
Received July 16, 2020, accepted August 2, 2020, date of publication August 7, 2020, date of current version August 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3015151

An Integrated System Design and Safety
Framework for Model-Based Safety Analysis
RAHUL KRISHNAN AND SHAMSNAZ VIRANI BHADA , (Member, IEEE)
Department of Electrical and Computer Engineering, Worcester Polytechnic Institute (WPI), Worcester, MA 01609, USA

Corresponding author: Rahul Krishnan (rkrishnan2@wpi.edu)

ABSTRACT Safety analysis is often performed independent of the system design life cycle, leading to
inconsistency between the system design and the safety artifact. Additionally, the process of generating
safety artifacts is manual, time-consuming, and error-prone. As a result, safety analysis often requires
re- work, is expensive, and increases system development time. Several model-based systems engineer-
ing (MBSE) approaches have been developed to automatically generate certain safety artifacts. However,
these approaches only cover part of the system design and safety life cycle. To truly leverage the benefits of
MBSE, system design must be undertaken together with safety analysis for the entire life cycle, and multiple
safety artifacts must be generated from the same model. Moreover, MBSE approaches that require a model
transformation between the system design and the safety model suffer from the inability to automatically
reflect changes made to a safety artifact in the system and the safety model. This paper presents a framework
to integrate the entire system design and safety life cycle using an MBSE approach. Both the system design
and the safety data are captured in a single SysML model, from which safety artifacts such as failure
modes and effects analysis (FMEA) tables and fault trees are automatically generated. This framework
ensures consistency between the system design and the safety analysis by requiring nomodel transformation,
thus reducing the resources required for safety analysis. The proposed Integrated System Design and
Safety (ISDS) framework comprises three phases that together cover the entire system design and safety life
cycle. In this paper, the application of Phase 1 of the framework to a real-world case study is demonstrated.

INDEX TERMS Model-based systems engineering (MBSE), safety analysis, fault tree analysis (FTA),
failure modes and effects analysis (FMEA), systems engineering, hazard analysis, SysML.

I. INTRODUCTION
The need for greater functionality and a rapid decrease in the
size of hardware components has led to the design of complex
systems with highly interdependent hardware/software archi-
tectures. The increase in complexity is largely driven by an
increase in scale (number of elements in the system), diversity
(number of different elements that make up the system),
and connectivity (inter-relationships between elements) [1].
While increased complexity has added value in terms of the
performance and robustness of systems [2], ensuring the safe
and reliable operation of such systems is becoming more
challenging. Accidents are often caused by some unantici-
pated interaction of software with hardware [3], [4].

Traditionally, to ensure the safety of the system a combi-
nation of safety analysis techniques, such as failure modes

The associate editor coordinating the review of this manuscript and

approving it for publication was Qingchao Jiang .

and effects analysis (FMEA), fault tree analysis (FTA), and
hazard analysis, are employed at different stages of the system
design life cycle [5]–[8]. These analyses are often performed
using independent tools [9], which requires engineers to
manually extract the relevant information from the system
design models [9], [10]. This is not only time-consuming and
error-prone but also leads to a lack of traceability between
the system design model and the safety model. Additionally,
as the design evolves a failure to update the model in each
tool leads to inconsistency between the system design and the
safety model and an incorrect safety analysis [9], [11]–[13].
The cumulative effect of these limitations is that the safety
assessment of the system requires re-work and is thus
time-consuming and expensive [14]. Moreover, it has been
shown that the cost of fixing design errors increases dras-
tically as a system progresses through the life cycle phases
[15] and that the early detection of design errors dramatically
reduces the impact on project schedules [16].

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 146483

https://orcid.org/0000-0001-9344-2040
https://orcid.org/0000-0001-9869-2137
https://orcid.org/0000-0002-3402-9018


R. Krishnan, S. V. Bhada: Integrated System Design and Safety Framework for Model-Based Safety Analysis

To address the limitations highlighted above, researchers
have adopted a model-based systems engineering (MBSE)
approach to safety analysis. This improves the complete-
ness and consistency in system development [17], fosters
improved communication across design teams [17], provides
added traceability between different models of the system
[18], and makes integration with other engineering analyses
easy [19].

In MBSE, the model represents the single source of truth
[20]. Multiple views of the model can be abstracted to serve
as input for further analysis. The ability to hide irrelevant
information and only analyze those views that contain per-
tinent information helps manage the system complexity [19].
To implement MBSE, several modeling language have been
developed over the years [21]. However, SysML is the pre-
ferred language [19] and has become the de facto modeling
language in systems engineering [22]–[24].

SysML is a general-purpose graphical modeling language
for specifying, analyzing, designing, and verifying complex
systems that may include hardware, software, information,
personnel, procedures, and facilities [25]. Being a standard-
ized language with flexible semantics, it enables the creation
of models customized for a specific application [20]. SysML
allows for the creation of extensions, which aremodel compo-
nents that are not part of the SysML specification. Extensions
provide the ability to capture domain-specific information in
a single model using stereotypes, properties and tagged val-
ues. In an SysML-based approach to safety analysis, exten-
sions can be used for adding safety-related information in the
system design model itself. This feature helps in maintaining
consistency and traceability between the system design and
the safety model. Using extensions, safety artifacts can be
automatically generated to reduce the development time and
resources required for safety assessment and design changes.
These benefits of MBSE and SysML can be leveraged not
only to resolve the problems in safety analysis but also to
automatically generate safety artifacts at different stages of
the system design life cycle.

This paper introduces a framework called the Integrated
System Design and Safety (ISDS) framework, which inte-
grates traditional safety analysis techniques with an MBSE
design approach for the entire system life cycle. Using a
SysML model of the system design, annotated with safety
related information, safety artifacts, like FMEA tables, and
fault trees are automatically generated. By developing a sin-
gle SysML model, the framework ensures that consistency
between the design and safety models is maintained. Addi-
tionally, the automatic generation of safety artifacts seeks to
reduce system development time. The key distinction of this
framework with respect to other methods in the literature is
that it provides methods to ensure system safety throughout
the system development life cycle.

The remainder of this paper is organized as follows.
Section II discusses the state of the art in the field of safety
analysis and related work that deals with the integration
of safety analysis with MBSE. Section III introduces the

ISDS framework. Section IV demonstrates the application of
the framework to the design of a forward collision warn-
ing (FCW) system. Section V concludes the paper.

II. LITERATURE REVIEW
To make a system safe, safety analyses must be implemented
early in the conceptual phase and throughout the system
development and acquisition cycle [5]. Traditional safety
analysis techniques that are recommended by safety stan-
dards, such as IEC 61508 [26] and ISO 26262 [27] include
preliminary hazard analysis (PHA), functional hazard anal-
ysis (FHA), FMEA, and FTA [5]–[8]. PHA analyzes identi-
fied hazards or identifies previously unrecognized hazards in
detail to find causal factors, risks, and mitigation strategies.
FHA is used to identify system hazards by analyzing sys-
tem/subsystem functions. Both PHA and FHA are qualitative,
inductive approaches that are performed in the early design
stages. Another qualitative hazard analysis technique is a
hazard and operability study (HAZOP), which uses guide-
words to conceive potential hazards that may arise due to
system parameter deviations from expected behavior. FMEA
is an inductive, bottom-up approach used to determine the
effects of undesired events that occur due to the failure of
components or functions and to mitigate the associated risk
in the system design. FMEDA is an extension of FMEA
that identifies the failure rates of subsystems and the diag-
nostic capability of the failure mode. FMEA is traditionally
adapted for hardware analysis, but researchers have found
that systems are becoming increasingly reliant on software to
perform their intended functions and that it is now necessary
to perform a software FMEA (SFMEA) as well [28]–[31].
Finally, FTA is a deductive, top-down approach used to deter-
mine the root cause of a certain undesired event. A fault
tree is a model that logically and graphically represents the
combination of events or states of a system that together can
lead to an undesired event.

