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ABSTRACT Various regularization techniques have been sufficiently developed to improve the quality of
the image restoration. By utilizing existing image smoothing operators, method noise provides a new way
to formulate regularization functions. The so-called method noise refers to the difference of an image and
its smoothed version, obtained by an image smoothing operator. It is concluded that the method noise of a
clear image mainly contains edges and small scaled details, and should be as sparse as possible. Based on
this conclusion, we introduce Lp-norm penalty on the method noise, which can accurately describe its sparse
prior distribution. We formulate an Lp-method-noise based regularization model and analyze its advantages
in terms of its solution and performance in image restoration. Specifically, the Lp-norm penalty of themethod
noise is better than other forms of norm in removing noise and keeping the details. Moreover, a modified
Bregmanized operator splitting algorithm is designed for the proposed model. Experimental results show
that the proposed method can obtain better results than other method noise based regularization methods.

INDEX TERMS Image restoration, method noise, regularization model, modified Bregmanized operator
splitting.

I. INTRODUCTION
Image restoration, including image denoising, deblurring,
inpainting, etc., is one of the most important areas in imaging
science. It aims at recovering an image from the degraded
version by making use of some prior information such as
sparsity, smoothness, and so on [1]–[5]. The degradation
model of image restoration is usually given as

f = Hu+ η, (1)

where f ∈ RN (N = m × n denotes the size of image) is
the observed image, H is some linear operator, u is expected
as the ground-truth, and η is i.i.d. white Gaussian noise
with variance σ 2. Due to the fact that image restoration is
an ill-posed problem, it needs some regularization indicated
by the prior knowledge of the ground-truth, so that image
restoration can get a stable solution. The image restoration
problem is equivalent to solving

min
u
‖Hu− f ‖22 + λJ (u), (2)
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here J (u) is called regularization function, which aims to
guarantee some reasonable smooth or some kind of structure
of the resulting image [6]–[8].

Well-known selections of the regularization term J (u)
include total variation (TV) regularization, non-local
TV or some sparse norm in transform domain [9]–[12].
However, each of these regularities exit some kind of short-
coming. How to further improve the restore quality, and
preserve important structures like edges and details is still
challenging. Buades et al. used the residual of the true image
and its non-local means (NLM) estimation as the regular-
ization term and obtained good results [13]. Specifically,
the regularization term is

J (u) =
∥∥u− NLMf (u)

∥∥2
2 , (3)

where NLMf (u) denotes the non-local means of u and the
weight is computed from the observed image f . Zhang et al.
[14] proposed Bregmanized operator splitting (BOS) algo-
rithm to solve (2) and obtained convergent results under the
assumption that the regularization J (u) is convex. Inspired by
BOS algorithm, authors in [15] developed a non-local
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means regularization model which utilizes ‖u− NLMu(u)‖22
as regularization term, this regularization term utilizes the
ground-truth rather than the observed image to compute the
weight. The model was solved by BOS algorithm where a
restrictive stopping criterion is used. Authors in [16] sug-
gested a general form of this kind of regularity, pointed out
that L1-norm penalty is better than that of L2-norm, and
formulated the regularization function J (u) = ‖u− Dτ (u)‖1 ,
where Dτ (·) is some kind of filtering operator. At the
same time, Plug-and-Play scheme is developed to improve
the image restoration performance [17]–[20]. The main
idea is to regard the proximal operator of the regulariza-
tion function as an image denoiser Dτ (u), and introduce
any off-the-shelf image denoising operator into the image
restoration problems.

Generally speaking, u − Dτ (u) is called method noise,
which is defined as the difference of an image and its
smoothed version, obtained by an image smoothing operator.
Therefore, u − Dτ (u) mainly contains edges, small scaled
details, noise and so on.

In this work, we propose a novel regularization term.
Basically, we impose an Lp-norm penalty on the method
noise, ‖u− Dτ (u)‖

p
p (0 < p ≤ 1), to enforce its sparsity.

