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ABSTRACT The Ramanujan sum, introduced by S. Ramanujan, has been utilized—among other
applications—for signal processing. It has recently been suggested that transforms using the Ramanujan
sumsmay also provide the benefit of data compression. This study presents a lossless hologram-compression
method that employs transforms using the Ramanujan sums. In general, lossless compression of holograms
is difficult, because the statistical properties of holograms are different from natural images. We compared
the compression ratios of different hologram datasets, both with and without using Ramanujan-sums-based
transforms. We found that the Ramanujan periodic transform improves the compression ratio of hologram
data when using data having prime number dimensions.

INDEX TERMS Data compression, hologram, linear transform, Ramanujan sum.

I. INTRODUCTION
The Ramanujan sum was introduced in 1918 by Srinivasa
Ramanujan to represent arithmetic functions [1], and it
has been applied to de-noising [2], time-frequency analy-
sis [3], the acceleration of discrete Fourier transforms [4],
and multi-resolution analysis [5]. Linear transforms that
use the Ramanujan sums have been studied as well [6],
because the Ramanujan sum offers orthogonal and functional
energy-conservation properties, like the Fourier transform.
Reference [6] has suggested that linear transforms using
the Ramanujan sums may be used for data compression;
however, to our knowledge Ramanujan-sums-based trans-
forms so far have not been shown to provide effective data
compression using real data. This Letter is the first report
of data compression using the Ramanujan sums. We found
that transforms using the Ramanujan sums work well for
lossless compression of holographic data, especially when the
horizontal and vertical sizes of the data are prime numbers.

Holography is a well-known optical technique for
recording and reproducing light waves reflected from a
three-dimensional (3D) object to/from a two-dimensional
medium, which is referred to as a hologram. By simulating
the interference and diffraction of the light waves, we can
generate holograms—or reproduce 3D images from optically
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recorded holograms—on a computer instead of using
optical setups [7]. This approach has been studied for 3D
displays [8], [9], and for 3D cameras and microscopy [10]
because it can reproduce the original light field. The data
capacity of a hologram tends to be large, because holography
requires large spatial-bandwidth products. Holograms also
have large dynamic ranges and contain random patterns,
because holography utilizes the interference of light waves.
It is therefore necessary to develop data compression
techniques that match the characteristics of holograms.

Many methods have been proposed for both lossy and
lossless compression of holograms [11]. In order to reduce
the large dynamic range of a hologram, these techniques
quantize the dynamic range into an 8-bit to 10-bit range in
advance, and the quantized holograms are then compressed.
Lossless compression techniques for quantized holograms
have been proposed in [12], and [13]; however, Ref. [14]
claims that the lossless compression of holograms is difficult.
Although these studies have examined the compression of
quantized holograms, in detail, the lossless compression of
holograms in floating-point format has not been considered
much. Due to the large dynamic ranges of holograms, lossless
compression of floating-point holograms is important for
hologram archiving applications.

In this Letter, we demonstrate that our proposed method,
based on the Ramanujan sums, can improve the lossless
compression ratio of floating-point holograms in comparison
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with well-known compression techniques. This Letter is
structured as follows. Section II presents three linear
transforms using the Ramanujan sums. Section III shows the
results of hologram compression, using holograms calculated
for different conditions, both with and without using the
three transforms based on the Ramanujan sums and with
the discrete cosine transform (DCT). Finally, Section IV
concludes the Letter and suggests future work.

II. PROPOSED METHOD
The Ramanujan sum is the sum of the nth powers of the qth
primitive roots of unity, defined as

cq(n) =
q∑

p=1;gcd(p,q)=1

exp
(
2π i

p
q
n
)
, (1)

where gcd(p, q) = 1 means that the greatest common divisor
is unity, and i is the imaginary unit. Various linear transforms
using the Ramanujan sums have been proposed. In this
Letter, to compress floating-point holograms, we use three
transforms based on the Ramanujan sums. We summarize
them below.

