
Received July 19, 2020, accepted August 2, 2020, date of publication August 7, 2020, date of current version August 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3015043

Differential Evolution Based Manifold Gaussian
Process Machine Learning for Microwave Filter’s
Parameter Extraction
XUEZHI CHEN , YUBO TIAN , TIANLIANG ZHANG, AND JING GAO
School of Electronics and Information, Jiangsu University of Science and Technology, Zhenjiang 212003, China

Corresponding author: Yubo Tian (tianyubo@just.edu.cn)

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 61771225, in part by the
Postgraduate Research and Practice Innovation Program of Jiangsu Province, China, and in part by the Qinglan Project of Jiangsu Higher
Education.

ABSTRACT Gaussian process (GP) is a rapidly developing supervised machine learning (ML) method
in recent years, which has been widely used in the establishment of surrogate models in the field of
electromagnetics. However, it has the problems of large sample demand, high computational complexity
and low accuracy when processing high dimensional data. To solve this problem, a manifold Gaussian
process (MGP) ML method based on differential evolution (DE) algorithm is proposed in this study. For
the proposed method, the DE algorithm is used to get dimension reduction parameters, and the method can
work very well with the optimized parameters. Compared with the traditional GP model, the dimensionality
reduction method based on Isomap is adopted to simplify the mapping relationship between data pairs.
Therefore, the model is more suitable for the problem of insufficient samples and high data dimension.
In this study, the proposed DE-based MGP (DE-MGP) is applied to the extraction of coupling coefficients
of the fourth-order and sixth-order coupling filters, in which the test error of the fourth-order coupling filter
surrogate model can be reduced to 0.84%, and the test error of the sixth-order coupling filter is expected to
be reduced to 1.53%, which proves that the proposed method is very effective.

INDEX TERMS Manifold Gaussian process, isometric mapping, differential evolution, parameter
extraction.

I. INTRODUCTION
As an important part of wireless communication, microwave
filter has a long history. As early as the 1930s, Mason and
Sykes used ABCD parameters to derive a large number of
useful filter image impedance phase and attenuation func-
tions [1]. In the 1950s, for the design of synchronously tuned
cascade resonant filters, the S.B.Cohn designed a direct-
coupled cavity filter with transmission zero at wireless dis-
tance based on the low-pass filter prototype [2]. In the 1960s,
J. D. Rhodes eliminated the redundant coupling parameters
by rotating the coupling coefficient matrix of the transforma-
tion filter, making the design structure of the filter simple [3].
In the 1970s, Atia and Williams developed a comprehensive
general theory that can obtain the topological structure of
coupled resonance filters of less than the fourth order by
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analytical method [4]. In the 1980s, Cameron developed this
theory and generalized the original Chebyshev function into
a generalized Chebyshev function and applied it to the syn-
thesis of cross-coupled filters. In Cameron’s theory, we can
reduce the synthesis work to the calculation coupling matrix
by determining the low-pass prototype filter function of the
filter [5], [6]. In the 1990s, Cameron proposed a similar
transformation method to eliminate the coupling coefficient
matrix [7]. In the early 21st century, Amari proposed the
circuit optimization method, which is not limited by the
coupling topology structure of the filter and can easily obtain
the coupling matrix we need [8].

In recent years, there have been many new design meth-
ods for microwave filters. In 2013, Tian Yubo et al. real-
ized the optimization of the frequency characteristics of
the electric band-gap structure of bow unit through particle
swarm optimization algorithm [9]. In 2014, Otani H et al.
carried out high-speed automatic optimization design of the
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filter through genetic algorithm, and obtained better design
results [10]. In 2019, in order to provide a simple and effective
solution to the complex tuning problem of microwave filter,
J. C. Melgarejo et al. proposed the space mapping technology
of microwave filter, and verified the method by experimenta-
tion of adjusting the six-pole induction waveguide filter [11].