The main contributions of this paper can be summarized as
follows:

1) Themethod noise u−Dτ (u) is considered, which allows
other denoiser Dτ (u), such as TV, block matching and
3D filtering (BM3D) [21], neighborhood filtering (NF)
[22] and so on. For example, BM3D outperforms NLM
method in most case, and it can restores better results
than NLM as denoiser.

2) Since that method noise u − Dτ (u) of a clean image
should be as sparse as possible, Lp-norm constraint
of u − Dτ (u) is more reasonable than L2-norm and
L1-norm, which can accurately depict the sparse
prior distribution of image. Therefore, we propose
Lp-denoiser based regularization model for image
restoration.

3) We present a modified BOS algorithm by adding an
adaptive adjusting scheme on the parameters, which
can force the residual error to decline in whole, and
improve the convergence performance of the algorithm.
From the point of algorithm structure, the modified
BOS algorithm exquisitely combines the Plug-and-
Play algorithmwith the residual shrinkagemethod, so it
can also be considered as extension version of Plug-
and-Play algorithm.

The remainder of the paper is organized as follows.
In the next section we review some related work, including
Plug-and-Play framework and BOS algorithm. We propose
our model and numerical algorithm in Section 3. In section
4 we present experimental results obtained by our method,
in which we discuss the key parameters, and evaluate our
method by both objective metrics and visual effects. We con-
clude the paper and present some guidelines for future work
in Section 5.

II. RELATED WORK AND DISCUSSION
A. PLUG-AND-PLAY ALGORITHM
The Plug-and-Play (PnP) algorithm is a powerful framework
to solve image restoration. For the minimization problem
(2), the main idea of PnP based on the alternating direction
method of multiplier (ADMM) is as follows [17]. Firstly, the
minimization problem (2) can be equivalently converted into
a constrained problem

min
u,v
‖Hu− f ‖22 + λJ (v) s.t. u = v, (4)

and the corresponding augmented Lagrangian function is

L(u, v;w) = ‖Hu− f ‖22 + λJ (v)+
ρ

2
‖u− v+ w‖22 , (5)

where w is scaled Lagrangian multiplier. The saddle point
of L(u, v;w) includes the minimizer of (4), which can be
obtained by solving a sequence of sub-problems

u(k+1) = argmin
u
‖Hu− f ‖22 +

ρ

2
‖u− v+ w‖22 , (5)

v(k+1) = argmin
v

λJ (v)+
ρ

2
‖u− v+ w‖22 , (6)

w(k+1)
= w(k)

+ (u(k+1) − v(k+1)). (7)

It is observed that the sub-problem (6) can be regarded as a
denoising step as it involves the prior regularization function
J (v). For example, if J (v) = ‖v‖TV , the minimization
problem in (6) corresponds to the well-known ROF denoising
method [2]. Based on this intuition, authors in [17] proposed a
variant of above ADMMby suggesting that one does not need
to specify J (v) before running ADMM. Instead, they replaced
(6) by using an off-the-shelf image denoising algorithm or a
filtering, denoted by Dτ (·), to yield

v(k+1) = Dτ (u(k+1) + w(k)). (8)

Examples of Dτ (·) include a wide variety of patch based
approaches such as TV, NLM, BM3D, NF and so on.