More recently, systems theoretic process analysis (STPA)
has gained popularity in the safety industry. This is a
top-down approach that uses the functional control diagram
of the system in its analysis as opposed to a physical com-
ponent diagram used by traditional safety analysis meth-
ods [32]. Several studies have suggested that STPA is better
at identifying hazards in a safety-critical, software-intensive
system than traditional analysis methods (such as FTA,
FMEA, etc.) [32]–[34]. However, the traditional methods are
still practiced in industry to analyze safety-critical systems.
Sulaman et al. [35] compared STPA and FMEA safety anal-
ysis techniques on a collision avoidance system and found
that both methods were equally good at identifying all types
of hazards, but each was better suited to identify specific
types of hazards. Consequently, in this paper we limit our
focus to traditional safety analysis techniques only. The next
section discusses related work that employs one or more of
the above approaches and overcomes some of the limitations
of the safety analysis process by integrating the approach(es)
with a model-based approach.

146484 VOLUME 8, 2020



R. Krishnan, S. V. Bhada: Integrated System Design and Safety Framework for Model-Based Safety Analysis

A. RELATED WORK
Safety standards such as IEC 61508 and ISO 26262 require
different safety artifacts to be created iteratively as the
design progresses. Over the years, several approaches have
been developed that leverage model-based system design
to automate the generation of safety artifacts, such as fault
trees and FMEA tables. The approaches differ based on the
language used to model the system architecture (such as
SysML, AADL, etc.) and the language used to model the
safety-related aspects of the system’s architecture (such as
SysML profiles, AltaRica, HiP-HOPS, FSAP/NuSMV, etc.).
An overview of the different modeling languages can be
found in [36]. This paper only focuses on those approaches
that use SysML to describe the system architecture.

Intermediate model transformation is required to create a
safety model for approaches that use SysML to model the
system architecture and a different language (e.g., AltaRica)
to model the safety aspects of the architecture. Safety artifacts
such as FMEA tables and fault trees can be automatically
generated from this model. In [37] and [38], the authors
demonstrate the ability to generate a single type of safety
artifact from SysML models. Xiang et al. [37] transformed
SysML models into reliability configuration model (RCM)
specifications from which static fault trees were generated.
Hecht et al. [38] transformed SysML diagrams that modeled
the system structure and behavior into AltaRica models from
which an FMEA table was generated. Although both [37] and
[38] show the utility in using SysMLmodels to automatically
generate safety artifacts, they are limited to a specific type
of safety artifact. The entire safety life cycle requires several
safety artifacts to be generated as the system design evolves.
Transforming the SysML model into a different safety model
for each type of safety artifact can be inefficient and time-
consuming.

The Me’ DISIS method [39] overcomes the problem of
requiring a different safety model for each safety artifact
by generating FMEA tables and fault trees from the same
SysML model. A preliminary FMEA table is automatically
generated using SysML diagrams of the system architecture.
A database containing failure information of the components
is also stored in the SysML model through SysML profiles.
The FMEA table is further analyzed, and any missing infor-
mation is filled in by a safety engineer. The SysML model is
transformed into an AltaRica model from which fault trees
are generated. However, similar to [37] and [38], this method
does not focus on the entire safety life cycle. It does not
include a hazard analysis or any provision to use the results of
a hazard analysis on the generated artifacts. This would not
only help identify any new unknown failure modes for the
system under design but would also reduce the reliance on an
engineer to identify the relevant failure modes on a case-by-
case basis.

Yakymets et al. [40] identified this need for an inte-
grated approach that covers all phases of the safety life
cycle by developing a safety assessment framework called

Sophia [41]. This framework supports the generation of
required artifacts, from system specification to verification
and validation activities, to comply with the safety standards.
The system architecture is defined using SysML or RobotML
[42] (a SysML extension for robotic systems). A hazard
and risk analysis of the physical and functional architecture
identifies system-level ‘‘feared events’’ or hazards. Safety
information is annotated in the SysML model, and a failure
modes and criticality analysis (FMECA) is defined for each
hazard. The SysML model is transformed into an AltaRica
model from which the fault tree for each hazard is generated.
A safety requirement is identified for the system function or
component to prevent the hazard from occurring. However,
the drawback of this approach or of any model-based safety
analysis method that requires a model-to-model transforma-
tion [37]–[41], lies in the challenge of maintaining consis-
tency between the safety artifact and the system design and
safety model, as well as the increased possibility of data loss
during the transformation [9], [43]. To the best of the authors’
knowledge, model transformation of the safety artifact back
to the safety model has not been implemented. This lack
of feedback suggests that the results of safety analyses are
not automatically reflected in the safety model or must be
manually updated. Additionally, if the transformation is done
manually, it can be time-consuming and prone to errors.

To overcome the limitations highlighted above, researchers
have proposed the integration of system design and safety
models by storing design and safety data in the same SysML
model. The safety-related information is stored in the SysML
model through a dedicated ‘‘Safety Profile’’, created using
SysML’s extensionmechanisms—stereotypes, properties and
tagged values. Consequently, no model transformation is
required, and the results of the safety analysis can be used
to update the safety data stored in the SysML model. Helle’s
[43] method used SysMLmodels of the functional and logical
architecture of the system to automatically generate reliabil-
ity block diagrams. Safety data, such as component failure
rates, were embedded into the blocks using tagged values.
Failure cases were identified in the functional architecture
using stereotypes. A script traverses the SysML models to
generate the reliability diagram for each failure case. While
this method only focuses on generating a single safety arti-
fact and is limited in its applicability over the entire safety
life cycle, it demonstrates that a safety artifact can be auto-
matically generated by embedding the required safety data
directly into the SysML model without the need for a model
transformation.

Helle’s method failed to include a hazard analysis, which
is essential in the early stages of the safety life cycle. Several
researchers have developed methods to perform a hazard
analysis using dedicated SysML profiles [44]–[46]. Thram-
boulidis and Scholz [44] developed a model that captures
up to 20 different data elements from a hazard analysis.
A PHA is applied on the functional architecture of the system,
and the resulting data elements are stored in the SysML

VOLUME 8, 2020 146485



R. Krishnan, S. V. Bhada: Integrated System Design and Safety Framework for Model-Based Safety Analysis

model itself. Biggs et al. [45] created an SysML profile
called SafeML to capture data from a hazard analysis. The
SafeML profile is used to annotate the model elements in the
SysML diagrams of the system architecture with qualitative
safety-related in- formation, such as hazard types, causes,
effects, and safety measures, and quantitative safety-related
information, such as probability of occurrence, severities,
etc. Finally, Muller et al. [46] present a hazard analysis pro-
file that captures safety- related data by performing hazard
analysis at each stage of the system design process. These
approaches [44]–[46] highlight how SysML profiles can be
used to store relevant data from a hazard analysis in the same
SysML model as the system design.

