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ABSTRACT Risk and susceptibility mapping of groundwater salinity (GWS) are challenging tasks for
groundwater quality monitoring and management. Advancement of accurate prediction systems is essential
for the identification of vulnerable areas in order to raise awareness about the potential salinity susceptibility
and protect the groundwater and top-soil in due time. In this study, three machine learning models
of Stochastic Gradient Boosting (StoGB), Rotation Forest (RotFor), and Bayesian Generalized Linear
Model (Bayesglm) are developed for building prediction models and their performance evaluated in the
delineation of salinity susceptibility maps. Both natural and human effective factors (16 features) were
used as predictors for groundwater salinity modeling and were randomly divided into the training (80%)
and testing (20%) datasets. The models were evaluated using testing datasets after calibration using the
selected features by recursive feature elimination (RFE) method. The RFE indicated that modeling with
8 features had better performance among 1 to 16 features (Accuracy = 0.87). Results of the groundwater
salinity prediction highlighted that StoGB had a good performance, whereas the RotFor and Bayesglm had
an excellent performance based on the Kappa values (> 0.85). Although spatial prediction of the models was
different, all of the models indicated that central parts of the region have a very high susceptibility which
matches with agricultural areas, lithology map, the locations with low depth to groundwater, low slope, and
elevation. Additionally, areas near to the Maharlu lake and locations with a high decline in groundwater
are also located in the very high susceptibility zone, which can confirm the effects of saltwater intrusion.
The susceptibility maps produced in this study are of utmost importance for water security and sustainable
agriculture.

INDEX TERMS Groundwater salinity, hazard, recursive feature elimination, stochastic gradient boosting,
rotation forest, Bayesian generalized linear model.

I. INTRODUCTION

In arid areas, the essentials of life, economic growth, agricul-
ture, and industries highly rely on groundwater as essential
natural storage to make up against a shortage of surface
water [1]-[4]. While the climate change, rapid urban develop-
ment, unsewered disposal, constructions, mining, and other
industrial pollutants are constantly threatening the quality
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and quantity of groundwater; generally the oil and gas
production, as well as agricultural practices of overusing
pesticides and fertilizers more than any anthropogenic activ-
ities, are contributing to the groundwater contamination and
scarcity [5]-[16]. Various salts (including nontoxic and toxic
ions), minerals, heavy metals, microorganisms, pathogens,
petroleum pollutants, and nutrients are among the major
contaminators [17]-[22]. The salinity of groundwater may
have various origins of natural and man-made causes [23].
As one of the main natural causes, the rock weathering
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phenomenon realizes minerals, and over time, it is washed to
the groundwater causing salinity [24], [25]. However, during
the past decades, the excessive withdrawal of groundwater
using numerous deep wells for irrigation purposes has been
part of the major contributor to the rise of unnatural salinity
level [26] and also saltwater intrusion (SWI) [27] resulting
in a depletion of groundwater resources for sustainable and
quality irrigation which has become a major environmental
concern [24], [28]. Furthermore, irrigation using water with
a high level of groundwater salinity (GWS) can permanently
damage the top-soil through continuous salinization of the
land surface [29]-[32]. Thus, risk mapping and salinity
susceptibility assessment of the groundwater in the early
stages is very important to protect soil, groundwater, and crop
production [33]-[35].

Producing risk maps and susceptibility prediction models,
particularly in arid areas, is essential for effective groundwa-
ter quality monitoring and management so as to regulate and
enforce policies in due time. As the recovery from salinity and
other contaminations may take a long time (due to the slow
movement of groundwater), the environmental protection
policies have been focused on prevention [36]. Delineation
of high-risk zones, mapping vulnerable areas to salinity,
and hazard prediction have become essential for sustainable
land use planning, agricultural strategies and crop selec-
tion, water supply management, water security, and policy-
making [37]-[42]. Literature includes various scenarios of
risk maps and hazard prediction models used for informed
policy-making in arid areas around the world [43]-[50].