To solve these problems, many researchers are now intro-
ducing machine learning (ML) techniques into the design
of microwave devices. The surrogate model technology has
gradually come into our field of vision. By establishing an
surrogate model for microwave devices, we can realize its
rapid simulation and optimization [12]. At the present stage,
functional surrogate modeling techniques for microwave
devices mainly include artificial neural network (ANN) [13],
support vector machine (SVM) [14], polynomial regression
(PR) [15] and kernel extreme learningmachine (KELM) [16].
However, with the study of Bayesian neural network, a new
training model – Gaussian process (GP) has gradually
attracted people’s attention [17]. This training model has
many advantages such as small sample demand, few training
parameters and flexible acquisition, so it is very suitable for
solving high dimensional nonlinear problems. At present,
GP model has been widely applied in the field of electromag-
netism. From 2009 to 2010, Villiers successfully modeled the
gap antenna fed by ultra wide band (UWB) dual-frequency
coplanar waveguide (CPW) using GPmodel, which indicated
that the GP could be used as an alternative to full-wave anal-
ysis in the design of microwave devices [18], [19]. In 2012,
Jacobs successfully modeled the microwave filter using the
GP of non-standard kernel function [20]. In 2013, Jacobs
proposed a two-stage network modeling method for antenna
input characteristics [21], compared the antenna input charac-
teristics of single mode and ensemble mode with GP model-
ing, and the results showed that the GP model of set mode
had smaller test errors [22]. In 2015, Jacobs proposed the
use of GP to model the resonant frequency of dual-frequency
microstrip antenna, which extended the application range of
Gaussian process in the electromagnetic field [23]. In the
same year, Jacobs proposed a second-stage networkmodeling
method for GP, which was successfully applied to the design
of microwave filters [24]. In 2016, Vargas Cardona et al.
proposed a multi-output GP to enhance diffusion-tensor field
resolution [25]. In 2018, Chen Yi et al. used GP regression
to obtain prior knowledge, and then used knowledge-based
neural network (KBNN) to model electromagnetic prob-
lems. This method greatly reduced the calculation time and
improved the computational efficiency of modeling [26].
In 2019, Xiao-Hong Fan et al. proposed the design opti-
mization of GP fast microwave antenna based on particle
swarm optimization algorithm, and successfully optimized
the substitute model as the fitness function of intelligent
optimization algorithm and obtained the design parameters
we need [27]. In the same year, Xiao-Hong Fan modeled and
optimized the cone-core horn antenna through a coarse grid
GP [28]. In 2020, Jing Gao et al. proposed a semisupervised
learning GP, which combines unlabeled samples to improve

the accuracy of the GP model and reduce the number of
labeled training samples required [29].

Thanks to the unremitting efforts of our predecessors,
we are also deeply inspired when we do relevant
research. In order to further solve the problems of insuffi-
cient samples, high dimensions and high computing cost in
electromagnetic optimization design, this paper proposes a
differential evolution (DE) based manifold GP (DE-MGP)
algorithm, and applies it to the inverse model parameter
extraction of coupled microwave filters [30]. Compared with
the traditional GPmodel, the DE-MGP has better adaptability
to high-dimensional data in the case of the same amount of
data. The dimensionality reduction operation is carried out
on the training data, i.e. the spatial complexity of the data
is reduced, which reduces the dependence of the model on
the amount of data. At the same time, it also greatly reduces
the calculation amount of the model operation. The main
contribution details of this paper are as follows:

1) a differential evolution based manifold Gaussian pro-
cess (DE-MGP) is established. Firstly, different neigh-
borhoods are divided in the data space, and the geodesic
distance between sample points in each neighbor-
hood is calculated by the shortest path algorithm [30].
Secondly, multi-dimensional scaling (MDS) [32] is
used to obtain the projection of the training data in the
low-dimensional space, so as to obtain the isometric
mapping (Isomap) of the training data we need in the
low-dimensional space. Then the processed data are
used as input of the GP to calculate the test error.
Finally, the error is taken as the fitness function of the
DE algorithm, and the dimensionality reduction param-
eters in the Isomap are optimized. This means that
DE algorithm is used to train dimensionality reduction
parameters. After continuous iteration, when the opti-
mization algorithm converges, we can get a set of opti-
mal dimensionality reduction parameters. By applying
this set of optimal parameters in the Isomap, our train-
ing model can be constructed. Compared with simply
combining manifold learning and GP, the advantage
of this method is that it can train not only GP model
but also manifold parameters through DE algorithm,
which we can greatly improve its training efficiency
and generalization ability.

2) In order to verify the training effect of our proposed
algorithm and further improve our theory, we use the
proposed DE-MGP algorithm to extract the inverse
parameters of a fourth-order coupled filter and a
sixth-order coupled filter. In the experiments, we take
the S-parameter of the filter as the system input and
the coupling coefficient matrix as the system output to
establish the model. In the above two filters, we com-
pare the parameter extraction effects of the normal
GP model and the DE-MGP model under the condi-
tions of 300 training samples and 600 training sam-
ples, respectively. It is found that the DE-MGP has
better fitting ability for the two filters under the same
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number of samples, and its test error is much smaller
than the ordinary GP model, which also shows that the
DE-MGP has better adaptability for high-dimensional
data, and its training accuracy depends less on the num-
ber of training samples. These characteristics are very
meaningful for us to deal with the problems in the field
of electromagnetics, which have the disadvantages of
large amount of calculation, insufficient samples and
high cost of obtaining samples.

The rest of this paper is organized as follows. In section
two, we will introduce some of the algorithmic theories used
in our study. In the third part, we will mainly introduce
the training model we proposed in this paper. In the fourth
part, we will conduct experiments with two coupled filters in
different number of samples, and illustrate the advantages of
the proposed model by comparing it with the initial GPmodel
and four classical models. The last part is the summary of this
research and the prospect of future work.