Mhenni et al. [9] leveraged the use of SysML profiles to
capture safety-related information for a model-based safety
analysis tool called SafeSysE that can generate safety artifacts
at each stage of the safety life cycle. It integrates the system
design and safety life cycle and uses SysML profiles to store
safety-related information in the SysML model. An activity
diagram captures the functional architecture of the system
from which a functional FMEA containing a list of functions
and generic failure modes is automatically generated. Safety
requirements are derived for each failure mode. A logical
architecture that allocates functions to components is devel-
oped using an internal block diagram from which a com-
ponent FMEA is generated. Information from the FMEA,
internal block diagram, and the safety profile of each block is
used to generate static fault trees. Finally, safety requirement
violations are analyzed using anNuSMVmodel checker. This
work is extended in [47] where component redundancy is
also captured in the system architecture model and dynamic
fault trees are generated. A key difference between this
method and the safety life cycle found in safety standards lies
in the elicitation of safety requirements. Standards require
system-level safety requirements to be defined early in the
life cycle, independent of the system architecture. In [9],
the authors define one or more safety requirements for each
functional failure mode after the functional architecture is
defined. As a result, the risk associated with the violation of
the safety requirement is not automatically linked to the fail-
ing function and by extension the lower-level system design.
Additionally, because hardware and software systems fail
differently (assuming randomness is not applicable to soft-
ware design flaws) it is recommended to further decompose
system safety requirements into hardware and software safety
requirements. This is further supported by the fact that most
software failures arise due to flaws in the requirements [32].

In this paper, a framework that integrates the system design
and safety life cycle process is proposed that over- comes the
limitations of the previously highlighted works. As recom-
mended by safety standards, system-level safety requirements
are generated early in the life cycle. The system architec-
ture is modeled using SysML, and as the design evolves
the safety-related data is stored in the same model using
SysML profiles. As a result, no model transformation is
required, and safety artifacts such as FMEA tables and fault

trees are automatically generated from the SysML model
only. High-level safety requirements are decomposed into
hardware and software safety requirements and allocated to
the appropriate lower-level components. The safety artifacts
generated at various stages of the life cycle are used to provide
evidence to support the safety of the system design.

III. ISDS FRAMEWORK
The ISDS framework introduced in this paper analyzes the
operational, functional, and logical design views of the sys-
tem to automatically generate safety artifacts. As shown in
Fig. 1, the framework follows the ‘V’ system development
life cycle model [48] to not only capture the iterative nature
of model development but also to highlight the existence of a
verification stage for each corresponding development stage.
The systems design and safety life cycle are integrated in
the ISDS framework through a one-to-one mapping of the
different stages in both life cycles, beginning at project defi-
nition and ending at verification and validation. The left side
of the ISDS framework deals with project definition, where
the design and safety data are graphically represented using
SysML diagrams and captured in the same SysML model.
The right side of the ISDS framework deals with verification
methods for each corresponding project definition stage (on
the left side). The key contributions of this framework are:
1) the one-to-one mapping of the system design and safety
life cycle to automatically generate safety artifacts, such as
FMEA tables and fault trees, at different stages of the life
cycle; 2) the decomposition of high-level safety requirements
to low-level hardware and software safety requirements;
3) the ability to automatically reflect any changes made in
the safety artifact back into the SysML model; and 4) the
automatic generation of a protocol from the SysML model
to complete system safety verification through fault injection
simulation.

ISDS is a conceptual framework and is divided into three
phases, as shown in Fig. 2. Phase 1 deals with system design
and safety analyses at the system level and ends with auto-
matically generating system-level FMEA and fault trees. The
results of these analyses are carried into Phase 2 of the ISDS
framework, which deals with system design and safety analy-
ses at the sub-system or component level. Phase 3 deals with
verifying the safety of the system design. A brief overview of
each phase is provided in the section below. However, this
paper focuses on the detailed description and implementa-
tion of Phase 1 of the ISDS framework only. Phase 2 and
Phase 3 will be implemented in future publications.

A. ISDS FRAMEWORK: OVERVIEW OF PHASES
This section provides an overview of each phase of the ISDS
framework.

1) PHASE 1: SYSTEM LEVEL ANALYSIS
Phase 1 includes system design activities and safety analyses
at the system level only. From the system design life cycle
perspective, the required system capabilities are identified

146486 VOLUME 8, 2020



R. Krishnan, S. V. Bhada: Integrated System Design and Safety Framework for Model-Based Safety Analysis

FIGURE 1. The Integrated System Design and Safety Framework (ISDS). The left side of the framework corresponds to the project definition phase of the
life cycle, where different design and safety information is captured using different SysML diagrams and captured in a single SysML model. The right side
of the framework corresponds to the test and integration phase of the life cycle, where the system design is verified against safety requirements at the
component, sub-system, and system levels.

FIGURE 2. Different phases of the ISDS framework. Given the size and scope of the framework, it is separated into three logical phases to make it easier
to demonstrate its application. Phase 1 deals with design activities and safety analyses at the system level only. Phase 2 uses the results from
Phase 1 and completes design activities and safety analyses at the component level. Phase 3 deals with safety verification at the component, sub-system,
and system levels. Verification of system safety is performed at each level by verifying the system design against the safety requirements defined in the
corresponding project definition stage.

and transformed into requirements, using which the func-
tional and logical architecture of the system is developed.
From the safety life cycle perspective, operational scenarios
that could potentially lead to (unwanted) accident scenarios
are identified. Hazard analysis is used to identify high-level
(or system-level) safety requirements that the system design
must not violate. Hazard analysis is repeated for the func-
tional and logical architecture of the system to identify haz-
ards associated with the system functions. A safety engineer
also identifies the combination of failure modes that could
violate the safety goal. Using the data captured from the haz-
ard analyses and the system architecture, system-level FMEA
tables and fault trees are automatically generated. The results
of the safety analyses reveal the modifications required in

the system design to make it safe. Once the required design
changes have been made, safety analyses are repeated to
update the safety artifacts.

2) PHASE 2: SUB-SYSTEM LEVEL ANALYSIS
In Phase 2, the system design is further refined by decom-
posing the system architecture into the system hardware and
software architecture. Component blocks that make up a
sub- system are identified. For each hazard associated with
a function (identified in Phase 1), a corresponding hard-
ware and software safety requirement is generated. These
requirements are allocated to the appropriate sub-system.
Sub-system FMEA tables are automatically generated by
identifying the different failure modes of the components

VOLUME 8, 2020 146487



R. Krishnan, S. V. Bhada: Integrated System Design and Safety Framework for Model-Based Safety Analysis

that make up the sub-system. A safety engineer identifies
the failure modes or a combination of failure modes that
could violate the hardware or software safety requirement.
These failure modes are used to generate the sub-system fault
tree. Safety mechanisms are added to these failure modes to
prevent a safety requirement violation. At the end of Phase 2,
a set of FMEA tables and fault trees are automatically gener-
ated for each sub-system.

3) PHASE 3: SYSTEM VERIFICATION
Phase 3 focuses on verifying the safety of the system design.
Verification is performed based on the system hierarchy,
starting from low-level or component design and ending at
the high-level or system design. At the component level,
the behavior of each component in a sub-system is verified
to ensure that it does not violate the hardware or software
safety requirements of the sub-system. Component failure
modes for which the mitigation strategy or safety mecha-
nism does not prevent a violation of a hardware or software
safety requirement are identified, and recommendations are
provided for corrective actions. These recommendations are
implemented as design changes in the detailed design stage
of the framework. The safety analyses are updated to stay
consistent with the latest design. This verification process
repeats until all hardware and software safety requirements
are met at the component level. Different methods, such as
model checking or fault injection, can be used to perform this
verification.