A. RAMANUJAN FIR TRANSFORM (RFT)
The RFT was introduced by Vaidyanathan - [15] -to
represent finite-duration sequences with the Ramanujan
sums. A one-dimensional (1D) input signal x (of length N )
is represented by aq as

x(n) =
N∑
q=1

aqcq(n). (2)

In matrix and vector form, this can be written as
x(0)
x(1)
...

x(N − 1)

 = FN


a1
a2
...

aN


,

(3)

where the qth column of FN has the elements cq(n) repeated
with period q until we get N rows: for example,

F6 =


1 1 2 2 4 2
1 −1 −1 0 −1 1
1 1 −1 −2 −1 −1
1 −1 2 0 −1 −2
1 1 −1 2 −1 −1
1 −1 −1 0 4 1

 . (4)

An N × N matrix FN always has full rank [15]. The
two-dimensional (2D) RFT y of an input 2D signal x with
dimensions N ×M is defined as

y = F−1N x(F−1M )T , (5)

where F−1 means the inverse matrix of F , and FT means the
transposed matrix of F .

B. RAMANUJAN PERIODIC TRANSFORM (RPT)
The RPT was also introduced by Vaidyanathan [15]. A 1D
input signal x (of length N ) is represented by a linear
combination of cqi and its shifted version, where qi is a divisor
of the input signal of length N .

In matrix and vector form, the RPT can be written as
x(0)
x(1)
...

x(N − 1)

 = PN


d(0)
d(1)
...

d(N − 1)

 , (6)

where d(·) is the transformed data of x. The matrix PN is
c(0)q1 (0) · · · c(φ(q1)−1)q1 (0) · · · c(φ(qK )−1)qK (0)

c(0)q1 (1) · · · c(φ(q1)−1)q1 (1)
. . . c(φ(qK )−1)qK (1)

...
...

...
. . .

...

c(0)q1 (N − 1)
... c(φ(q1)−1)q1 (N − 1) · · · c(φ(qK )−1)qK (N − 1)

 ,

where c(l)qi is l
th shifted version of cqi :

c(l)qi (n) = cqi (n− l), (7)

K means the number of divisors in N , and φ(n) is Euler’s
totient function. For example, P6 is given by

P6 =


1 1 2 −1 2 1
1 −1 −1 2 1 2
1 1 −1 −1 −1 1
1 −1 2 −1 −2 −1
1 1 −1 2 −1 −2
1 −1 −1 −1 1 −1


.

(8)

The N × N matrix PN always has full rank [15]. A 2D RPT
of an input 2D signal x represented by an N ×M matrix into
the output 2D signal N ×M matrix y is defined as

y = P−1N x(P−1M )T . (9)

C. RAMANUJAN SUMS TRANSFORM (RST)
The RST was introduced by Chen et al. [6]. The RST from a
1D input signal x (of length N ) to the 1D output signal y is

y = AN x. (10)

The N × N matrix AN is defined by

AN (q, j) =
1

φ(q)N
cq(mod(j− 1, q)+ 1), (11)

where q, j ∈ [1,M ] and mod(. . .) means the modular
operation. TheN×N matrix AN always has full rank [6]. The
RFT from a 2D input signal N ×M matrix x to the output 2D
signal N ×M matrix y is defined as

y = AN xATM . (12)
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D. COMPRESSION METHOD USING
RAMANUJAN-SUMS-BASED TRANSFORMS
The abovementioned Ramanujan-sums-based transforms can
decrease the standard deviation of the data to be compressed.
Therefore, the data-compression ratio may be improved by
applying these transforms to the data before compression.
Our simple method is as follows:

1) We transform the data to be compressed using
Ramanujan-sums-based transforms.

2) We compress the transformed data with commonly
used compression programs (fpzip [16], zfp [17],
bzip2, gzip, zip), where fpzip and zfp are dedicated
compression algorithms for floating-point format. We
expect to boost the compression ratio by combining
of the Ramanujan-sums-based transforms and the
dedicated floating-point compression algorithms.

