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ABSTRACT Inmost studies of dam’s displacement prediction based onmonitoring data, emphasis was given
on improving the prediction accuracy, while the model stability was merely considered. This study proposed
a numerical-statistical combined model which aims to improve the model stability. The displacement was
modelled within three modules: recoverable displacement (i.e., displacement induced by the external load
including the water pressure and temperature), non-recoverable displacement (i.e., displacement due to
the inherent variations of the materials such as the creep and fatigue of the concrete), and measurement
errors (i.e., instrument error and human error). To reduce the random errors and increase the model
stability, we used the numerical simulation to constrain the coefficients of explanatory variables for the
recoverable displacement. The non-recoverable displacement was estimated by empirical equations, and
the measurement errors were given by Gaussian distributions. The randomness of coefficients in the model
among all monitoring points are constrained further by random coefficient model. We adopted the root mean
square error (RMSE) at varying time and the change ratio of the coefficients (CRC) to evaluate the model
stability. Results indicated that the proposed model not only has better prediction accuracy but also has better
model stability compared with the statistical model and coordinates-included statistical model proposed in
previous studies.

INDEX TERMS Displacement prediction, dam, combined model, model stability, numerical simulation,
statistical model.

I. INTRODUCTION
In most early studies of dam’s displacement prediction based
on monitoring data, researchers used statistical models to
estimate the future displacement from the past monitoring
data, in which the displacement was quantified by three
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influencing factors, i.e., hydrostatic pressure, temperature,
and ageing [1]–[4]. With the development of computational
technologies, machine learning methods were introduced to
the field, and more and more complicate influencing factors
were taken into consideration. Such methods include the arti-
ficial neural network method [5]–[8], support vector machine
method [9], [10], extreme learning machine method [11],
and etc.
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Both statistical models andmachine learningmethods have
shown very high prediction precisions. However, the model
stability was rarely discussed, which is equally as important
as the prediction precision, especially when a long-term pre-
diction is involved [12]–[14]. Many unquantifiable factors
such as the construction quality of pouring and material
properties such as compression strength, elastic modulus,
and Poisson ratio may induce uncertainties in predicting the
displacement. These factors depend on the spatial positions
of the monitoring points on the dam.

In order to enhance the model stability, recent studies have
integrated the spatial correlations of the monitoring points
into the statistical models, by classifying the monitoring data
at different monitoring points into several groups [15], [16].
In the statistical models withmonitoring data being classified,
the spatial correlations were quantified by groups, whereas
the correlations between monitoring points in one group
were lacking. To reflect the overall spatial correlations, one
method is to integrate the coordinates of monitoring points
into the statistical models as explanatory variables [17]. The
coordinates-included statistical model considered the spatial
correlations between each monitoring point; however, the
accuracy of the model was usually reduced due to the increas-
ing number of explanatory variables and model complexity.
Taking a simple power function as an example, the number of
explanatory variables of the function that includes the coor-
dinates (x, y, z) is increased by 43 times compared with that
without coordinates. As the number of variables increases, the
coordinates-included model exhibits an increasing possibility
of autocorrelations between variables, which would weaken
the prediction accuracy. The objective of the present study
is to enhance the stability of the prediction model without
increase the number of variables like coordinates-included
statistical models.

In this study, we proposed a numerical-statistical combined
model, which modelled the displacement via three modules:
the recoverable displacement, non-recoverable displacement
and measurement errors. The recoverable displacement is
the most critical module, and it represents the displacement
induced by the external loads including the water pressure
and temperature. This component was quantified by numeri-
cal simulation [18]–[20] with reduced explanatory variables.
The non-recoverable displacement includes the displacement
resulting from the inherent variations of the materials such as
the creep and fatigue of the concrete, and it was provided with
an empirical formula. The measurement errors (i.e., instru-
ment error and human error) were estimated with Gaussian
distributions. To constrain the explanatory variables of the
proposed model further, a statistical model called random
coefficient model [21]–[23] were used to obtain the coeffi-
cients. To evaluate the proposed model, we first quantified
the model’s prediction accuracy for data of six different pre-
diction periods varied from one month to six months.We then
quantified themodel stability with an indicator named change
ratio of coefficient (CRC), which estimates the fluctuation of
the coefficients of the explanatory variables.