B. METHOD NOISE AND BOS ALGORITHM
By introducing the regularization J (u) =

∥∥u− NLMf (u)
∥∥2
2,

authors in [13] gave NLM based regularization model as

min
u

∥∥u− NLMf (u)
∥∥2
2 s.t. ‖Hu− f ‖22 < σ 2. (9)

Since the observed image f has been blurred and maybe
corrupted by noise, the weight computed from it is unreliable.
Authors in [14] proposed to improve the above model by
computing the weight from the restored image u, that is

min
u
‖u− NLMu(u)‖22 s.t. ‖Hu− f ‖22 < σ 2. (10)

To solve (10), they introduced Bregmanized operator splitting
(BOS) algorithm, which combines the Bregman iteration and
operator splitting into a unified framework

v(k+1) = u(k) − δHT (Hu(k) − v(k)),

u(k+1) = argmin
u

( ∥∥u− NLMv(k+1) (v
(k+1))

∥∥2
2

+ λ
∥∥u− v(k+1)∥∥22 ),

w(k+1)
= w(k)

+ f − Hu(k+1).
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FIGURE 1. Histograms of u− Dτ (u) with the denoisers: NLM and BM3D,
the empirical distribution of Gaussian, Laplacian, and Hyper-Laplacian
Magnetization.

Direct extension of problem (10) is replacing the NLM
operator with a general image smoothing operator Dτ (·).
Authors in [16] analyzed that the method noise mainly
contains edges, small scaled details and noise (if exists),
concluded that the L1-norm penalty of the method noise
is better than the L2-norm penalty. They proposed a
weighted L1-method-noise regularization model, denoted as
WL1-denoiser method,

min
u
‖W (u− Dτ (u))‖1 s.t. ‖Hu− f ‖22 < σ 2. (11)

III. PROPOSED MODEL AND ALGORITHM
A. THE PROPOSED MODEL
Based on above observation and analysis, it is concluded that
u − Dτ (u) reflects some prior information of the ground-
truth. Here, Dτ (·) can be regarded as the filtering result of
some off-the-shelf operator such as TV, NLM, BM3D, and
BF and so on. In Fig.1, we plot the histograms of u − Dτ (u)
and the empirical distribution of Gaussian, Laplacian, and
Hyper-Laplacian, where Dτ (·) selected as NLM and BM3D,
respectively. It is observed that the method noise of a clean
image should be as sparse as possible. The distribution of it is
close to Hyper-Laplace distribution [23]–[25], and the better-
matched regularization function is Lp-norm (0 < p < 1)
function. Based on this, we impose Lp-norm on the method
noise and propose the sparse regularization model as

min
u
‖u− Dτ (u)‖pp s.t. ‖Hu− f ‖22 < σ 2, (12)

where p is an important parameter. In this paper we model it
in the range 0 < p ≤ 1, and further discuss its impact on the
image restoration quality in the experimental section.

B. THE MINIMIZATION ALGORITHM
By applying BOS technique, the numerical algorithm to solve
problem (12) can be formulated as

v(k+1) = u(k) − δHT (Hu(k) − v(k)), (13)

u(k+1) = argmin
u

( ∥∥u− NLMv(k+1) (v
(k+1))

∥∥p
p

+ λ
∥∥u− v(k+1)∥∥22 ), (14)

w(k+1)
= w(k)

+ f − Hu(k+1). (15)

Algorithm 1 Generalized Soft-Thresholding
Algorithm for (17)

Input:Given p, s, x, J , we calculate y = GSTps (x) as follow-
ing process.

1: µps = (2s(1− p))
1

2−p + s · p · (2s(1− p))
p−1
2−p ,

2: if |x| ≤ µps (x), then y = 0,
3: if |x| > µ

p
s (x), then we set y(0) = |x|, and calculate y

through the following iterative:
4: for k = 0, 1, 2, · · · J − 1
5: y(k+1) = |x| − p · s ·

(
y(k)

)p−1
6: end
7: y = sgn(x)y(J),
Output: y

Algorithm 2 BOS Algorithm for (12)
Input: Choose a group of initial point, and generate new
iteration via the following scheme.
1: for k = 0, 1, 2, · · · , do
2: update v:

v(k+1) = u(k) − δHT
(
Hu(k) − w(k)

)
,

3: update u:
u(k+1) = Dτ (v(k+1))+ GST

p
1
2λ

(
v(k+1) − Dτ (v(k+1))

)
,

4: update w:
w(k+1) = w(k)

+ f − Hu(k+1),
5: end the iteration if some stopping criterion is satisfied,
Output: u.