Physically-based salinity modeling includes the geo-
chemical, hydrogeochemical, hydro-chemical as well as
solute transport modeling tools which are often used for
identifying the source and dynamics of salinity and risk
assessment of groundwater through considering isotopic or
non-isotopic geochemical and physicochemical parameters
of aquifer [51]-[55]. Nassery and Kayhomayoon [56] and
Stephens et al. [57] present models based on geophysi-
cal log analysis and aqueous geochemical measurements
for salinity mapping in the arid area of Isfahan, Iran, and
California, USA, respectively. Geochemical and geostatisti-
cal models integrated with GIS-based mapping have recently
been used for mapping, monitoring the salinity, and assess-
ment of the groundwater governance [51], [55], [58], [59].
Computational hydrologic modeling platforms, e.g. DRAIN-
MOD [60], have been widely used to predict salinity of
drainage water used in irrigation [61]. A number of numerical
models and finite element analyses have also been used for
salinity prediction, e.g., SUTRA, RMA-10 [62]. Statistical
based models such as multivariate statistical analysis
[63], [64], cluster analysis and multiple linear regres-
sions (MLR) [59], [65]-[67], linear discriminant analy-
sis [68], transient modeling [69], Bayesian kriging [70]
have been used to study groundwater salinity and its origin.
Sofiyan Abuelaish and Camacho Olmedo [71] developed a
statistical model based on linear and multiple regression
analysis to predict the 5-year ahead salinity value in the arid
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areas of Gaza, Palestine. Amiri-Bourkhani et al. [72] and
Ashrafzadeh et al. [73] used geostatistical data and krig-
ing methods to develop predictive models for probabilistic
and zoning map of salinity in the arid areas of Iran. Time
series analysis for modeling of groundwater salinity can
be found in the literature [74], [75]. For instance, Cook
et al. [76] predicted the groundwater salinity using a dis-
tributed parameter recharge model in the SW Murray Basin.
They used variables of depth to groundwater, recharge, water
content of the unsaturated zone, and soil salinity as input
data. Gundogdu and Akkaya Aslan [77] in a similar case
predicted the salinity maps. However, time-series predic-
tion for salinity is associated with a number of drawbacks
including accuracy and generalization [78], [79]. Artificial
intelligence (AI) methods and applications have already been
reported as efficient and popular methods in groundwa-
ter modeling. However, among the AI methods, a limited
number of soft computing models are available in literature
for modeling the salinity hazard or irrigation risk mapping,
e.g. Abdi et al. [80] proposed a fuzzy logic model and
Attwa et al. [81] genetic algorithm (GA) in the arid areas
of Iran and Egypt respectively. The use of machine learning
methods also has been limited in a few modeling experiments
even though they appeared more convenient and performed
with higher accuracy, better generalization ability, more reli-
ability, and efficiency compared to the statistical, numeri-
cal, and physical models. For instance, Alagha et al. [82]
used artificial neural networks (ANNs) and support vector
machine (SVM) to model salinization processes with higher
performance and more simplicity compared to statistical
methods. Yu et al. [53] also reported machine learning models
of back propagation ANN (BP-ANN) and neuro-fuzzy (NF)
superior to the conventional linear models in the prediction
of groundwater salinity hazards. Although applications of
machine learning methods in various realms of hydrologi-
cal modeling have already been established, they have not
received adequate attention for groundwater modeling, par-
ticularly for salinity mapping and hazard prediction. Thus, the
literature misses the application of various machine learning
methods for modeling spatial groundwater salinity and the
evaluation studies on their performance and accuracy.

This study in order to fill an existing gap in literature aimed
to predict groundwater salinity probability for understanding
susceptible areas and supporting manager communities to
adopt the best decisions. Therefore, the main purposes of
the study were: (i) to identify key variables related to the
groundwater salinity, (ii) to predict the spatial probability of
the groundwater salinity, (iii) to compare the performance of
machine learning models in prediction of the groundwater
salinity probability, and (v) to determine susceptible regions
of the study area in view of the groundwater salinity.