II. RELATED WORKS
In this section, we will introduce some related theories,
including differential evolution algorithm, Gaussian process
and manifold learning theory.

A. DIFFERENTIAL EVOLUTION (DE) ALGORITHM
DE is a kind of intelligent optimization algorithm which can
perform in the way of parallel search. It uses floating-point
vector encoding. The optimal fitness value in solution space is
searched through the continuous evolution of the population.
In the non-linear and non-differentiable continuous space,
the DE algorithm has a good ability of optimization.

In each iteration of DE, the population needs to go through
three steps: variation, crossover and selection. The individual
xi in the initial population {x1, . . . , xn}will continue to evolve
towards the optimal solution, and each individual searches in
the m dimensional space. This process can be described by
the following formulas.

Initialization:

xij = xLij + rand(0, 1)(x
U
ij − x

L
ij ) (1)

Variation:

vi = xr1 + F(xr2 − xr3) (2)

Crossover:

uij(g) =

{
vij(g), rand(0, 1) ≤ CRorj = jrand
xij(g), others

(3)

Selection:

xi(g+ 1) =

{
ui(g), f (ui(g)) ≤ f (xi(g))
xi(g), others

(4)

where xij represents the jth element of the ith individual,
xLij and x

U
ij , respectively, represents its lower limit and upper

limit. xr1, xr2 and xr3 are three different individuals randomly
selected from the current population, and F is the scaling

factor. uij(g) represents the crossover result of the g gener-
ation, CR is the crossover rate, and jrand is a random integer
from 1 to m, so as to ensure that at least one characteristic
of the crossed individuals comes from the mutation result vi.
xi(g+ 1) is an evolutionary progeny.

B. GAUSSIAN PROCESS (GP) MODELING
GP is a random process composed of an infinite number of
random variables that obey the Gaussian distribution, and
any subset of these random variables obeys joint Gaussian
distribution. Its mean value function and covariance function
are respectively expressed as follows:{

m(x) = E[f (x)]
k
(
x, x′

)
= E

{[
(f (x)− m(x)]

[
f
(
x′
)
− m

(
x′
)]} (5)

where x, x′ ∈ Rd is any random variable, m (x) is the mean
value function of the random variable, and k

(
x, x′

)
is the

covariance function. Therefore, we define the GP model as:

f (x) ∼ GP
(
m (x) , k

(
x, x′

))
(6)

In the case that system noise is considered, the training
model is represented as:

y = f (x)+ ε (7)

where ε is the additive noise following a normal distribution,
with amean value of 0 and a variance of σ 2

n , i.e. ε ∼ N (0, σ 2
n ).

x is the input vector, y is the observed value polluted by
noise, and the prior distribution of y is:

y ∼ N
(
0,K+ σ 2

n I
)

(8)

where, K = K (X ,X) is a positive definite covariance matrix
of n × n order symmetry, and matrix elements are used to
measure the correlation between xi and xj. The joint Gaussian
prior distribution consisting of the output y with n training
samples and the output f ∗ with n∗ test samples is[

y
f ∗

]
∼ N

(
0,
(
K (X ,X )+ σ 2

n I K (X ,X∗)
K (X∗,X ) K (X∗,X∗)

))
(9)

where, K (X ,X∗) is the covariance matrix with n × n
∗

order,
andK (X∗,X∗) is the covariance matrix of test output samples
with n∗ × n∗ order.
The covariance function of the Gaussian process model

must satisfy the Mercer condition, that is, any set of its
points must be guaranteed to produce a non-negative definite
covariance matrix. Usually we use the square exponent (SE)
function as the covariance function.

k(x, x′) = σ 2
f exp

[
−0.5

(
x− x′′

)
)
]
M
(
x− x′′

)
) (10)

where the matrix M = diag(l) and l are the positive feature
length scale parameters corresponding to the input variable
elements, and σ 2

f is the signal covariance. The superparam-
eters of Gaussian process determine the properties of the
model, which can be obtained by the maximum likelihood
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estimation method based on the prior data. The form of the
negative logarithmic likelihood function is:

l = logp(y|X ) = −
1
2
yTK−1y−

1
2
log |K | −

n
2
log 2π

(11)

According to the Bayesian principle, given the new input x∗,
training input X and training output y, the most probable
predictive posterior distribution of y∗ is inferred to be:

y∗|x∗,X , y ∼ N (m,
∑

) (12)

Its mean and covariance are as follows:

m = K
(
X∗,X

)
K (X ,X)−1 y (13)∑

= K
(
X∗,X∗

)
−K

(
X∗,X

)
K (X ,X)−1 K

(
X ,X∗

)
(14)

m contains the most likely values of the test output related to
the test input vector in x∗, and the corresponding prediction
variance is given by the covariance matrix

∑
.