To solve the sub-problem (14), we let η = u − Dτ (v(k+1)),
and rewrite the sub-problem as

η(k+1) = argmin
η
‖η‖pp + λ

∥∥∥η − (v(k+1) − Dτ (v(k+1)))
∥∥∥2
2
.

(16)

The minimization problem (16) can be solved by the gen-
eralized soft-thresholding method

η(k+1) = GSTp1
2λ

(
v(k+1) − Dτ (v(k+1))

)
, (17)

where GST refers to the generalized soft-thersholding oper-
ator as expanded in Algorithm 1. Noting that the iteration
number in it is empirically selected as J = 2 or 3 [24], with
which we can obtain satisfactory results. As a result, we can
update u as

u(k+1) = Dτ (v(k+1))+ η(k+1)

= Dτ (v(k+1))+ GSTp1
2λ

(
v(k+1)−Dτ (v(k+1))

)
. (18)

Combining equation (13), (18) and (15), we formulate the
numerical algorithm for (12) in Algorithm 2. Comparing
it with PnP, one can observe that, Algorithm 2 add the
residual shrinkage GSTp1

2λ

(
v(k+1) − Dτ (v(k+1))

)
back into

the restored image, which includes useful edges and details.
So it is better than Plug-and-Play algorithm in protecting the
edge and detail information.
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FIGURE 2. Test images.

C. ADVANTAGE OF THE PROPOSED MODEL
It is noted that, if p = 2 and Dτ (·) is selected as
NLM denoiser, the proposed model will be degenerated to
L2-NLMmethod (10), which can be solved by using the BOS
algorithm.

If p = 1, it is observed that, in Algorithm 2, the updating
schemes for v and w have no changes, while the updating for
u will be degenerated to soft-thresholding method. This just
corresponds the solution of the L1-denoiser model. So the
proposed algorithm is the generalized method of L1-denoiser
and WL1-denoiser method.
Furthermore, 1

2λ → +∞ when λ → 0, the updating of u
degenerates into

u(k+1) = Dτ (v(k+1)).

This leads to the following iteration
v(k+1) = u(k) − δHT

(
Hu(k) − w(k)

)
,

u(k+1) = Dτ (v(k+1)),
w(k+1) = w(k)

+ f − Hu(k+1),

which corresponds to PnP algorithm. In this sense,
Algorithm 2 can be considered as extension version of the
Plug-and-Play algorithm.

Comparing with the L2-NLM, WL1-denoiser, and PnP
algorithm, one can appreciate the advantages of our method
over others from the solution process. In the iteration scheme
of all methods, v(k+1) is essentially an intermediate image
and u(k+1) further refines v(k+1). Different models lead to
different refining strategies. Our method improves the quality
of u(k+1) in this way: it first applies an image smoothing oper-
ator Dτ (·) to the intermediate blurred image v(k+1), yielding
a smoothed clean version Dτ (v(k+1)) and a residual or the
method noise v(k+1)−Dτ (v(k+1)), which mainly contains the
edges, small scaled details and noise of v(k+1). To restore
the edges back while discarding the noise, it applies the

generalized soft-thresholding operator on the method noise,
and obtains a refined version u(k+1). The L1-method-noise
model refines v(k+1) in a similar way, the major difference
is that it only corresponds the case p = 1 of our method,
which is lack of adaptability and cannot always simulate the
edges well. The PnP algorithm does not restore edges back.
Actually, it refines v(k+1) directly by applying a smoothing
operator Dτ (·), thus may cause over smoothing of the edges.
The L2-NLM method refines v(k+1) by the weighted average
of v(k+1) and its smoothed clean version NLM(v(k+1)), which
may also cause edges to be over smoothed.