Il. MATERIAL AND METHODS

A. DESCRIPTION OF STUDY AREA

Sarvestan plain, which is a coastal plain in the south of
Maharlu lake in the Fars province, Iran, is extended between
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latitudes 0f 29° 1’ 11”* t0 29° 26’ 52”” N and longitudes of 52°
43’ 45 to 53° 27’ 49” E and was selected as the study area
(Fig. 1). The area of the region is about 1688.2 square kilome-
ters. Long-term yearly precipitation is about 280 mm in which
usually summers are without precipitation, while yearly evap-
oration is about 2800 mm. Temperature averagely varies
between 6.3 °C to 29.5 °C respectively for daily minimum
and maximum temperatures. The climate of the study area is
mostly semiarid-cold according to the extended-De Martonne
method [83], nevertheless, some areas mostly around the
Maharlu lake are semiarid-moderate. Land uses of the study
area mostly are rangeland and agricultural areas (respectively
about 65.7 % and 28.5 % of the study area), while other
land uses comprise approximately 5.8 % of the study area
(Fig. 2n). The main water source for irrigation purposes is
groundwater. Due to the importance of the groundwater in
this area, and because of the presence of salty formations [84]
and existence of the Maharlu lake, a saline lake in Iran [85]
located in the north of the study (Fig. 1), the groundwater
can be degraded through dissolution of halite minerals and
intrusion of saltwater owing to groundwater pumping [86].
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FIGURE 1. Location of the study area.

B. GROUNDWATER SALINITY DATA

Salinity is the total amount of inorganic solid material dis-
solved in water and can be calculated directly by measuring
the presence of various salts in water [87], [88]. But there is a
feasible and indirect way to express salinity; by assessing the
capability of the water to conduct an electrical current [56].
Therefore, the real and best way to express salinity is assess-
ing the electrical conductivity (EC) of the water, which is
a good measure of salinity susceptibility as it reflects the
total dissolved solids [89], [90]. In this study, the researchers
have collected EC data from 2003 to 2017 from the Iranian
Water Resources Management Company (IWRMC). There
were a number of 83 wells in the study area which have
measured the groundwater quality data (Fig. 1). The data
did not have an appropriate distribution for months or in
seasons, so a yearly average value of EC for wells during
the period of 2003 to 2017 was calculated. According to
the literature, values of EC more than 2250 ©S/cm highlight
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an unsuitable water quality and it is even not suitable for
irrigation [89]. Therefore, a threshold equal to 2250 pS/cm
for EC was considered to separate saline and non-saline wells
and assignment of the values 0 and 1 to model groundwater
salinity. The mean yearly EC data (from 2003 to 2017) for
83 monitoring wells varies from 736.4 to 70257.5 uS/cm.
Due to the high level of EC in the study area, understanding
susceptible and safe zones in view of groundwater salinity
could help managers to have better planning for groundwater
utilization and assignments, as well as to control susceptible
areas.

C. GROUNDWATER SALINITY CONDITIONING FACTORS
(GSCF)

The origin of the groundwater salinity is because of the
co-existence of both natural factors and human activities
[54], [81]. According to a survey conducted by researchers
within literature, e.g. [88], [91], both natural and human
effective factors on groundwater salinity including topo-
graphic factors, topographic wetness index (TWI), distance
from stream (DFS), distance from lake (DFL), distance from
fault (DFF), depth of groundwater (DTGW), groundwater
withdrawal (GWW), decline of groundwater level (DGWL),
evaporation, precipitation, land use, lithology, and soil type
of the study area were considered as GSCF in this study.