At the sub-system level, hardware FMEDA tables are auto-
matically generated for each sub-system. The FMEDA con-
tains the failure modes of the components in the sub- system
and additional data such as failure rates, safety mechanisms
to prevent the failure modes, and the diagnostic coverage
provided by the safety mechanism against the failure mode.
This data can either be added manually by an engineer or
obtained through fault injection. To complete the fault injec-
tion simulation, a protocol containing the design and safety
information of each sub-system is automatically generated
from the SysML model. The design information in the proto-
col is obtained from the system and includes the organization
of components in the sub-system. The safety information in
the protocol includes the component failure modes of the
sub-system and their corresponding safety mechanisms. The
fault injection simulation identifies the failure modes that
violate the sub-system-level safety requirements. Similar to
the component-level verification process, recommendations
are provided for corrective actions against failure modes
that violate the sub-system-level safety requirements and
are implemented as design changes in the high-level design
stage of the framework. The system-level safety analyses are
updated to maintain consistency with the latest design. This
verification process repeats until all safety requirements are
met at the sub-system level.

Finally, the system-level verification is performed through
fault injection simulation. The system design is tested in
a simulation environment against the failure operational

scenarios identified in Phase 1. The failure modes of the sub-
system are injected one at a time (through software) into the
system design, and the behavior of the system is observed. If a
high-level (or system-level) safety requirement is violated,
the system design is modified to prevent the violation. Mul-
tiple failure modes can be injected to observe a combination
of failure modes that could violate a safety requirement. This
process is repeated for all failure modes and is complete when
none of the failure modes or combinations of failure modes
violate any high-level safety requirement. The next section
introduces the SysML profile developed for Phase 1 of the
ISDS framework to store the safety-related information in the
SysML model.

B. ISDS FRAMEWORK: SAFETY PROFILE
The ISDS framework integrates the system design and safety
models by using SysML profiles to store the design and safety
data in the same SysML model. Consequently, no model
transformation is required to create the safety model and
generate the safety artifacts (as highlighted in the literature
review). The next section provides a detailed description of
the safety profile used in this framework.

FIGURE 3. Safety profile for Phase 1 of the ISDS framework. The safety
profile illustrates how native SysML elements are extended using
stereotypes to represent safety-related information. Both the requirement
and action elements are native SysML elements. The triangle from parent
element to child elements represents an extension or inheritance
relationship and can be read as ‘‘is a type of’’. The child element contains
additional properties to capture safety-related information.

Fig. 3 illustrates the safety profile for the ISDS framework.
Because safety goals are high-level safety requirements, the
SysML requirement metaclass is extended as a ‘‘safety goal’’
stereotype, which contains an additional property to capture
the associated risk. Based on the risk assessment framework
of ISO 26262, the safety goal risk can be one of five values—
QM, A, B, C, or D (in order of increasing risk) [49]. System
functions are represented using the ‘‘action’’ metaclass in an
activity diagram. Hazards are deviations from the expected
behavior of functions that pose a risk to the system. As a
result, hazards are represented using the ‘‘hazard’’ stereotype,
which is an extension of the ‘‘action’’ metaclass. Safety goal

146488 VOLUME 8, 2020



R. Krishnan, S. V. Bhada: Integrated System Design and Safety Framework for Model-Based Safety Analysis

FIGURE 4. Sequence diagram representing the sequence of activities in Phase 1 of the ISDS framework from both the system design and safety
perspectives. The diagram highlights the responsible entity of an activity and the destination for the results of an activity. The iterative and collaborative
nature that emerges from integrating the system and safety life cycle is clearly seen in this diagram.

violations and inherited risk are added to the hazard through
properties. The [1..*] next to the safety goal violation prop-
erty refers to its multiplicity; that is, it indicates that one haz-
ard can be associated with one or more safety goal violations.
The ‘‘failure mode’’ stereotype is an extension of the hazard
stereotype and inherits the referenced safety goal violation
and the associated risk of violating the safety goal. Addition-
ally, the failure mode stereotype contains causes, effects, and
mitigation strategy as properties. A single failure mode can
have multiple causes, effects, and mitigation strategies. The
[1..*] next to each property highlights the ability to contain
one or more values, that is, its multiplicity. Because the
safety profile contains a placeholder (through stereotypes and
properties) for all required safety-related data, not only can
safety artifacts be automatically generated from the SysML
model, but any changes made to the data in the safety artifact
can also be automatically reflected in the SysMLmodel. This
is crucial for maintaining consistency between system design
and safety analysis. The next section provides a detailed
description of Phase 1 of the ISDS framework.

C. ISDS FRAMEWORK: PHASE 1 DESCRIPTION
The description for each stage in the ISDS framework starts
with the design life cycle-related activity, followed by the
safety life cycle activity and the SysML modeling activity.
Fig. 4 illustrates the sequence of activities performed during
Phase 1 of the ISDS framework.

1) DEVELOP A CONCEPT OF OPERATIONS AND GENERATE
FAILURE OPERATIONAL SCENARIOS
The design life cycle begins with developing the system’s
concept of operations by identifying a set of system capabili-
ties from the perspective of its stakeholders and the system
operational scenarios. The safety life cycle identifies a set
of operational scenarios under which the system could be
unsafe. The operational scenarios are captured by identifying
the set of variables (and its states) that cover the range of
scenarios the system will encounter during operation in its
intended environment.

2) IDENTIFY SYSTEM REQUIREMENTS
System capabilities that were identified in the previous step
are transformed into requirements. These requirements are
captured in the SysML model using a requirements diagram.

3) PERFORM SYSTEM HAZARD AND RISK ASSESSMENT
Hazard analysis is performed on the system capabilities to
identify potential system-level hazards. These hazards repre-
sent states of the system that could pose significant risk to
the system itself or its environment, such as loss of life or
damage to property. The identified hazards are converted to
high-level safety requirements (also known as safety goals)
and are captured in the SysML model using a requirements
diagram. A risk level (or safety integrity level) is assigned
to a safety goal using the risk assessment framework from

VOLUME 8, 2020 146489



R. Krishnan, S. V. Bhada: Integrated System Design and Safety Framework for Model-Based Safety Analysis

FIGURE 5. Process for automatically generating FMEA from SysML model.

ISO 26262. The hazard linked to the safety goal is assessed
in context with the failure operational scenarios identified in
step 1 to derive the exposure (probability of occurrence of
failure operational scenario), severity (consequence if haz-
ard occurs), and controllability (probability of mitigating the
failure scenario) factors. The three factors combine to give a
safety integrity level or risk associated with the safety goal.

4) DEVELOP FUNCTIONAL ARCHITECTURE
The system architecture that is developed as part of the design
life cycle has two components, the functional architecture and
the logical architecture. The requirements are translated into
system functions to create the functional architecture. The
functional architecture is captured in the SysML model using
multiple activity diagrams.

5) DEVELOP LOGICAL ARCHITECTURE
The logical architecture provides the structural design of the
system, allocates functions to the blocks or sub-systems, and
identifies the interconnections and data flows between each
block. The logical architecture is captured using a block
definition diagram and an internal block diagram.