IV. IMPLEMENTATION DETAILS AND EXPERIMENTAL
RESULTS
To validate the performance of the proposed model, we test
on several standard test images as shown in Fig. 2. We first
discuss the parameters and their choosing criterions, then
compare the proposed method with several state-of-the-art
methods. We utilize the normalized mean square error
(NMSE), peak signal-to-noise ratio (PSNR) and structure
similarity index (SSIM) as performance measures, which are
defined as

NMSE = E

(
‖u− u0‖22
‖u0‖22

)
, (19)

PSNR = 10 log10

(
2552N

‖u− u0‖22

)
, (20)

and

SSIM =
2µuµu0 (2σ0 + c2)(

µ2
u + µ

2
u0 + c1

) (
σ 2
u + σ

2
u0 + c2

) , (21)

respectively. Here, u0 is the original image, u is the restored
image, E is the expectation function,µu and µu0 denote there
means, σ 2

u and σ 2
u0 are their variances, respectively. σ0 is the

covariance of u and u0, c1 > 0 and c2 > 0 are constants.
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Algorithm 3Modified BOS Algorithm for (12)
Input: Choose a group of initial point, and generate new
iteration via the following scheme.
1: for k = 0, 1, 2, · · · , do
2: update λk by formula (22- 23),
3: update τkandδk :{

τk =

√
α
/
λk ,

δk = 1
/
(βλk ),

4: update v:
v(k+1) = u(k) − δkHT

(
Hu(k) − w(k)

)
,

5: update u:
u(k+1) = Dτk (v

(k+1))+GST p1
2λk

(
v(k+1) − Dτk (v

(k+1))
)
,

6: update w:
w(k+1) = w(k)

+ f − Hu(k+1),
7: end the iteration if some stopping criterion is satisfied,
Output: u.

It is clear that the restoration results is better when NMSE is
smaller, while higher PSNR and SSIM imply better quality of
the restored image. It is worth noting that, we conduct ten ran-
dom realizations for each group of experiment. In this case,
the reported NMSE/PSNR/SSIM values are their average
numbers.

A. CRITERION OF CHOOSING PARAMETERS
To start up the proposed Algorithm 2, some necessary
parameters λ, τ, δ and p are needed to be given. p is model
parameters, whichwill be particular analyzed in the following
subsection. λ is the regularization parameters to keep balance
among the terms in problem (11). τ and δ are the penalty
parameters, respectively.

To further better the convergence performance of
Algorithm 2, we introduce discriminative increasing scheme
for the parameters. Instead of choosing constant parameter,
we update λ by λk+1 = γ λk , and simultaneously, set

τk =

√
α
/
λk and δk = 1

/
(βλk ). The adaptive updating rule

for λk is based on the residual error 1k , which is defined as

1k+1 =
1
√
n
(
∥∥∥uk+1 − uk∥∥∥

2
+

∥∥∥vk+1 − vk∥∥∥
2
).

By introducing constant γ > 1 and 0 < η < 1, we
conditionally update λk according to the followings scheme:

• If1k+1 ≥ η1k , then λk+1 = γ λk , (22)
• If1k+1 < η1k , then λk+1 = λk . (23)

With above adaptive increasing parameters, Algorithm 2
can be enriched as a modified BOS algorithm, as shown in
Algorithm 3. To evaluate the modified scheme, we test the
variation tendency of 1k in the scenario of image deblurring
for Lena, seen as in Fig.3. The results show that the modified
scheme in Algorithm 3 avoids the residual error from bounc-
ing too much, and force it to keep decline tendency in whole.
To this extent, this can stop the algorithm from falling into
some bad local minimum solution.

FIGURE 3. Trends of 1k by Lp-denoiser with p = 0.7.

FIGURE 4. Plot of PSNR versus parameter p for image deblurring.

FIGURE 5. Plot of SSIM versus parameter p for image deblurring.