The predicted mean and variance of GP model describe a
Gaussian distribution that the predicted output may follow.
If the predicted mean is regarded as the predicted output
value of a general nonlinear fitting tool, the predicted variance
can be regarded as an evaluation of the uncertainty of the
predicted mean. If a training input vector in the training set
is close to the predicted output vector, a small prediction
variance will be obtained, and the predicted mean value will
be close to the actual output. In other words, the size of the
prediction variance reflects the model accuracy of the GP
model at that point.

C. ISOMETRIC MAPPING (Isomap)
Manifold learning is a dimensionality reduction method that
draws on the concept of topological manifolds. ‘manifold’
is a space that is homogenous with Euclidean space locally.
In other words, it has the property of Euclidean space locally
and can use Euclidean distance to calculate the distance.

Isomap is a classical manifold learning algorithm based on
multi-dimensional scaling (MDS). It is misleading to directly
calculate Euclidean distance in high-dimensional space after
embedding low-dimensional manifold into high-dimensional
space, because the linear distance in high-dimensional space
cannot be expressed in low-dimensional space. In this case,
we need to express the distance between two points on
the low-dimensional embedded manifold by ‘geodesic’ dis-
tance. The detailed process of isometric mapping is shown in
algorithm 1.

When using Isomap algorithm to process data, it is very
important to select a suitable neighbor parameter. If the
selected neighborhood is too large, the algorithmwill mistake
the distant points as near neighbors, which will lead to ‘short
circuit’; if the neighborhood we selected is very small, many
points on the manifold surface may not have close neigh-
bor relationship with other points, which will lead to ‘open
circuit’.

Algorithm 1 Isometric Mapping
Input:
Data set D = {x1, x2, . . . , xm};
neighbor parameter K;
dimension of low dimensional space d ′.
Process:
1: for i = 1, 2, . . . 3, m do
2: Partition k-nearest neighbor of xi;
3: The distance between xi and its k-nearest neighbor samples
is set to Euclidean distance, and the distance between Xi and
other points is set to infinity;
4: end for
5: Calculate the distance dist(xi, xj) between any two sample
points (Dijkstra, Floyd) using the shortest path algorithm;
6: Use dist(xi, xj) as the input of MDS algorithm;
Output: The projection of the sample in the low-dimensional
space is the output of the MDS algorithm recorded as Z =
{z1, z2, . . . , zm}.

III. PROPOSED ALGORITHM MODEL
In order to obtain the optimal data dimensionality reduc-
tion parameters scientifically, improve the generalization
ability of the manifold GP model, and reduce the com-
putational complexity and time consumption, a differential
evolution based manifold Gaussian process (DE-MGP) is
proposed in this study. A new manifold parameter training
method is provided for the proposed surrogate model through
DE algorithm. We take the manifold parameters as the opti-
mization object, and the output of GP model as the opti-
mization guidance of the DE algorithm. With the continuous
iteration of DE, we train the dimension reduction parameters
of manifold learning method while training the GP model.
Firstly, we use the method of Isomap to process the collected
initial data, and obtain a set of dimensional-reduction data
with less information loss, and then use it to train GP. The
mean absolute percentage error (MAPE) of the model is
calculated and applied to the DE algorithm as the fitness
function. The DE algorithm is used for iterative optimization,
and the dimensionality reduction parameters can be solved
after reaching the output conditions. Finally, the optimal
parameters obtained by the algorithm are fed back to the
Isomap, so that our optimal parameter model is established.
The main algorithm flow is shown in algorithm 2, and its flow
chart is shown in figure 1.

In the algorithm 2, there are several key points that need to
be explained in detail:

1) In the process of using DE algorithm, we choose the
mean absolute percentage error (MAPE) as the fitness
function, and its calculation formula is as follows:

MAPE =
1
n

∑∣∣∣∣observed − predictedobserved

∣∣∣∣× 100%

(15)

where, n is the number of samples, observed is the
label, and predicted is the output of the model.
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Algorithm 2 Main Framework
Input:
Traindata = {x1, x2, . . . , xm} includes training input TrainX
and training output TrainY .
Testdata = {x ′1, x