6) PERFORM SUB-SYSTEM HAZARD AND RISK ASSESSMENT
In the safety life cycle, potential sub-system-level hazards are
identified using hazard analysis. The functions allocated to
each sub-system are analyzed for potential deviations from
expected behavior and captured as hazards. The effects of
each hazard are identified by tracing the safety goal that is
violated if the hazard occurs. These hazards are added to the
functional architecture activity diagrams. The risk associated
with a hazard is determined by the safety goals that would be
violated when the hazard occurs. If there are multiple safety
goal violations, the highest risk is inherited. At this point, the
SysML model is enriched with the necessary information to
automatically generate the systemFMEAand the system fault
tree.

7) GENERATE SYSTEM FMEA
The first safety artifact that is automatically generated is the
system FMEA. Fig. 5 provides an overview of the process.
An XML metadata interchange (XMI) file of the SysML
model is generated and parsed using a Python script to create
the FMEA table. Iterating over each function for all blocks

Algorithm 1 Generate System FMEA
Input: XMI of SysML model
Output: Spreadsheet of System FMEA
SET root = root node of XMI;
Find elements of type = ‘SysML Block’ in root
for each SysML Block do

Add Block name to spreadsheet
Find all Functions in the Block
for each Function do
Add Function to spreadsheet
Identify activity diagram of Function
Extract Failure Modes from activity diagram
Add Failure Mode and linked data to spreadsheet

end for
end for

in the logical architecture, the hazards are extracted as the
failure mode. The corresponding safety goal violation and
associated risk is also extracted. An .xlsx file (spreadsheet)
is generated containing the block name, its functions, failure
modes, safety goal violations, and associated risk. The algo-
rithm for generating the FMEA table is shown in Algorithm 1.
The generated FMEA is further analyzed by a safety engineer
to fill in the causes, effects, and mitigation strategy. The
Safety Profile has a container for the data entered by the
engineer, and the file is imported back into the SysML model
to store the added information. A Python script parses the
edited spreadsheet and iterates through the previously gen-
erated XMI file of the SysML model to add causes, effects,
and a mitigation strategy for each failure mode to the SysML
model. As a result, any changes made to the safety artifact
by the engineer are automatically reflected in the SysML
model. The algorithm for updating the FMEA table is shown
in Algorithm 2.

Algorithm 2 Update System FMEA
Input: XMI of SysML model, Edited Spreadsheet
Output: Updated Spreadsheet of System FMEA
for each row in spreadsheet do
Find SysML Block in XMI file
Find corresponding Function in the Block
for each Function do
Identify activity diagram of Function
Identify referenced Failure Mode
Add Causes, Effects and Mitigation Strategy as
properties to Block in XMI file

end for
end for

8) DEVELOP FUNCTIONAL FAILURE MATRIX
Once the system FMEA is generated, the design and safety
engineers work together to identify the combination of failure
modes within a sub-system that can violate a safety goal.
The failure mode combination is limited to an order of two
as recommended by safety standards [27]. Based on the

146490 VOLUME 8, 2020



R. Krishnan, S. V. Bhada: Integrated System Design and Safety Framework for Model-Based Safety Analysis

FIGURE 6. Process for automatically generating a fault tree from a SysML
model.

structure of the FMEA, a Python script generates a template
of the functional failure matrix for each safety goal. The
matrix contains the failure modes of each sub-system listed in
the rows and columns. A marked cell in the matrix signifies
that the failure modes in the corresponding row and col-
umn cannot individually violate the safety goal but combine
to violate a safety goal. It is important to note that only
failure modes of different functions can combine to violate
a safety goal, as a given function cannot exhibit multiple
behaviors/misbehaviors simultaneously.

9) GENERATE SYSTEM FTA
The next safety artifact that is automatically generated from
the SysML model is the system fault tree. Like the artifact
generation process for the FMEA, fault tree generation is
automatic, instantaneous, and consistent with the latest sys-
tem design. Fig. 6 illustrates the process. The structure of the
fault tree is shown in Fig. 7. Because the interconnections
and data flows between the blocks are known (using the
internal block diagram), a failure in a block can be considered
either an internal failure of the block (based on its failure
modes) or a failure in the input to the block. The fault tree
is generated using a Python script that parses the XMI file
of the SysML model and the data from the FMEA table.
Using the internal block diagram, the script traces the flow
of information from output to input and generates a sequence
of events (or failures) for each safety goal violation. Only
those failure modes that contribute to the safety goal violation
are considered internal failures of the block. Internal failure
of the block is represented using a logic OR gate of failure
modes that violate the specific safety goal. The inputs to
the OR gate are the singular failure modes that violate the
safety goal or the combination of failure modes that have
been identified in the functional failure matrix. The combi-
nation of failure modes is represented using a logic AND
gate. The algorithm for generating the fault tree is shown in
Algorithm 3. The fault tree is generated in the Open-PSA [50]
model exchange format and can be viewed by tools that use
the XFTA engine [51].

IV. CASE STUDY: APPLICATION OF PHASE 1
This section presents a case study that demonstrates how
Phase 1 of the ISDS framework is used to automatically
generate system-level FMEA tables and fault trees from a

FIGURE 7. Structure of the fault tree generated. This structure represents
the sequence of blocks from output to input. Internal failure of the block
consists of either individual failure modes or the combination of failure
modes that violate the safety goal. The combination of failure modes are
represented using logical AND gates.

SysML model. The case study deals with the development of
an FCW system. It should be noted that the main focus of this
study is the application of the ISDS framework rather than a
comprehensive design of an FCW system.

The FCW system identifies the potential for an impending
crash situation for a vehicle and alerts the driver using an
audio or visual signal. The system is implemented using
forward-looking sensors that provide information about the
objects and roadway in front of the vehicle, a processing unit
that takes the sensory information as an input to determine the
probability of a crash, and a visual and/or audio alert interface
in the vehicle to alert the driver. The system capabilities
and requirements of an FCW system have been developed
based on [52]. A detailed description of the different stages
of Phase 1 of the ISDS framework is provided below.

A. IDENTIFY FAILURE OPERATIONAL SCENARIOS
The first step in the ISDS framework is to identify a set of op-
erational scenarios that represent the situations under which

VOLUME 8, 2020 146491



R. Krishnan, S. V. Bhada: Integrated System Design and Safety Framework for Model-Based Safety Analysis

Algorithm 3 Generate System FTA
Input: XMI of SysML model, Functional failure matrix,
System FMEA

Output: System FTA in OpenPSA format
initialization
SET root = System Block of XMI model
SET visited-block = 0
Function Generate-Tree (block):
Identify all inputs to root
while input > 0 do

for each input to Block do
if input is NOT in visited-block then
Add-Block-To-FaultTree (input)

visited-block
= input

⋃
visited-block

Generate-Tree
(input)

end if
end for

end while
Function Add-Block-To-FaultTree (block):
Add OR Gate
Add Internal-Failure-of-Block (block)
Add failure in input to Block

Function Internal-Failure-of-Block (block):
Identify block in FMEA
Add OR Gate
Add failure modes that violate safety goal
if Violation in Functional Failure Matrix then

Add AND gate
Add failure modes that violate safety goal

end if

TABLE 1. Environment variables and their states for a vehicle equipped
with a forward collision warning system.

the system should avoid hazardous (or unsafe) behavior. The
set of environmental variables (and its states) for a vehicle is
shown in Table 1.

The different states for each variable can be combined to
create a driving scenario during which the system should

FIGURE 8. SysML system requirements diagram of an FCW system.

avoid unsafe behavior. For example, a potential driving sce-
nario could be that the vehicle is travelling on an interstate
highway at high speed (130 kph >= V > 100 kph) with
another vehicle in front on an icy surface with no pedestrians
present.