In the following experiments, we need explicitly value four
parameters: λ0, α, β and γ . A large number of experiments
show that our method works well with λ0 ∈ (10−3, 10−1),
so we empirically set λ0 = 10−2. Other three parameters
can be found in each group of deblurring and inpainting
experiments.

B. DISCUSSION ON PARAMETER P
Since p is an important parameter in the proposed model,
we evaluate its influence on the image restoration perfor-
mance through plenty of experiments. Taking the deblurring
task for the image Lena as example, we report the average
PSNRs and SSIMs of the restored images in Fig.4 and Fig.5.
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FIGURE 6. Variation trends of NMSE, PSNR and SSIM for image deblurring., where p = 0.7 in Lp-NLM and Lp-BM3D.

TABLE 1. Deblurring performance of different methods for average blur.

It is observed that the deblurring results perform better with
p ∈ (0.5, 0.8) than other scenarios. Especially, the max-
imum values of both PSNR and SSIM are approximately

at p = 0.7. Without loss of generality, we take p = 0.7 as
the representative selection of p in the following experimental
tests.
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TABLE 2. Deblurring performance of different methods for motion blur.

C. COMPARISON WITH OTHER REGULARIZATION
METHODS
The proposed model can be widely applied in image restora-
tion. In this subsection, we evaluate its performance in
two applications: image deblurring and inpainting. For
the denoiser, we mainly consider NLM and BM3D. As a
result, we compare the proposed method with the following
state-of-the-art methods: L2-NLM, WL1-NLM,WL1-BM3D,
PnP-NLM, and PnP-BM3D [15]–[17].

1) IMAGE DEBURRING
As for image deburring, all images are gray-scaled with size
256 × 256. We mainly report experimental results under

two forms of blur: average blur and motion blur. The aver-
age blur is simulated by applying box filter of size 5× 5
and 7 × 7, respectively. The larger the size, the heav-
ier the image is blurred. The motion blur consists of two
causes: rotation un-clockwise by an angle θ (in degree)
and shifting by L (in pixel). We consider H1 : (L, θ) =
(5, 10◦), and H2 : (L, θ) = (7, 20◦), respectively. Fur-
thermore, we also add i.i.d. white Gaussian noise in the
experiments in order to show the robustness of our method
to noise. During the experiment, the stopping criteria is set
as 1k+1 < 10−4 or the iteration number k ≥ 50. By
plenty of experiments, we empirically set α = 10−2, β = 1,
γ = 1.2.

VOLUME 8, 2020 146045
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FIGURE 7. Restored results from 5× 5 average blurred image Lena by different methods.

FIGURE 8. Restored results for motion blurred (L = 5, θ = 10◦) image Lena by different methods.

To evaluate the convergence performance of the proposed
method, we report the variation trends of NMSE, PSNR and
SSIM, respectively. Seen as in Fig.6. From the plots, it can
be found that the proposed Lp-denoiser method significantly
outperforms several related methods. Specifically, the NMSE

index of Lp-BM3D (p = 0.7) decays the most rapidly, also,
the PSNR and SSIM of it rise the fastest.

We report the average PSNR and SSIM of the restored
images in Table 1 and Table 2, where Table 1 corresponds
to the results on average blur, and Table 2 on motion blur.

146046 VOLUME 8, 2020
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FIGURE 9. Variation trends of NMSE, PSNR and SSIM for image inpainting, where p = 0.7 in Lp-NLM and Lp-BM3D.

TABLE 3. Inpainting performance of different methods on 50% random loss.

The best results are in bold font. It can be observed that the
PSNRs and SSIMs of the proposed method are higher than
that of other methods. Taking the average blur 7 × 7 as an
example, in terms of PSNR, our method Lp-BM3D improves
L2-NLM, WL1-NLM, WL1-BM3D, PnP-NLM, PnP-NLM
around 1.30dB, 0.30dB, 0.55dB, 0.35dB and 0.40dB, respec-
tively. In terms of SSIM, the proposed Lp-BM3D improves
these methods around 0.09, 0.05, 0.03, 0.06 and 0.04. These
results confirm that, by introducing sparse penalty on the
method noise, the proposedmodel performs better than others
in the aspect of recoving useful image information.