′

2, . . . , x
′
n} includes test input TestX and test

output TestY .
Initialize:
Generation= 0. Set the control parameters of the algorithm as
follows: variation factor F = 0.9, crossover rate CR = 0.9,
maximum number of iterations IterationMax = 50, popula-
tion size NP = 30, and population characteristic dimen-
sion D =2. The initial individual Pop(0) is set according to
formula (1).
Process:
1: while Generation < IterationMax
2: For i = 1: NP
3: The mutant corresponding to the ith individual is calcu-
lated according to the equation (2).
4: According to the method in formula (3), calculate
the individual after the ith individual crosses its mutant
individual.
5: Select according to the equation (4) to get the next
generation individuals◦
6: End for
7: Generation = Generation + 1;
8: End while
9: Calculate the fitness value of the best individual:
Bestfitness = fitness(pop(Generation)), Pop (Generation,1)
is the optimal neighbor parameter, denoted as K, and
pop(Generation,2) is the optimal low-dimensional space,
denoted as d ′. Among them, MAPE of Gaussian process
prediction model is used as the fitness function.
10: For i = 1,2, . . .,(m + n) do
11: Take K samples as a neighborhood space and determine
the neighborhood of each sample point.
12: The distance between xi and the points in its neighbor-
hood is set to Euclidean distance, and the distance from other
points is set to infinity.
13: End for
14: The shortest path algorithm is used to calculate the
distance dist(xi, xj) between any two sample points.
15: By MDS operation, the low dimensional mapping
GPRtrain and GPRtest of model input samples are obtained.
16: (GPRtrain,TrainY) is taken into the above GP model as
training data.
17: (GPRtest, Testy) is the calculated mean absolute per-
centage error MAPE of the test input.
Output:
Return the predicted values Pred = (p1, p2 . . . , pn) and
MAPE for the test sample◦

2) In the manifold neighborhood division from step 10 to
part 13, the first step is to partition the neighbor-
hood of all samples including training samples and test

samples together. The problem of ‘short circuit’ and
‘open circuit’ in isometric mapping caused by improper
neighborhood partition can be effectively avoided by
optimizing the dimensionality reduction parameters.

IV. CASES STUDY
In the process of modeling and optimizing of microwave
components, there are many problems about training data,
such as too many characteristics for training data and time
consuming for getting them. Therefore, it is very significant
for us to reduce the feature dimension and complexity of
samples. In this part, the mapping inverse model between the
S-parameter of microwave filter and its coupling coefficient
matrix will be established by the proposedDE-MGP, in which
the given S-parameter is used as the input to predict the corre-
sponding coupling coefficient of the filter, so as to achieve the
purpose of designing the required microwave filter. In order
to test the regression ability of the proposed training model
in small samples and high-dimensional problems, this paper
uses a MGP to extract the parameters of the two filters in
the case of 300 groups of training samples and 600 groups
of training samples respectively, and compared the exper-
imental results with the ordinary GP model. According to
our experimental research, when there are only 300 samples,
we can get a surrogate model with high accuracy through the
proposed method. On this basis, we continue to increase the
training samples. When the number of samples reaches 600,
our model accuracy will fully meet our design requirements.

A. THE FOURTH-ORDER COUPLING FILTER
In this case, the proposed DE-MGP will be used to establish
the parameter extraction model of a fourth-order coupling
filter with a central frequency of 4GHz and a bandwidth
of 40MHZ. The initial coupling coefficient matrix [33] is as
follows:

M =


0 0.84135 0 −0.22423

0.84135 0 0.78212 0
0 0.78212 0 0.84135

−0.22423 0 0.84135 0

 (16)

Four different non-zero terms in the initial coupling coef-
ficient matrix are randomly generated into a group of cou-
pling coefficients within the tolerance of ±0.3, and then the
S-parameters corresponding to each group of coupling coef-
ficients are calculated respectively, so that the training data
needed to establish the dimension reduction fitting model is
obtained. The S11 curve is sampled at 35 frequency points,
and input the 35 points as 35 dimensions of training data:

X = [dB(S11(f1))dB(S11(f2)) . . . dB(S11(f35))] (17)

According to the previous experiments, these 35 frequency
points can better express the characteristics of the whole S11
curve, which enables us to obtain the highest surrogate model
with the lowest frequency sampling. Four non-zero parame-
ters of the coupling matrix M are taken as model outputs:

Y = [M21M32M41M43]T (18)
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FIGURE 1. The modeling process of DE-MGP.

In this case, the dimension reduction parameter of the
established MGP is set as (d’, K), where d’ is the target
dimension of manifold dimension reduction, and K is the
number of neighborhood individuals of dimension reduction
samples. We will use the DE optimization algorithm to model
the DE-MGP in the case of 300 samples and 600 samples
respectively, and compare with the original model. Our eval-
uation of experimental results is based on an ideal coupling
coefficient matrix. In this way, we can clearly find that
under the same sample size, the training model proposed
in this study has obvious advantages in high-dimensional
parameter extraction. In the following, we will introduce
the S-parameter extraction experiments of the ideal coupling
coefficient matrix of the proposed DE-MGP model and the
GP model under the conditions of 300 and 600 samples.
The calculation of S-parameter is based on the method stud-
ied by predecessors and related electromagnetic simulation
softwares [34].