B. IDENTIFY SYSTEM REQUIREMENTS
As mentioned earlier, the system capabilities and require-
ments were obtained from [52]. These requirements are cap-
tured in the SysML model using a requirements diagram,
as shown in Fig. 8.

C. PERFORM SYSTEM HAZARD AND RISK ASSESSMENT
System hazard analysis is performed on the FCW sys-
tem using the HAZOP method to identify system-level or
vehicle-level hazards. The HAZOP analysis uses the follow-
ing guidewords:
• Loss of function
• Too early
• Too late
• Not requested
Based on these guidewords the following vehicle-level

hazards associated with the FCW system were identified:
• Unexpected loss of FCW system
• Early engagement of FCW system
• Delayed engagement of FCW system
• Unexpected engagement of FCW system
These hazards represent unsafe behavior of the FCW sys-

tem. High-level safety requirements or safety goals are devel-
oped to prevent these hazards from occurring, as shown in

146492 VOLUME 8, 2020



R. Krishnan, S. V. Bhada: Integrated System Design and Safety Framework for Model-Based Safety Analysis

TABLE 2. Risk assessment for an operational scenario based on the risk
assessment framework from ISO 26262.

FIGURE 9. SysML diagram of High-level safety requirements or Safety
Goals for an FCW system identified using the HAZOP method.

FIGURE 10. SysML Activity diagram representing the functional
architecture for an FCW system.

Fig. 9. Safety goals are captured in the SysML model using
the safety goal stereotype.

The safety integrity level or risk associatedwith each safety
goal is determined based on the risk assessment framework
from the ISO 26262 standard. For each failure operational
scenario identified in the first step, the exposure, severity,
and controllability are determined, and the equivalent risk is
computed. Table 2 shows an example for assessing the risk
associated with safety goal 3: prevent delayed engagement
of FCW system under a specific operational scenario. This
risk assessment is repeated for each operational scenario

FIGURE 11. SysML block definition diagram representing the logical
architecture of an FCW system. It shows the different logical blocks of the
system and the functions allocated to them. For the sake of readability,
the function allocation to a block is only shown for the lane detection
sensors block.

FIGURE 12. SysML internal block diagram representing the logical
architecture of an FCW system. It shows the interconnections between
the different logical blocks and the data flows.

developed in the first step. The safety goal is assigned the
highest risk level that was identified for the set of operational
scenarios. The risk is added to the safety goal model element
as a property.

D. DEVELOP FUNCTIONAL ARCHITECTURE
The functional architecture contains the set of functions that
satisfy the system requirements. The system functions and
their interconnections are captured in the SysMLmodel using
an activity diagram, as shown in Fig. 10.

E. DEVELOP LOGICAL ARCHITECTURE
The logical architecture is developed using a block defi-
nition diagram and an internal block diagram. The block
definition diagram shown in Fig. 11 identifies the different
logical blocks or sub-system of the FCW system. The system
functions are also allocated to each block. The internal block

VOLUME 8, 2020 146493



R. Krishnan, S. V. Bhada: Integrated System Design and Safety Framework for Model-Based Safety Analysis

FIGURE 13. SysML Activity diagram showing the hazards identified for the Detect Lane Markings function.

TABLE 3. FMEA for two functions of the Lane Detection Sensors block of the FCW system. The ‘−’ indicates that the information is to be filled by an
engineer.

diagram is used to identify the interconnections between
the sub-systems and the data flows between them. Fig. 12
illustrates the internal block diagram for the FCW system.

F. PERFORM SUB-SYSTEM HAZARD AND RISK
ASSESSMENT
Sub-system hazard analysis is performed on each function
in each block in Fig. 11, using the HAZOP method to
identify sub-system-level hazards (hazards associated with
sub-system functions). The guidewords used in this HAZOP
study were:
• Loss of function

• More than
• Less than
• Locked function
• Intermittent output
• Wrong direction
• Not requested
Guidewords are used to brainstorm potential hazards to

sub-system functions. These hazards are added to a sub-
system function, as shown in Fig. 13 using the hazard stereo-
type. For each hazard, the potential safety goal violation is
added as a property. Fig. 13 shows the hazards captured in
the SysML model for the ‘‘detect lane markings’’ function.

146494 VOLUME 8, 2020



R. Krishnan, S. V. Bhada: Integrated System Design and Safety Framework for Model-Based Safety Analysis

FIGURE 14. A small section of the fault tree XML for violation of safety goal 1 of an FCW system.

G. GENERATE SYSTEM FMEA
The XMI of the SysML model is parsed using a Python
script to generate the system FMEA for the FCW system. The
different blocks and their allocated functions are identified
using the block definition diagram shown in Fig. 11. The
hazards associated with each function are extracted using the
information in Fig. 13. Based on the safety goal violation for
each hazard, the risk is extracted from Fig. 13. The data is
formatted and stored in a spreadsheet, as shown in Table 3.
For the sake of readability, the FMEAgenerated only contains
information from one block (LD sensors) of the FCW system.
The causes and effects columns are left empty for a safety
engineer to complete after the FMEAhas been generated. The
safety profile has a failure mode stereotype that contains a
property placeholder for both fields (causes and effects). As a
result, any change in the spreadsheet is reflected in the SysML
model by adding the causes, effects, and mitigation strategy
back into the XMI of the model using a Python script. The
new XMI can be imported into the SysML software to view
the changes.

H. DEVELOP FUNCTIONAL FAILURE MATRIX
A Python script generates the template for the functional
failure matrix based on the structure of the FMEA. For each
safety goal, the script generates a unique n x n matrix for each

block or sub-system, where n is the number of failure modes
in the block. The functional failure matrix for the LD sensors
block is shown in Table 4.

TABLE 4. Functional failure matrix that identifies the combination of
failure modes that violate safety goal 3.

I. GENERATE SYSTEM FTA
The system fault tree of the FCW system is generated based
on the logical architecture shown in Fig. 12. The fault tree fol-
lows the structure shown in Fig. 7 and is generated as an XML
file in the Open-PSA format that can be viewed using open
source tools that use the XFTA engine, such as SCRAM [53].
For ease in readability, only a section of the generated XML
of the fault tree is shown in Fig. 14. The limited graphical user
interface in SCRAMmakes it difficult to export a high quality
image of the fault tree. As a result, to visualize the generated

VOLUME 8, 2020 146495



R. Krishnan, S. V. Bhada: Integrated System Design and Safety Framework for Model-Based Safety Analysis

FIGURE 15. Visualization of the fault tree XML.

fault tree, it has been re-drawn using a graphics software as
shown in Fig. 15. Each circular event represents the internal
failure of the block, which includes only those failure modes
from the FMEA table that violate safety goal 1. Based on this
fault tree, fault mitigation strategies and safety measures can
be added to the system design to avoid the violation of safety
goal 1.