For visual assessment, we show the restored images of
Lena in Figs.7 for average blur, and Figs.8 for motion blur.
The size of the average blur mask is 5 × 5, and the param-
eters of the motion blur are L = 5, θ = 10◦. Using
either NLM or BM3D as the image smoothing operator,
the proposed Lp-denoiser obtains better results than L2-NLM,

PnP-denoiser and WL1-denoiser. For example, the image
Fig.7(h) restored by our method Lp-BM3D is visually much
better than the image Fig.7(d) restored by WL1 -BM3D, and
the image Fig.7(f) restored by PnP-BM3D. In the smooth
areas of the image in figure Fig.7 (h), one can notice that
the noise is removed better than that in figure Fig.7 (d) and
Fig.7 (f). Moreover, the brim (marked in yellow box) looks
more natural than that obtained by other methods. Similarly,
the image Fig.8 (g) and Fig.8 (h) restored better results than
that of others.

2) IMAGE INPAINTING
Now we consider the image restoration on an image with
missing pixels. For a binary mark H , the indices where the
entries are zeros, represent the locations of missing pixels.
In this group of experiments, each of an incomplete image
is presented in the form of 50% random missing pixels.
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FIGURE 10. Restored results for 50% random missing pixels image Lena by different methods.

Parameters are empirically fixed as α = 0.8× 10−2, β = 1,
and γ = 1.1.

We report the variation trends of NMSE, PSNR and SSIM,
respectively, see as in Fig.9. From the results, it can be found
that the NMSE of Lp-denoiser methods, including Lp-NLM
Lp-BM3D, decay rapidly than others, and the PSNR and
SSIM of them increase faster than others.

Table 3 reports the experimental results on all test images.
From the data, it is clear that the Lp-denoiser has superior per-
formance than L2-NLM,WL1-denoiser, and PnP-denoiser. In
terms of PSNR, Lp-BM3D improves L2-NLM, WL1-NLM,
WL1-BM3D, PnP-NLM, PnP-BM3D around 1.0dB, 0.35dB,
0.30dB, 0.50dB and 0.40dB, respectively. In terms of SSIM,
the proposed Lp-BM3D improves thesemethods around 0.06,
0.05, 0.02, 0.04 and 0.03.

In Fig.10, we show the restored images of Lena for
inpainting. Either using NLM or BM3D as the denoiser, our
Lp-denoiser method can obtain better results than L2-NLM,
PnP-denoiser, and WL1-denoiser. For example, the image
(Fig.10 (h)) restored by our method L1-BM3D is visu-
ally much better than the images restored by PnP-BM3D
(Fig.10 (d)) and WL1-BM3D (Fig.10 (f)). Especially,
the brim (marked in yellow box) looks more natural than that
of other methods.

V. CONCLUSION
The character of method noise is distinctive. It mainly con-
tains the edge, small scaled details of the image, and the
corresponding histogram is sparse. The Lp(0 < p < 1) norm
can better describe the sparsity. Therefore the proposedmodel
with regularization function ‖u− Dτ (u)‖

p
p is well-motivated

and reasonable though its convexity is unclear. Furthermore,
we design a modified BOS algorithm in which parame-
ters are adaptive updated to ensure the downward trend of
the residual error. Finally, we evaluate the proposed algo-
rithm by experiments. The results show that the proposed
Lp-denoiser method has superior performance and gets better
visual effects than L2-NLM, L1-denoiser and PnP-denoiser
algorithm. In our future work, we will strengthen theoretical
analysis on the convergence and stability of the algorithm,
together with the study on the parameter learning methods.
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