III. RESULTS
To verify the effectiveness of our proposed method, we
compare the compression ratio for four kinds of hologram
data, both with and without using the transforms RFT, RPT,
RST, or DCT.We used the DCT as a comparison method. The
four kinds of hologram data are as follows:

1) Complex hologram generated from point-cloud data
2) Amplitude hologram generated from point-cloud data
3) Phase hologram generated from point-cloud data
4) Light waves propagated from a natural image with

random phases
These hologram datasets are detailed in [18]. The compres-
sion ratio is defined by

Compression ratio =
Compressed data size
Original data size

× 100%. (13)

The transformation matrices are determined by the number
of rows and columns of data. We used the data sizes 1024×
1024 and 512 × 512. In addition, we used the closest prime
numbers to these data sizes: 1021 × 1021 and 509 × 509.
As discussed below, a data size that is a prime number boosts
the compression capability of RPT-based compression.

A. COMPLEX HOLOGRAM
A complex hologram is numerical complex 2D data, which
is calculated from light propagating from a 3D object to a
hologram. Many algorithms have been proposed for complex
hologram calculations [18]. In this study, we used the
point-cloud method, in which a 3D object is represented by
point-cloud data. A complex hologram is calculated as

u(x, y) =
N∑
j=1

exp
(
2π i
λ
r
)
, (14)

where N is the number of object points, λ is the wavelength
of light, and r =

√
(xj − x)2 + (yj − y)2 + z2j is the distance

between the hologram pixel (x, y, 0) and the jth object point
(xj, yj, zj). The calculation conditions are as follows: the

FIGURE 1. (a) Example of a complex hologram and (b) the reconstructed
image.

wavelength is 520 nm, the pixel pitch of the holograms is
8 µm, the distance between the hologram and the object
points is 1.0m, and the resolution of the hologram is
1024 × 1024 or 1021 × 1021. Figures 1a and 1b show an
example of the phase of a complex hologram and of the
corresponding reconstructed image. We separate the complex
hologram into its real and imaginary parts, and then we
compress them individually. The compression results are
shown in Tables 1 and 2; in these and subsequent tables,
red text highlights the highest compression ratio in each row,
and the asterisk (*) denotes the highest compression ratio
in the table. Although in Table 1 the best compression ratio
varies for each combination, Table 2 shows that the RPT
is most effective when used with data having prime-sized
dimensions. The highest compression ratio is obtained using
the RPT combined with fpzip.

TABLE 1. Compression results for a complex hologram with dimensions
1024 × 1024.

TABLE 2. Compression results for a 1021 × 1021 complex hologram.

B. AMPLITUDE HOLOGRAM
An amplitude hologram is calculated by taking the real part of
a complex hologram.We used the same object and calculation
conditions as in Fig. 1a. The compression results are shown
in Tables 3 and 4. Although in Table 3 the best compression
ratio again varies with the combination, Table 4 shows that the
RPT is again most effective when used with prime-sized data.
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TABLE 3. Compression results for a 1024 × 1024 amplitude hologram.

TABLE 4. Compression results for a 1021 × 1021 amplitude hologram.

The highest compression ratio is obtained for RPT combined
with fpzip.

C. PHASE HOLOGRAM
A phase hologram is generated by calculating the argument
of a complex amplitude. We used the same object and
calculation conditions as in Fig. 1a. The compression results
are shown in Tables 5 and 6. In this case, the compression
ratios for the raw data in Table 5 are superior to all the
linear transforms. In contrast, for the case of a prime-sized
hologram (Table 6), we find that the RPT is superior to all
the others, except for the raw data combined with bzip2. The
highest compression ratio is obtained using RPT combined
with fpzip.

TABLE 5. Compression results for a 1024 × 1024 phase hologram.

TABLE 6. Compression results for a 1021 × 1021 phase hologram.