V. DISCUSSION
The manual, time-consuming, and error-prone nature of gen-
erating safety artifacts and the inconsistency between the
design and safety models are major challenges in the field of
safety analysis. The ISDS framework introduced in this paper
addresses these issues by integrating the system design and
the safety model into a single SysML model. The framework
avoids the need for model transformation to automatically
generate safety artifacts by using SysML profiles to capture
safety data in the SysML model. Consequently, there is no
data loss, and any changes made to a safety artifact can
be automatically reflected in the SysML model. The ISDS
framework improves on the current state of the art in several
ways. The first is by providing a one-to-one mapping of the
entire system design and safety life cycle. The mapping high-
lights howmultiple safety analyses can be applied at different
phases of the integrated life cycle to automatically generate
safety artifacts. The second is by decomposing high-level
safety requirements into component-level hardware and soft-
ware safety requirements. The decomposition ensures trace-
ability between the safety requirements, the design deci-
sions made to fulfil those requirements, and the verification
activities to ensure compliance of the design with the safety
requirements. The third way consists of changes made to

the safety artifact by an engineer that can be automatically
reflected back in the SysMLmodel. Linking the safety artifact
with the SysML model is essential for maintaining consis-
tency between system design and safety with an engineer
in the loop. The last way is by automatically generating the
protocol from the SysML model that contains the system
design and safety information required to complete safety
verification of the system. The fault injection simulation will
provide evidence to support that the system design fulfils
the safety requirements. Extracting the protocol from the
SysML model ensures consistency and traceability between
the design stage (left side of the V) and the verification stage
(right side of the V). This paper only introduces the concept
and merits of automatically generating the protocol for safety
verification. A detailed description of the protocol and its
implementation through a case study will be the subject of
future publications.

VI. CONCLUSION
This paper introduces the ISDS framework that integrates the
entire system design and safety life cycle using an MBSE
approach. The framework comprises three phases, and in this
paper a detailed description and implementation of Phase 1 of
the framework is provided through a case study. As future
work, Phases 2 and 3 will be implemented. Phase 2 will
demonstrate how high-level safety requirements are decom-
posed into component-level hardware and software safety
requirements. Phase 3will highlight how safety verification is
completed at the component, sub-system, and system levels.
The system design and safety information in the SysML
model will be used to generate the protocol to perform the
fault injection simulation and verify the system design against
the safety requirements.

REFERENCES
[1] J. A. McDermid, ‘‘Complexity: Concept, causes and control,’’ in Proc.

6th IEEE Int. Conf. Eng. Complex Comput. Syst. (ICECCS), Sep. 2000,
pp. 2–9.

[2] K. Sinha, ‘‘Structural complexity and its implication for design of cyber-
physical systems,’’ Ph.D. dissertation, Dept. Eng. Syst. Division, Mas-
sachusetts Inst. Technol., Boston, MA, USA, 2014.

[3] I. Tumer and C. Smidts, ‘‘Integrated design-stage failure analysis of
software-driven hardware systems,’’ IEEE Trans. Comput., vol. 60, no. 8,
pp. 1072–1084, Aug. 2011.

[4] M. Bozzano and A. Villafiorita, ‘‘Improving system reliability via model
checking: The FSAP/NuSMV-SA safety analysis platform,’’ in Proc.
Int. Conf. Comput. Saf., Rel., Secur. Berlin, Heidelberg: Springer, 2003,
pp. 49–62.

[5] C. A. Ericson, International Conference on Computer Safety, Reliability,
and Security. Hoboken, NJ, USA: Wiley, 2005.

[6] N. J. Bahr, System Safety Engineering and Risk Assessment: A Practical
Approach. Boca Raton, FL, USA: CRC Press, 2018.

[7] M. Bozzano and A. Villafiorita, Design and Safety Assessment of Critical
Systems, 1st ed. Boston, MA, USA: Auerbach Publications, 2010.

[8] M.Modarres,Risk Analysis in Engineering: Techniques, Tools, and Trends.
Boca Raton, FL, USA: CRC Press, 2016.

[9] F. Mhenni, N. Nguyen, and J.-Y. Choley, ‘‘SafeSysE: A safety analysis
integration in systems engineering approach,’’ IEEE Syst. J., vol. 12, no. 1,
pp. 161–172, Mar. 2018.

[10] O. Lisagor, T. Kelly, and R. Niu, ‘‘Model-based safety assessment: Review
of the discipline and its challenges,’’ in Proc. 9th Int. Conf. Rel., Maintain-
ability Saf., Jun. 2011, pp. 625–632.

146496 VOLUME 8, 2020



R. Krishnan, S. V. Bhada: Integrated System Design and Safety Framework for Model-Based Safety Analysis

[11] M. Batteux, T. Prosvirnova, A. Rauzy, and L. Kloul, ‘‘The AltaRica 3.0
project for model-based safety assessment,’’ in Proc. 11th IEEE Int. Conf.
Ind. Informat. (INDIN), Jul. 2013, pp. 741–746.

[12] Y. Li, Q. Gong, and D. Su, ‘‘Model-based system safety assessment of
aircraft power plant,’’ Procedia Eng., vol. 80. pp. 85–92, Jan. 2014.

[13] O. Sträter, Cognition and Safety. New York, NY, USA: Routledge,
Dec. 2016.

[14] G. Biggs, T. Juknevicius, A. Armonas, and K. Post, ‘‘Integrating Safety
and Reliability Analysis into MBSE: overview of the new proposed OMG
standard,’’ INCOSE Int. Symp., vol. 28, no. 1, pp. 1322–1336, 2018.

[15] B. Boehm, R. Valerdi, and E. Honour, ‘‘The ROI of systems engineer-
ing: Some quantitative results for software-intensive systems,’’ Syst. Eng.,
vol. 11, no. 3, pp. 221–234, Jun. 2008.

[16] D. K. Hitchins, ‘‘Systems engineering: In search of the elusive optimum,’’
Eng. Manage. J., vol. 8, no. 4, pp. 195–207, 1998.

[17] E. R. Carroll and R. J. Malins, ‘‘Systematic literature review: How is
model-based systems engineering justified?’’ Sandia Nat. Lab (SNL-NM),
Albuquerque, NM, USA, Tech. Rep. SAND106-2607, 2016.

[18] M. A. Chodas, ‘‘Improving the design process of the regolith X-ray imag-
ing spectrometer with model-based systems engineering,’’ Ph.D. disser-
tation, Dept. Aeronaut. Astronaut., Massachusetts Inst. Technol., Boston,
MA, USA, 2014.

[19] J. D’Ambrosio and G. Soremekun, ‘‘Systems engineering challenges and
MBSE opportunities for automotive system design,’’ in Proc. IEEE Int.
Conf. Syst., Man, Cybern. (SMC), Oct. 2017, pp. 2075–2080.

[20] A. M. Madni and M. Sievers, ‘‘Model-based systems engineering: Motiva-
tion, current status, and research opportunities,’’ Syst. Eng., vol. 21, no. 3,
pp. 172–190, 2018.

[21] SEBoK. 2018 Modeling Standards–SEBoK. Accessed: Feb. 11, 2020.
[Online]. Available: https://www.sebokwiki.org/wiki/Modeling_
Standards

[22] A. Luísa Ramos, J. Vasconcelos Ferreira, and J. Barceló, ‘‘Model-based
systems engineering: An emerging approach for modern systems,’’ IEEE
Trans. Syst., Man, Cybern., C (Appl. Rev.), vol. 42, no. 1, pp. 101–111,
Jan. 2012.

[23] R. Cressent, P. David, V. Idasiak, and F. Kratz, ‘‘Increasing reliability of
embedded systems in a SysML centered MBSE process: Application to
LEA project,’’ presented at the 1st M-BED Workshop, Dresde, Germany,
Mar. 2010.

[24] R. Behjati, T. Yue, S. Nejati, L. Briand, and B. Selic, ‘‘Extending SysML
with AADL concepts for comprehensive system architecture modeling,’’
in Modelling Foundations and Applications (Lecture Notes in Computer
Science), vol. 6698, R. B. France J. M. Kuester, B. Bordbar, R. F. Paige,
Eds. Berlin, Germany: Springer, 2011, pp. 236–252.