Topographic factors such as elevation, slope, aspect, and
curvature (Fig. 2a,b,c,d) are effective in flushing and export-
ing the salty materials from the soil into fluvial plains, and
transporting and accumulating it into lowlands. An ALOS
PALSAR Digital Elevation Model (DEM) 12.5 x 12.5 m
(https://vertex.daac.asf.alaska.edu/) was used to extract topo-
graphic factors. TWI (Fig. 2e) and DFS (Fig. 2f) can affect the
groundwater through waterlogging and infiltration of surface
water, leaching and dissolving of solid materials within the
unsaturated zone into groundwater [92]. Also, DFL (Fig. 2g)
as an index indicating proximity to a lake for considering
effects of the intrusion probability of saline water from the
lake was considered. Existence of fault in the study area can
affect the quality of the groundwater through conjunction
with surface water, so, DFF (Fig. 2h) was considered. Layers
of DFS, DFL, and DFF were calculated using the Euclidean
tool in ArcGIS. Also, TWI was calculated using the SAGA
GIS software.

From the groundwater, three indices DTGW (Fig. 2i),
GWW (Fig. 2j), and DGWL (Fig. 2k) were calculated.
DTGW (also called water-table depth) could be affected
by the evaporation, irrigation water, and conjunction with
rivers [88]. Also, groundwater salinity can be increased using
GWW and DGWL [93], this increases the potential for saline
water intrusion into the groundwater. The groundwater data
for each well were received from the IWRMC, and a yearly
average map from 2003 to 2017 was produced in the ArcGIS
software.

Climate data such as evaporation and precipitation are
the natural factors that have effects on the groundwater.
Precipitation can cause groundwater salinity through
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recharge, infiltration, and dissolving materials within the
soil [91]. Also, evaporation can affect the groundwater
because some parts of the study have low DTGW and were
near to the earth’s surface (about 3 m, Fig. 2i). The evap-
oration and precipitation data were received from IWRMC
and a yearly average map from 2003 to 2017 for them was
produced using the IDW method (Fig. 21 and m). Landuse
such as domestic and industrial wastewaters, agricultural fer-
tilizers, and irrigation water can be affected the groundwater
salinity [33], [40], [52], [56]. Soil type and lithology, directly
and indirectly, are effective in groundwater salinity. Direct
effects include the presence of salts and evaporative rocks in
the saturated and unsaturated zones, as well as water-rock
interactions [91], and indirect effects are an influence on
recharge and infiltration rates. Landuse, lithology, and soil
type maps of the study area were received from IWRMC.

D. FEATURE SELECTION

Although features considered in this study (GSCF, Fig. 2)
were based on a survey and influences on the groundwater,
however, the existence of the redundant features could affect
results. On the other hand, various combinations of features
would have different results. So, a successful feature selection
method was considered to identify key features. In this study,
recursive feature elimination (RFE) [94] method was used to
find and select the key feature combinations among the GSCF
that was used in this study.

RFE is a machine learning technique that builds a model
according to the predictors’ subsets and computes them
individually and then scores them through feature selection
(FS). The model is reconstructed only based on the most
important predictors and the less important predictors are
eliminated. The number and the size of predictors’ subsets
can be adjusted as a mean for the model performance opti-
mization. RFE has been widely used in model construction
in various scientific fields. It has also been recently used for
groundwater contamination prediction where it is used for
identifying the best variable combination for each machine
learning model [95]. However, the application of RFE has not
been explored for salinity modeling and risk mapping. As the
RFE is a wrapper, the random forest (RF) algorithm is used to
train it [96]. Furthermore, selection of the best features was
established upon the cross-validation with 5-fold and metric
of accuracy using Caret R package [97]-[99].