Ideal coupling coefficient matrix is given by

Mideal =


0 0.8480 0 −0.2759

0.8480 0 0.7660 0
0 0.7660 0 0.8391

−0.2759 0 0.8391 0

 (19)

coupling coefficient matrix predicted by the DE-MGP in
300 training samples is

Mpre_300 =


0 0.8416 0 −0.2663

0.8416 0 0.7927 0
0 0.7927 0 0.8668

−0.2663 0 0.8668 0

 (20)

coupling coefficient matrix predicted by the DE-MGP in
600 training samples is

Mpre_600 =


0 0.8458 0 −0.2780

0.8458 0 0.7713 0
0 0.7713 0 0.8530

−0.2780 0 0.8530 0

 (21)

coupling coefficient matrix predicted by original GP
in 300 training samples is

M∗pre_300 =


0 0.8114 0 −0.2306

0.8114 0 0.7909 0
0 0.7909 0 0.8581

−0.2306 0 0.8581 0

 (22)
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TABLE 1. Experimental results of the fourth order coupled filter.

FIGURE 2. Convergence curves of differential evolution algorithm on fourth-order coupling filter.

And coupling coefficient matrix predicted by original GP
in 600 training samples is

M∗pre_600 =


0 0.8214 0 −0.2879

0.8214 0 0.8542 0
0 0.8542 0 0.8223

−0.2879 0 0.8223 0

 (23)

Equations (20) and (21) are the coupling coefficient pre-
diction matrix of the DE-MGP under 300 training samples
and 600 training samples respectively. The results obtained
by the original GP are shown in equation (22) and (23).

As shown in Table 1, in the experiment of 300 groups
of samples, the optimization result of the DE algorithm for
dimensionality reduction parameters (d’, k) is (4, 4), in which
the dimension of the low-dimensional space is 4 and the
number of samples in each neighborhood is 4. The iterative
convergence curve of the optimization algorithm is shown
in Figure 2a, where the abscissa is the number of iterations
and the ordinate is the iteration error of each step. The error
of the first iteration is 2.93%, and the error of the final
convergence result is 2.75%. That is the MAPE of the pro-
posed model with the condition of optimal dimensionality
reduction parameters is 2.75%, which is 6.14% lower than
that of the first step iteration. The error rate of the original
GP model is 6.56%, which is more than twice the error rate
of the proposed model. In the experiment of 600 groups of
samples, the dimension of the low-dimensional space output
by the DE algorithm is 7, and the number of individuals in
each neighborhood is 7. In this case, optimization algorithm

convergence curve is shown in figure 2b, where the abscissa is
the number of iterations and the ordinate is the iteration error
of each step. The first step iterative error is 1.41%, and the
final convergence results of about 0.84%. Compared with
the first step iterative result error rate, it decreases 40.43%.
The prediction error of the original GP model is 5.24%,
and the error rate of the proposed algorithm is more than
five times better. Through these two experiments, we find
that under the same sample sets, the proposed DE-MGP can
effectively improve the regression effect of the inverse model
of the filter.

Figure 3 and Figure 4, respectively, show the S-parameter
fitting curves corresponding to the predicted coupling coeffi-
cient matrix obtained by the DE-MGP model under the con-
ditions of 300 groups of samples and 600 groups of samples.
Their abscissa is the frequency, ranging from 3900MHz to
4100MHz, and the ordinate is the dB value of S-parameter.
The blue curve in the figure represents the S-parameter of the
ideal coupling coefficient matrix, and the red circle represents
the S-parameter of the predicted coupling coefficient matrix.
It can be seen from the figure that the proposed DE-MGP in
this study has a good fitting result in these two S-parameter
extraction experiments.

It can be found from Table 1, Figure 3 and Figure 4 that
increasing the sample size can improve the fitting accuracy of
the algorithm. In the case of the same sample size, the preci-
sion of the proposed DE-MGPmodel is obviously better than
that of the original GP model, and the MAPE of the MGP
after parameter selection is at least one times lower than that
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FIGURE 3. S-parameter fitting results corresponding to the predicted results of the proposed DE-MGP for 300 groups
of samples (fourth-order coupling filter).

FIGURE 4. S-parameter fitting results corresponding to the predicted results of the proposed DE-MGP for 600 groups
of samples (fourth-order coupling filter).

of the original GP. By comparing the 300 groups of samples
of the DE-MGP and 600 groups of samples of the original GP
modeling results (2.75% for DE-MGP in 300 samples, 5.24%
for GP in 600 samples), we can clearly find that the depen-
dence of the DE-MGP on the number of samples is obviously
reduced. In other words, through our proposed DE-MGP
model, we can make the model become more accurate with
fewer training samples, which is very great significance for us
to establish surrogate models in the field of electromagnetics.