D. LIGHT WAVES PROPAGATED FROM A NATURAL IMAGE
WITH RANDOM PHASES
In computer holography, we often use random phases to
spread the object light over the entire hologram [18]. Before
calculating the hologram, we multiply the object data with
random phases. In this study, we used a 2D natural image,

g(x, y), as the object data, as shown in Fig. 2a. The light
waves on the hologram plane are calculated using the angular
spectrum method [18]:

u(x, y) = FT−1[FT [g(x, y) exp(in(x, y))]× H (u, v)], (15)

where FT and FT−1 denote the 2D Fourier and inverse
Fourier transforms, respectively; n(x, y) ∈ [0, 2π ) is a
random distribution; H = exp(2π iz

√
1
λ2
− u2 − v2) is

the transfer function; and z is the propagation distance.
The calculation conditions are as follows: the wavelength
is 520 nm, the pixel pitch of the holograms is 8µm,
the propagation distance is 1.0m, and the resolution of the
natural image and propagated light waves are 512 × 512
and 509 × 509, which is a prime size. Figure 2b shows the
real part of the propagated light waves. The compression
results are shown in Tables 7 and 8. Although in Table 7
the compression ratios vary for the different combination,
Table 8 shows that the RPT is the most effective transform
when used with prime-sized data. The highest compression
ratio is obtained using the RPT combined with fpzip.

FIGURE 2. (a) The natural image used and (b) the real part of the image
of the propagated light waves.

TABLE 7. Compression results for 512 × 512 propagated light waves.

TABLE 8. Compression results for 509 × 509 propagated light waves.

IV. CONCLUSION
In this Letter, we have demonstrated a lossless compression
method using Ramanujan-sums-based transforms and holo-
graphic datasets. Some previous work has suggested that
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the Ramanujan sum may be useful for data compression,
but did not demonstrate its effectiveness using real data.
To our knowledge, this study is the first report of data
compression using the Ramanujan sums. We found that with
prime-sized-data we can obtain higher compression ratios by
using the combination of RPT and fpzip.

REFERENCES
[1] S. Ramanujan, ‘‘On certain trigonometric sums and their applications in

the theory of numbers,’’ Trans. Cambridge Philos. Soc., vol. 22, no. 13,
pp. 259–276, 1918.

[2] A. M. Solomon, D. Abraham, A. George, and M. Manuel, ‘‘Signal
denoising using Ramanujan periodic transform,’’ in Proc. 2nd Int. Conf.
Trends Electron. Informat. (ICOEI), May 2018, pp. 51–56.

[3] L. Sugavaneswaran, S. Xie, K. Umapathy, and S. Krishnan, ‘‘Time-
frequency analysis via Ramanujan sums,’’ IEEE Signal Process. Lett.,
vol. 19, no. 6, pp. 352–355, Jun. 2012.

[4] S. Samadi, M. O. Ahmad, and M. N. S. Swamy, ‘‘Ramanujan sums and
discrete Fourier transforms,’’ IEEE Signal Process. Lett., vol. 12, no. 4,
pp. 293–296, Apr. 2005.

[5] D. K. Yadav, G. Kuldeep, and S. D. Joshi, ‘‘Orthogonal Ramanujan sums,
its properties, and applications in multiresolution analysis,’’ IEEE Trans.
Signal Process., vol. 66, no. 21, pp. 5789–5798, Nov. 2018.

[6] G. Chen, S. Krishnan, and T. D. Bui, ‘‘Matrix-based Ramanujan-sums
transforms,’’ IEEE Signal Process. Lett., vol. 20, no. 10, pp. 941–944,
Oct. 2013.

[7] P. W. M. Tsang and T.-C. Poon, ‘‘Review on the state-of-the-art
technologies for acquisition and display of digital holograms,’’ IEEE
Trans. Ind. Informat., vol. 12, no. 3, pp. 886–901, Jun. 2016.

[8] F. Yaraş, H. Kang, and L. Onural, ‘‘State of the art in holographic displays:
A survey,’’ J. Display Technol., vol. 6, no. 10, pp. 443–454, Oct. 2010.

[9] A. Maimone, A. Georgiou, and J. S. Kollin, ‘‘Holographic near-eye
displays for virtual and augmented reality,’’ ACM Trans. Graph., vol. 36,
no. 4, pp. 1–16, Jul. 2017.

[10] T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, ‘‘Digital
holography and its multidimensional imaging applications: A review,’’
Microscopy, vol. 67, no. 2, pp. 55–67, Apr. 2018.