E. MODELING APPROACHES

In this study, three machine learning models of probability
prediction including stochastic gradient boosting, rotation
forest, and Bayesian generalized linear model were employed
to model groundwater salinity susceptibility:

Stochastic Gradient Boosting (StoGB): StoGB has been
developed by Friedman [100] to improve the performance
of his gradient boosting introduced earlier, through including
randomness to the function estimation procedures. The ran-
domness has been included using the adaptive bagging [101]
for the least-squares fitting of additive expansions which
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replaces the base learner in gradient boosting procedures
with the bagging learning. Further, at each boosting step, it
substitutes random residuals for the ordinary ones. At each
iteration, a subsample of the training data is drawn randomly
from the training data. This randomly selected subsample is
then used, instead of the full sample, to fit the base learner
and compute the model update for the next iteration [100].
The model has four parameters including a number of trees
(n.trees), maximum nodes per tree or number of leaves
(interaction.d), learning rate (Shrinkage), and a minimum
number of samples in tree terminal nodes (n.minobsinn),
which are tuned within a 5-fold cross-validation procedure.
The StoGB has been previously used for groundwater mod-
eling for the purpose of prediction of the hydro-chemical
composition of groundwater with promising results [102].
Further application of StoGB has been limited in hydrological
modeling [103]. In this study, the R package of StoGB,
which is known as gbm was used to implement this model.
A more detailed description of the model is presented in
Friedman [100].

Rotation Forest (RotFor): Rodriguez et al. [104] advanced
the feature extraction machine learning method of RotFor for
generating classifier ensembles. To handle the training data
used for classifier ensembles, the feature set is randomly split
into (K) number of subsets which are prepared by principal
component analysis (PCA) [105] to retain the data variability.
Then, to encourage simultaneous individual accuracy of the
ensemble, equal to the number of subsets, axis rotations take
place to form the new features for a base classifier. RotFor
uses decision trees that perform well in showing a high
level of sensitivity to the rotation of the feature axes. The
RotFor has two parameters including the number of variable
subsets (K) and Ensemble size (L). RotFor has been very
recently used as the base classifier in spatial modeling of
groundwater with promising results [106], and its popularity
in other hydrological susceptibility mappings [107]-[109].
In this study, the model parameters are tuned within the
5-fold cross-validation procedure. The rotationForest R pack-
age [104] was applied to execute the RotFor. More description
of the model can be found in Rodriguez et al. [104].

Bayesian Generalized Linear Model (Bayesglm): General-
ized Linear Models (GLMs) [110] represents a group of mod-
eling techniques e.g. Bayesian, logistic regression, through
a general modeling approach to several useful distributions,
including the gamma, Poisson, and binomial, suitable for a
broad range of response modeling problems [111]. While
modeling with GLM, the response can be specified with a
higher degree of flexibility in the modeling, resulting in a
more convenient structure. However, it needs parametriza-
tions that are difficult to interpret and solutions that are not
comprehensive. The observation model, linear predictor, and
link function are the three building block components of
GLM [110]. In a Bayesian GLM, or so-called Bayesglm,
anormal prior is often chosen for the linear predictor’s param-
eters. This conjugate prior to the normal linear model is a
GLM with a Gaussian observation model and identity link
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function. A normal prior resulting from expert opinion is
therefore sought for the unknown coefficients in Bayesian
GLMs. In this study, R’s arm package [112] was applied
to perform the Bayesglm. See Hosack et al [111] and
Hosseini et al. [113] for more details of the Bayesglm model.

F. MODEL CALIBRATION AND PERFORMANCE
ESTIMATION

The database including predictors and predictand is randomly
divided into the training (80 %) and testing (20 %) datasets.
The models were evaluated using testing datasets after cali-
bration using the selected features by RFE. The researchers
used 5-fold cross-validation to optimize the models. The
process was repeated 50 times and two key metrics of classi-
fication including Accuracy (Acc) and Kappa (K) were used
to assess the models’ performance by calculating a contin-
gency table and hit and miss analysis. Accuracy indicates
the percentage of correct classification. Kappa highlights the
likelihood of agreement by chance using probabilities of the
model classification [114]. This statistic is classified into
five classes: poor (K < 0.4), moderate (0.4 < K < 0.55),
good (0.55 < K < 0.85), excellent (0.85 < K < 0.99), and
perfect (0.99 < K < 1.00); indicating the performance of the
classification models [115]. These metrics are calculated as
follows:

B H+CN
" H+FA+M+CN

where H, FA, M, and CN are calculated using the contingency
table and respectively correspond with the number of hits,
false alarms, misses, and correct negatives [116].