B. THE SIX-ORDER COUPLING FILTER
In order to make our conclusion more convincing, we will
carry out further parameter extraction experiments in the

same environment through a six-order coupling filter. The
central frequency of the filter is 4GHz, the bandwidth is
36MHz, and the initial coupling coefficient matrix [33] is
shown in equation (24), as shown at the bottom of the page.

Using the same experimental method as the above
fourth-order coupling filter, we randomly generate a set of
coupling coefficients from the seven different non-zero terms
of the initial matrix within the tolerance of±0.3, and then cal-
culate their corresponding S-parameters respectively.We take
the S-parameter as the training input and the seven different
non-zero coupling coefficients as the sample labels. In the
same way as above, we sample the curve at 35 frequency
points, so that we get the system input (25) and output (26)

M =


0 0.88336 0 0 0 0.04863

0.88336 0 0.56859 0 −0.26420 0
0 0.56859 0 0.78178 0 0
0 0 0.78178 0 0.56859 0
0 −0.26420 0 0.56859 0 0.88336

0.04863 0 0 0 0.88336 0

 (24)
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we needed:

X = [dB(S11(f1))dB(S11(f2)) . . . dB(S11(f35))] (25)

Y = [M21M32M43M52 M54M61M65]T (26)

In this case, we also used an ideal coupling coefficient
matrix to test our model, and extracted S-parameters of
the sixth order coupling filter in the conditions of 300 and
600 groups of samples respectively.

Ideal coupling coefficient matrix is given in (27), as shown
at the bottom of the page, coupling coefficient matrix pre-
dicted by the DE-MGP in 300 training samples is (28),
as shown at the bottom of the page, coupling coefficient
matrix predicted by the DE-MGP in 600 training samples
is (29), as shown at the bottom of the page, coupling coeffi-
cient matrix predicted by original GP in 300 training samples
is (30), as shown at the bottom of the page, And coupling
coefficient matrix predicted by original GP in 600 training
samples is (31), as shown at the bottom of the page.

Equations (28) and (29) are respectively the prediction
junctions of the proposed DE-MGPmodel on the ideal matrix
in the conditions of 300 groups of training samples and
600 groups of training samples of the sixth order coupling

filter. The predicted values of the ideal sixth order coupling
coefficient matrix by the original GP model in the conditions
of 300 groups of samples and 600 groups of training samples
are shown in equations (30) and (31), respectively.

As shown in Table 2, in the experiment of 300 groups of
samples, the optimization results of the DE algorithm are as
follows: the optimal dimension number of low-dimensional
space is 11, and the optimal number of neighborhood indi-
viduals is 17. In the case of 300 groups of samples, the con-
vergence curve of the DE algorithm is shown in Figure 5a,
where the abscissa is the number of iterations and the ordinate
is the iteration error of each step. The first iteration error of the
DE algorithm is 2.67%, and the convergence result is 2.22%,
which means the MAPE obtained by the proposed model in
the experiment of 300 training samples is 2.22%. The error
rate is reduced by 16.85% of the first iteration. The original
GP model is 5.04%, and the error rate is nearly double that
of the proposed model. In the experiment of 600 groups of
samples, the optimal dimension number of low dimension
space is 7. The number of optimal dimensions of neighbor-
hood individuals is 30. In this experiment, the convergence
curve of the DE algorithm is shown in Figure 5b, where the

M =


0 0.88181 0 0 0 0.05035

0.88181 0 0.70565 0 −0.31181 0
0 0.70565 0 0.95344 0 0
0 0 0.95344 0 0.63067 0
0 −0.31181 0 0.63067 0 0.94453

0.05035 0 0 0 0.94453 0

 (27)

Mpre_300 =


0 0.89487 0 0 0 0.05178

0.89487 0 0.71152 0 −0.30604 0
0 0.71152 0 0.92775 0 0
0 0 0.92775 0 0.59917 0
0 −0.30604 0 0.59917 0 0.93687

0.05178 0 0 0 0.93687 0

 (28)

Mpre_600 =


0 0.89369 0 0 0 0.05081

0.89369 0 0.67018 0 −0.30785 0
0 0.67018 0 0.94200 0 0
0 0 0.94200 0 0.63531 0
0 −0.30785 0 0.63531 0 0.94665

0.05081 0 0 0 0.94665 0

 (29)

M∗pre_300 =


0 0.89201 0 0 0 0.05404

0.89201 0 0.71287 0 −0.28703 0
0 0.71287 0 0.92141 0 0
0 0 0.92141 0 0.57466 0
0 −0.28703 0 0.57466 0 0.89175

0.05404 0 0 0 0.89175 0

 (30)

M∗pre_600 =


0 0.89050 0 0 0 0.05583

0.89050 0 0.68227 0 −0.30097 0
0 0.68227 0 0.91972 0 0
0 0 0.91972 0 0.57147 0
0 −0.30097 0 0.57147 0 0.95474

0.05583 0 0 0 0.95474 0

 (31)
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TABLE 2. Experimental results of the sixth order coupling filter.