[11] F. Dufaux, Y. Xing, B. Pesquet-Popescu, and P. Schelkens, ‘‘Compression
of digital holographic data: An overview,’’ Proc. SPIE, vol. 9599,
pp. 163–173, Sep. 2015.

[12] T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, ‘‘Compression
of digital holograms for three-dimensional object reconstruction and
recognition,’’ Appl. Opt., vol. 41, no. 20, pp. 4124–4132, 2002.

[13] D. Blinder, T. Bruylants, H. Ottevaere, A. Munteanu, and P. Schelkens,
‘‘JPEG 2000-based compression of fringe patterns for digital holographic
microscopy,’’ Opt. Eng., vol. 53, no. 12, Dec. 2014, Art. no. 123102.

[14] R. Corda, D. Giusto, A. Liotta, W. Song, and C. Perra, ‘‘Recent advances
in the processing and rendering algorithms for computer-generated
holography,’’ Electronics, vol. 8, no. 5, p. 556, May 2019.

[15] P. P. Vaidyanathan, ‘‘Ramanujan sums in the context of signal processing—
Part II: FIR representations and applications,’’ IEEE Trans. Signal
Process., vol. 62, no. 16, pp. 4158–4172, Aug. 2014.

[16] P. Lindstrom and M. Isenburg, ‘‘Fast and efficient compression of
floating-point data,’’ IEEE Trans. Vis. Comput. Graphics, vol. 12, no. 5,
pp. 1245–1250, Sep. 2006.

[17] P. Lindstrom, ‘‘Fixed-rate compressed floating-point arrays,’’ IEEE Trans.
Vis. Comput. Graphics, vol. 20, no. 12, pp. 2674–2683, Dec. 2014.

[18] T. Shimobaba and T. Ito, Computer Holography: Acceleration Algorithms
and Hardware Implementations. Boca Raton, FL, USA: CRC Press, 2019.

HARUTAKA SHIOMI received the B.E. degree
in electrical and electronic engineering from
Chiba University, Japan, in 2020. His research
interests include signal processing and single-pixel
imaging.

TOMOYOSHI SHIMOBABA received the B.E.
and M.E. degrees in electrical engineering from
Gunma University, Japan, in 1997 and 1999,
respectively, and the Ph.D. degree from Chiba
University, Japan, in 2002. From 2002 to 2005,
he was a Special Postdoctoral Researcher at
RIKEN. From 2005 to 2009, he was an Associate
Professor at the Graduate School of Science and
Engineering, Yamagata University. From 2009 to
2019, he was an Associate Professor at the

Graduate School of Engineering, Chiba University, where he has been a
Professor, since 2019. His research interests include computer holography
and its applications. He is a member of ITE, IEICE, OSA, OSJ, and SPIE.

TAKASHI KAKUE (Member, IEEE) received the
B.E., M.E., and Ph.D. degrees in electronics and
information science from the Kyoto Institute of
Technology, Japan, in 2006, 2008, and 2012,
respectively. Since 2012, he has been an Assistant
Professor at the Graduate School of Engineering,
Chiba University, Japan. His research interests
include holography, digital holography, computer
holography, holographic interferometry, 3D imag-
ing, high-speed imaging, and ultrafast optics. He is
a member of OSA, OSJ, and SPIE.

TOMOYOSHI ITO received the B.S. degree in
pure and applied sciences and the M.S. and Ph.D.
degrees in earth science and astronomy from The
University of Tokyo, Japan, in 1989, 1991, and
1994, respectively. He was a Research Associate,
from 1992 to 1994, and an Associate Professor,
from 1994 to 1999, at Gunma University, Japan.
From 1999 to 2004, he was an Associate Professor
at the Graduate School of Engineering, Chiba
University, Japan, where he has been a Professor,

since 2004. His research interests include high-performance computing and
its applications, such as electronic holography for 3D TV. He is a member of
ACM, ASJ, ITE, IEICE, IPSJ, and OSA.

VOLUME 8, 2020 144457