_ Acc — P,
- 1-pP,

where P, is the expected probability of chance agreement
[117], [118], which is calculated as follow:

_(H + FAYH + M) + (M + CN)(FA + CN)
‘T (H+ FA+M + CN)?

Acc

ey

(@)

3

IIl. RESULTS AND DISCUSSION
A. RESULTS OF FEATURE SELECTION
Results of the recursive feature elimination (RFE) method
for determining the best number of features are reparented
in Fig. 3. The accuracy metric was considered to evaluate
the RFE performance. Each box indicates aggregated model
performance for 5-fold cross validation during many times of
model runs (about 700 runs). As can be seen, the RFE indi-
cates that modeling with 8 features had better performance
among 1 to 16 features (Accuracy is about 0.87) (Fig. 3).
The average values of Accuracy and Kappa are represented
in Table 1. The Accuracy and Kappa values for the number
of 8 features are equal to 0.87 and 0.64, respectively, which
are the highest in comparison with other numbers of features
(Table 1).

Importance of the features was determined based on their
occurrence in the model runs (Fig. 4). As can be seen from
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FIGURE 3. Performance of the recursive feature elimination method
versus the number of features.

TABLE 1. Average values of the RFE performance.

Number of features Accuracy Kappa
1 0.74 0.39
2 0.80 0.54
3 0.81 0.56
4 0.76 0.42
5 0.77 0.45
6 0.81 0.57
7 0.80 0.57
8 0.87 0.64
9 0.80 0.54
10 0.80 0.49
11 0.78 0.47
12 0.81 0.56
13 0.78 0.45
14 0.78 0.43
15 0.80 0.49
16 0.80 0.58

Fig. 4, the depth of groundwater and elevation contributes
as the input features for more than 96 % of the model runs.
According to the RFE results, the number of 8 features
must be selected for groundwater salinity modeling (Fig. 3).
So, variables of depth to groundwater (DTGW), elevation,
distance from fault (DFF), lithology, decline of groundwa-
ter level (DGWL), distance from lake (DFL), groundwater
withdrawal (GWW), and distance from stream (DFS) were
selected as key features respectively with occurrence fre-
quency equal to 97.5%, 96.3%, 81.3%, 78.8%, 71.3%, 61.3%,
60%, and 50 % in all model runs (Fig. 4).

B. RESULTS OF MODEL EVALUATION
The StoGB model was optimized with 50 runs, and results
indicated that the best value for learning rate (Shrinkage)
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Depth to groundwater 97.5
Elevation 96.3
Distance from fault 81.3
Lithology 78.8

Decline of groundwater level 1 713

Distance from lake 1 613

Groundwater withdrawal ] 60.0
Distance from stream [T 50.0
Evaporation [ ] 413
Slope 7777 412
TWI /77 388
Precipitation [ 378
Landuse 777777 325
Aspect 7] 288
Curvature 17 16.3
Soil type 1 16.3

FIGURE 4. The frequency of features occurrence (%) in the RFE runs.

was equal to 0.1, also, 200 for the number of trees (n.trees),
3 for maximum nodes per tree (interaction.d), and 10 for
the minimum number of samples in the tree terminal nodes
(n.minobsinn). Fig. 5 shows the variation of Accuracy vs
the number of trees (n.trees) and maximum nodes per tree
(interaction.d). Predictive performance of the StoGB was
calculated using the training data set, and results indicated
good performance according to the Accuracy (80.01) and
Kappa (0.79) (Table 2).

Maximum nodes per tree (interaction.d)

1 2 3 4 5
0.92 6 7 ——8 —9 10
0.9 S
B
5088 A NG
£ g/
§ 0.86
g .
8 0.84 -
=
E
0.82
/
0.8

50 100 150 200 250 300 350 400 450 500
Number of trees (n.trees)

FIGURE 5. The variation of accuracy vs number of trees (n.trees) and
maximum nodes per tree (interaction.d).

