm in SPR policy
learning.

VI. CONCLUSION AND FUTURE WORK
In this paper, we proposed a deep RL-based SPR method
using a simple RLP device to learn the path generation
skill for arbitrary target pattern. We also proposed the SDC
learning method for effective learning in a randomized
environment. Using our method, we were able to learn a
robust path generation policy that can generate paths for
arbitrary patterns in an uncalibrated environment. In par-
ticular, we experimentally verified that SDC learning is an
effective way to learn randomized tasks and outperforms
other ordinary and curriculum-based methods. We believe
that the proposed device and learning-based path generation
method could be used for non-physical human-robot interac-
tion applications such as instructional aids for education and
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TABLE 6. Quantitative evaluation of the generated paths. Hausdorff distances between point sets for each learned target pattern and the generated
paths of Figs. 17–20 in the Appendix. The Hausdorff similarities were measured in terms of the Euclidean distance.

TABLE 7. Hausdorff distances between point sets for each unlearned target pattern and the generated paths of Figs. 17–20 in the Appendix. The
Hausdorff similarities were measured in terms of the Euclidean distance.

TABLE 8. Ratio of the reduced pattern area with respect to its original pattern in learned target patterns. Statistical evaluations were performed with
respect to each learning method. The reduced pattern images for each learning method are shown in Figs. 17–20 in the Appendix.

TABLE 9. Ratio of the reduced pattern area with respect to its original pattern in unlearned target patterns. Statistical evaluations were performed with
respect to each learning method. The reduced pattern images for each learning method are shown in Figs. 17–20 in the Appendix.

assembly guidance. We expect that the SDC can be generally
used to improve the performance of other RL problems.

We would like to note some limitations of our
approach. The proposed SPR method still requires classic
image processing. Moreover, the over-reduction problem still
remains unsolved for some cases. These hinder the applica-
tion of the proposed method to more complex patterns such
as Starfish2 with multiple intersection points, which is the

immediate direction of our future work. Encouraged by the
simulation results, we plan to conduct experiments applying
the proposed method to a real world robot and target patterns.

APPENDIX
A. QUANTITATIVE EVALUATION OF GENERATED PATHS
In this section, we provide supplementary experimental
results and analysis. Tables 6 and 7 show the quantitative
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FIGURE 17. Evaluation results on the learned and unlearned target patterns using the EIE policy in a randomized environment. For each pattern,
the generated paths are represented by red pixels in the left image. The right image shows the pattern image reduced by the laser pointer path of the
left image.

FIGURE 18. Evaluation results on the learned and unlearned target patterns using the ERE policy in a randomized environment. For each pattern, the left
image shows the target pattern image and path generated on it. The right image shows the pattern image reduced by the laser pointer path of the left
image.

evaluation results on the generated path using the Euclidean
Hausdorff distance for learned and unlearned patterns,
respectively. Tables 8 and 9 show the ratio values of the

reduced patterns with respect to the original patterns in
each learning method for learned and unlearned patterns,
respectively. The data are visualized in Section B.
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FIGURE 19. Evaluation results on the learned and unlearned target patterns using the LIC policy in a randomized environment. For each pattern, the left
image shows the target pattern image and generated path on it. The right image shows the pattern image reduced by the laser pointer path of the left
image.

FIGURE 20. Evaluation results on the learned and unlearned target patterns using the SDC policy in a randomized environment. For each pattern,
the left image shows the target pattern image and generated path on it. The right image shows the pattern image reduced by the laser pointer path of
the left image.

B. VISUALIZATION OF GENERATED PATHS
In this section, visualizations of the path generation results
are provided.
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