FIGURE 5. Convergence curve of differential evolution algorithm on sixth order coupling filter.

FIGURE 6. S-parameter fitting results corresponding to prediction results of the proposed DE-MGP in 300 groups of
samples (six-order coupling filter).

abscissa is the number of iterations and the ordinate is the
iteration error of each step. The error rate of the DE algorithm
in the first calculation is 2.09%, and the convergence result is
1.53%, which means the error rate is reduced by 26.76% of
the first calculation result. Compared with the original GP
model, the error rate is only about 1/3 of the original model.
This shows that in the experiment of the sixth order coupled
filter, the proposed model also works very well. In the case
of the same training samples, the proposed DE-MGP has
better parameter extraction effect than that of the original GP.
If we carefully observe Table 2, we can also find that, like

the fourth-order coupling filter, the precision of the DE-MGP
model in the condition of 300 groups of training samples is
better than that of theGPmodel in the condition of 600 groups
of samples, which also indicates that the model we proposed
has a low dependence on the number of samples when dealing
with high-dimensional problems. This has huge implications
when we’re dealing problems without enough samples.

Figure 6 shows the parameter extraction results of the
DE-MGP for the sixth order coupling filter in 300 samples,
and Figure 7 shows the parameter extraction results of the
DE-MGP in 600 groups of samples. Figure 6a and Figure 6b
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FIGURE 7. S-parameter fitting results corresponding to prediction results of the proposed DE-MGP in 600 groups of
samples (six-order coupling filter)).

TABLE 3. Comparison of filter parameter extraction results of different models.

are the fitting results of S11 and S21 under 300 groups of
samples, respectively. Figure 7a and Figure 7b are the fitting
results of S11 and S21 under 600 groups of samples, respec-
tively. The abscissa is the frequency range from 3900MHz to
4100MHz, and the ordinate is the dB value of S-parameter.
The blue curve is the S-parameter curve of the ideal coupling
matrix, and the red circle is the S-parameter predicted by the
proposed DE-MGP.

It can be found from Table 2, Figure 6 and Figure 7 that,
generally, increasing the sample size can improve the accu-
racy of the training model. However, we can reasonably
reduce the training dimension and set the dimensionality
reduction parameters to improve the accuracy of our training
model under the same sample size. According to Table 2,
we also find that for the sixth order filter, the DE-MGP
training model we proposed can also effectively save the
training samples needed in our experiment.

C. COMPARISON WITH OTHER MODELS
In this part, we implement several classical surrogate models
respectively and apply them to the filter design we studied.
In the case of the same data set, their experimental results
are shown in Table 3. The models include shallow neural
network (SNN), deep neural network (DNN), support vec-
tor machine (SVM), and kernel extreme learning machine
(KELM). Among them, the modeling process of SNN and
DNN refers to the method in [35], the modeling of SVM

refers to the method in [14], and the modeling of KELM
refers to the method in [16]. From Table 3, we can find
that compared with other surrogate models, the proposed
DE-MGP has better extraction accuracy in both fourth-order
filter and sixth-order filter under the same experimental data.
In all the methods mentioned above, DNN can improve the
accuracy of themodel obviously when there are more training
data, but compared with the proposed DE-MGP, it still has a
large error.

V. CONCLUSION
In this paper, we propose a new machine learning model
named differential evolution based manifold Gaussian pro-
cess (DE-MGP). Compared with the original GP model,
the proposedmodel has a higher accuracy in dealingwith high
dimensional problems. After setting reasonable low dimen-
sional parameters, the DE-MGP can obtain more concise
low dimensional spatial mapping through a small informa-
tion loss when processing data, which greatly reduces the
spatial complexity of the data in training the model, and
also greatly reduces the amount of calculation. By comparing
the DE-MGP with the original GP in different sample sizes,
we can also find that the DE-MGP with less training samples
can achieve the modeling effect of the original GP model.
This indicates that we can save our training samples largely
when we use the proposed model to solve the problems with
high dimension and small sample size. And it also greatly
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reduces the cost of establishing the inverse surrogate model of
microwave filter. To sum up, the model proposed in this study
can well solve the problem of high sample acquisition cost
and large sample space dimension in the microwave field,
which is of great significance to the optimization design of
our microwave components.

In the following research, we will continue our study
in two directions. Firstly, we will further explore how to
avoid the local optimal risk of manifold parameters in the
DE training, and we will improve the generalization ability
of our model through more reliable optimization methods.
Secondly, we will further study the multivalued problem of
inverse surrogate model of microwave components, and try
to use a new surrogate model structure to model the problem.
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