TABLE 2. Predictive performance of the models for the training dataset.

Statistic StoGB RotFor Bayesglm
Accuracy (%) 80.1 86.7 86.7
Kappa 0.79 0.86 0.86

Results of the optimization for the RotFor model indicated
that the best number of variable subsets (K) was equal to 2,
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and the best Ensemble size (L) was equal to 3 with the objec-
tive function of accuracy equal to 89.7 % (Fig. 6). Amounts of
Accuracy and Kappa were respectively 86.7% and 0.86 indi-
cating excellent performance (Table 2). After 5-fold cross-
validation, the final model result for Bayesglm indicated that
accuracy was 86.7 and Kappa was 0.86 (excellent) (Table 2).

Variable subsets (K)
——1 2 —o—4 —o—38

0.9

0.85

0.8 A1

Accuracy (cross-validation)
P
P
O

0.75

12 15 18 21 24 27 30
Ensemble size (L)

W
o A
o

FIGURE 6. The variation of accuracy vs variable subsets (K) and
Ensemble size (L).

Like the RotFor model, results of the Bayesglm indicated
that the model had an excellent performance in the prediction
of groundwater salinity (Accuracy and Kappa were respec-
tively 86.7% and 0.86) (Table 2). The coefficients estimated
by Bayesglm for each variable were represented in Table 3.

TABLE 3. The coefficients estimated by Bayesglm model for each variable.

Variable Coefficient
Intercept 1.70
Depth to groundwater -1.30
Elevation -1.03
Distance from fault -0.67
Lithology -0.54
Decline of groundwater level 0.72
Distance from lake 0.16
Groundwater withdrawal -0.08
Distance from stream -0.19

According to the models’ evaluation, the RotFor and
Bayesglm indicate the superior performance of the StoGB.
Although StoGB had a good performance, the RotFor and
Bayesglm had an excellent performance based on the Kappa
values (K > 0.85) [115].

C. SPATIAL PREDICTION OF GROUNDWATER SALINITY

Three individual machine learning algorithms (i.e., StoGB,
RotFor, and Bayesglm) were applied to predict groundwater
salinity in the area of the region. The models produced the
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FIGURE 7. Probability (left) and susceptibility (right) maps of groundwater salinity: (a) StoGB, (b) RotFor, and

(c) Bayesgim.

probability of groundwater salinity maps with a cell size
of 12.5 m. The probability maps vary between zero to 1,
which respectively indicates the lowest and highest proba-
bility of groundwater salinity (Fig. 7). The probability maps
were classified using equal interval classification method
with an interval 0.2 into five classes: very low (0 — 0.2), low
(0.2-0.4), medium (0.4 — 0.6), high (0.6 — 0.8), and very high
0.8-1).

As can be seen, the very low class is highest for the StoGB
model (1210.8 km?) and includes the most area of the region,
whereas the medium susceptibility class predicted by this
model is lowest (70.8 km2) (Table 4). Most of the study

VOLUME 8, 2020

area was placed in medium (mostly marginal parts with an
area equal to 704.6 km?) and very high (mostly central parts
with an area equal to 628.7 km?) susceptibility classes by the
RotFor model, whereas the class of high susceptibility was
lowest (56.9 km?) (Table 4). The Bayesglm predicted that
most of the study area has very low (702.2 km?) and very high
(596.4 km?) susceptibility (Table 4), respectively located in
the boundary and central of the study area (Fig. 7).

Spatial modeling results highlighted that two models of
the RotFor and Bayesglm produced strong similarities in
the development of the probability and susceptibility maps.
It should be noted that these two models have performed
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TABLE 4. Area (km2) of susceptibility class for groundwater salinity map
of predictive models.