[25] (Jun. 2010). OMG Systems Modeling Language (OMG SysML), OMG
Specification Version 1.2. [Online]. Available: https://www.omg.org/spec/
SysML/1.2/PDF

[26] Functional Safety, document IEC 61508 2010.
[27] ISO 26262:Road vehicles-Functional safety, document ISO

26262:2018(en), 2018.
[28] J. J. Stadler and N. J. Seidl, ‘‘Software failure modes and effects analysis,’’

in Proc. Annu. Rel. Maintainability Symp. (RAMS), Jan. 2013, pp. 1–5.
[29] P. L. Goddard, ‘‘Software FMEA techniques,’’ in Proc. Annu. Rel.

Maintainability Symp. Int. Symp. Product Qual. Integrity, Jan. 2000,
pp. 118–123.

[30] J. B. Bowles and C. Wan, ‘‘Software failure modes and effects analysis
for a small embedded control system,’’ in Proc. Annu. Rel. Maintainability
Symp. Int. Symp. Product Qual. Integrity, Jan. 2001, pp. 1–6.

[31] G.-Y. Park, D. H. Kim, andD.Y. Lee, ‘‘Software FMEA analysis for safety-
related application software,’’ Ann. Nucl. Energy, vol. 70, pp. 96–102,
Aug. 2014.

[32] N. Leveson, Engineering a Safer World: Systems Thinking Applied to
Safety. Boston, MA, USA: MIT Press, 2011.

[33] T. Ishimatsu, N. Leveson, J. Thomas, M. Katahira, Y. Miyamoto, and
H. Nakao, ‘‘Modeling and hazard analysis using STPA,’’ presented at the
4th Conf. Int. Assoc. Advancement Space Saf., Huntsville, AL, USA,
May 2010.

[34] C. H. Fleming, M. Spencer, J. Thomas, N. Leveson, and C. Wilkinson,
‘‘Safety assurance in NextGen and complex transportation systems,’’ Saf.
Sci., vol. 55, pp. 173–187, Jun. 2013.

[35] S. M. Sulaman, A. Beer, M. Felderer, and M. Höst, ‘‘Comparison of the
FMEA and STPA safety analysis methods–a case study,’’ Softw. Qual. J.,
vol. 27, no. 1, pp. 349–387, Mar. 2019.

[36] S. Kabir, ‘‘An overview of fault tree analysis and its application in model
based dependability analysis,’’ Expert Syst. Appl., vol. 77, pp. 114–135,
Jul. 2017.

[37] J. Xiang, K. Yanoo, Y. Maeno, and K. Tadano, ‘‘Automatic synthesis of
static fault trees from systemmodels,’’ in Proc. 5th Int. Conf. Secure Softw.
Integr. Rel. Improvement, Jun. 2011, pp. 127–136.

[38] M. Hecht, E. Dimpfl, and J. Pinchak, ‘‘Using SysML to automatically
generate of failure modes and effects analyses,’’ in INCOSE Int. Symp.,
vol. 25, no. 1, pp. 1357–1372, 2015.

[39] P. David, V. Idasiak, and F. Kratz, ‘‘Reliability study of complex physical
systems using SysML,’’ Rel. Eng. Syst. Saf., vol. 95, no. 4, pp. 431–450,
Apr. 2010.

[40] N. Yakymets, M. Sango, S. Dhouib, and R. Gelin, ‘‘Model-based engineer-
ing, safety analysis and risk assessment for personal care robots,’’ in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2018, pp. 6136–6141.

[41] M. Adedjouma and N. Yakymets, ‘‘A framework for model-based depend-
ability analysis of cyber-physical systems,’’ in Proc. IEEE 19th Int. Symp.
High Assurance Syst. Eng. (HASE), Jan. 2019, pp. 82–89.

[42] S. Dhouib, S. Kchir, S. Stinckwich, T. Ziadi, and M. Ziane, ‘‘Robotml,
a domain-specific language to design, simulate and deploy robotic appli-
cations,’’ in Simulation, Modeling, and Programming for Autonomous
Robots. Berlin, Germany: Springer, 2012, pp. 149–160.

[43] P. Helle, ‘‘Automatic SysML-based safety analysis,’’ in Proc. 5th
Int. Workshop Model Based Architecting Construct. Embedded Syst.,
New York, NY, USA, 2012, p. 19–24.

[44] K. Thramboulidis and S. Scholz, ‘‘Integrating the 3+1 SysML view model
with safety engineering,’’ in Proc. IEEE 15th Conf. Emerg. Technol. Fac-
tory Autom. (ETFA ), Sep. 2010, pp. 1–8.

[45] G. Biggs, T. Sakamoto, and T. Kotoku, ‘‘A profile and tool for mod-
elling safety information with design information in SysML,’’ Softw. Syst.
Model., vol. 15, no. 1, pp. 147–178, Feb. 2016.

[46] M. Muller, M. Roth, and U. Lindemann, ‘‘The hazard analysis profile:
Linking safety analysis and SysML,’’ in Proc. Annu. IEEE Syst. Conf.
(SysCon), Apr. 2016, pp. 1–7.

[47] A. Baklouti, N. Nguyen, F.Mhenni, J.-Y. Choley, and A.Mlika, ‘‘Improved
safety analysis integration in a systems engineering approach,’’ Appl. Sci.,
vol. 9, no. 6, p. 1246, Mar. 2019.

[48] SEBoK. (2019). System Life Cycle Process Models: Vee. Accessed:
Mar. 11, 2020. [Online]. Available: https://www.sebokwiki.org/w/index.
php?title=System_Life_Cycle_Process _Models:_Vee&oldid=59218

[49] Road vehicles–Functional safety–Part 3: Concept Phase, Document ISO
26262-2:2018(en), 2018.

[50] E. Steven and R. Antoine. (Feb. 2017). Open-PSA Model Exchange
Format, Version 2.0.d-120-g703be91. [Online]. Available: https://open-
psa.github.io/mef/_downloads/opsa_mef.pdf

[51] A. Rauzy, XFTA: An Open-PSA Fault-Tree Engine. Paris, France: AltaRica
Association, 2014.

[52] O. D. Altan, ‘‘Vehicle architecture for field testing forward collision warn-
ing and adaptive cruise control,’’ in Proc. 2nd IFAC Conf. Mech. Syst.,
Berkeley, CA, USA, vol. 35, no. 2, pp. 203–208.

[53] O. Rakhimov. (Jan. 2018). Rakhimov/scram: Transition to C++17.
[Online]. Available: https://doi.org/10.5281/zenodo.1146337

RAHUL KRISHNAN received the M.S. degree
in robotics engineering from the Worcester
Polytechnic Institute (WPI), USA, in 2017, where
he is currently pursuing the Ph.D. degree in
systems engineering with the Electrical and
Computer Engineering Department. His research
interests include model-based systems engineer-
ing (MBSE) and safety analysis.

SHAMSNAZ VIRANI BHADA (Member, IEEE)
received the Ph.D. degree from the Industrial
and Systems Engineering University of Alabama,
Huntsville, in 2008. She is currently an Assis-
tant Professor in systems engineering with the
Electrical and Computer Engineering Depart-
ment, Worcester Polytechnic Institute (WPI). Her
research interests include applying model-based
systems engineering to safety analysis and policy
modeling and digitization.

VOLUME 8, 2020 146497