Hazard class

StoGB  RotFor Bayesglm

Very low 1210.8 121.6 702.2
Low 144.8 176.4 102.3
Medium 70.8 704.6 114.6
High 113.9 56.9 172.7
Very high 147.9 628.7 596.4

better than the StoGB model (Table 2). Although prediction
of the models was different, all of the models indicated that
central parts of the region have a very high susceptibility in
which this class matches through both probability and suscep-
tibility maps predicted by models of the RotFor and Bayesglm
(Fig. 7). The very high class of the susceptibility maps
predicted by models, especially the RotFor and Bayesglm
(Fig. 7), are matched with agricultural areas, lithology map,
the locations with low depth to groundwater, low slope, and
elevation (Fig. 2). Additionally, areas near to the Maharlu
Lake and locations with a high decline in groundwater are
located in the very high susceptibility zone.

Howeyver, it is obvious that a set of the abovementioned
factors which may affect the salinity of the groundwater
in the region are: (i) topographic effects, which can cause
flushing and exporting the salty materials from the soil and
accumulating it in lowlands; (ii) decline in groundwater
and proximity to lake, which can cause intrusion of salt-
water [86], [93]. In this regard, Jahanshahi and Zare [119]
confirmed the contribution of the saltwater intrusion from
Maharlu lake to deteriorate the Sarvestan plain groundwater;
(iii) low depth to groundwater along with the agricultural area
in the central parts, which can cause infiltration of irrigation
water, leaching and dissolving solid material into groundwa-
ter [35], [92]. Also because of low depth to groundwater,
Jahanshahi and Zare [119] demonstrated the effects of evapo-
ration from shallow groundwater on the quality of groundwa-
ter in some parts of this plain; and (v) lithology effects, which
includes salty formations of the Sachoun (lithology unit
PeEsa includes the evaporate minerals of halite and gypsum),
Razak (lithology unit Omr includes the marl interbedded with
limestone), Aghajari (lithology unit MPIfgp which includes
calcareous sandstone and red marl with interbedded gypsum),
and Hormoz (lithology unit pC-Ch includes mainly the salts
and other evaporate rocks) (Fig. 20) [119]. Although mostly,
these formations are located in the border of the very high
susceptibility zones, however, drainage of the plain causes
the salty materials to be flushed and deposited in lowlands
(which have mostly Qft2 lithology: low-level piedmont fan,
and valley terrace deposits) and penetrate into groundwater.
This is confirmed by Raeisi et al. [84] who, using optical and
chemical methods, indicated that the dissolution of gypsum
and other evaporate materials, from surrounding formations
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of the plain, with water expelled from those are the main
reasons for sodium-chloride water type and the poor quality
of groundwater in this area.

IV. CONCLUSION

Producing the susceptibility map of salinity for groundwater
is of utmost importance for the water security of arid areas
and sustainable agriculture. In this study, the best features are
selected by the RFE method, and the three machine learning
models of StoGB, RotFor, and Bayesglm showed promising
results in the prediction of susceptibility maps. All of the
models indicated that central parts of the region have a very
high susceptibility which matches with agricultural areas,
lithology map, the locations with low depth to groundwater,
low slope, and elevation.

In this study, due to irregular monitoring and lack of a
continuous sampling for each month and season, modeling
was conducted using mean yearly EC of wells during a period
of 15 years (2003-2017). However, variations of EC during
seasons and overtime may be effective on a susceptibility
map, so it is recommended considering impacts of climate
variability and land-use change on susceptibility map by
dividing a longer time period into sub-periods for future
studies in other regions. Although the sodium adsorption
ratio (SAR), as well as the EC, affects groundwater salinity,
investigation of the observed groundwater data in this study
indicated low values of the SAR. However, integration of
salinity susceptibility (from EC) and sodicity (alkalinity) sus-
ceptibility (from SAR) maps during the next studies can be
worthwhile to indicate the status of the groundwater quality.

The susceptibility maps produced in this study can
increase the awareness of farmers from susceptible areas
to control their practices and to adapt cropping systems
in order to deal with the groundwater salinity, and it also
helps decision-makers to change both land use and land
management.
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