This article was organized as follows. Section II presented
how the proposed model was developed. We first introduced
the statistical model and the coordinates-included statistical
model, and then developed the statistical-numerical com-
bined model. Section III exhibited the engineering project
and the dataset. Section IV discussed the results including
the prediction accuracy and the model stability. Concluding
remarks completed the paper in Section V.

II. MODEL DEVELOPMENT
A. COORDINATES-INCLUDED STATISTICAL MODEL
Dam’s displacement depends on many external and internal
factors, such as the external load, the material properties of
the dam body and the dam foundation, and the quality of
the construction. Researchers developed statistical models to
quantify the influence of these factors on dam’s displace-
ment. In most statistical models, the calculation of dam’s
displacement δ were divided into three modules: hydraulic
components δH , temperature components δT , and ageing
components δθ .

δ = δH + δT + δθ (1)

The displacement δ of a single monitoring point was writ-
ten as:

δ = a0 +
n∑
i=1

aiH i
+

m3∑
i=1

(b1isin
2π it
365
+ b2icos

2π it
365

)

+ c1θ + c2lnθ (2)

where a0 is a constant term which represents the initial con-
ditions; H is the upstream water level; n is a coefficient with
n=3 for gravity dams and n=4 for arch dams; t counts time
from the starting date of the selected dataset; θ = t

100 ; ai, bi,
ci are unknown coefficients.

To consider the spatial correlations among all monitoring
points, the coordinates of monitoring point were included as
variables in the statistical model (see Figure 1). Then, the
displacement δ becomes:

δ = f (H ,T , θ, x, y, z)

= f1(H , x, y, z)+ f2(T , x, y, z)+ f3(θ, x, y, z) (3)

withH the upstream water level, T the temperature, θ = t
100 ,

t the time, and x, y, z the coordinates of themonitoring points.
f1(H , x, y, z), f2(T , x, y, z), and f3(θ, x, y, z) are related to δH ,
δT , and δθ , respectively (see Equation(1)).

f1(H , x, y, z) = f1[f (H ), f (x, y, z)]

= f [
3(4)∑
i=1

aiH i,

3∑
l,m,n=0

almnx lymzn] (4)

where f (H ) is the hydrostatic pressure component at one
monitoring point as expressed in Equation 2. f1(x, y, z) repre-
sents the displacement field induced by the water load, and it
can be expressed with a multivariate power function:

f1(H , x, y, z) =
3(4)∑
k=1

3∑
l,m,n=0

AklmnH kx lymzn (5)
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FIGURE 1. (a) Photograph of a gravity dam, (b) sketch of the gravity dam, (c) flowchart of the statistical
model and the coordinates-included statistical model.

The displacement field induced by the temperature com-
ponent f2(T , x, y, z) exhibits:

f2(T , x, y, z) = f2[f (T ), f (x, y, z)]

=

1∑
j,k=0

3∑
l,m,n=0

Bjklmnsin
2π jt
365

cos
2πkt
365

x lymzn

(6)

The displacement field induced by the ageing component
f3(x, y, z) is:

f3(θ, x, y, z) = f3[f (θ ), f (x, y, z)]

=

3∑
l,m,n=0

Cjklmnθ jlnθkx lymzn

(j = 0, k = 1 or j = 1, k = 0) (7)

Then, the coordinates-included statistical model can be
expressed as:

δ =

3(4)∑
k=1

3∑
l,m,n=0

AklmnH kx lymzn

+

1∑
j,k=0

3∑
l,m,n=0

Bjklmnsin
2π jt
365

cos
2πkt
365

x lymzn

+

3∑
l,m,n=0

Cjklmnθ jlnθkx lymzn (8)

Known the spatial coordinates (x, y, z) and displacement
δ(H ,T , θ, x, y, z) of each monitoring point, we can fit the Ai,
Bi, Ci with the monitoring data using a stepwise regression
method.

B. NUMERICAL-STATISTICAL COMBINED MODEL
With the coordinates (x, y, z) integrated into the statistical
model, the numbers of independent variables are increased.
The increasing variables may lead to an auto-correlation
problem. The proposed numerical-statistical combinedmodel

FIGURE 2. Framework of the proposed numerical-statistical combined
model.

aims to increase the model stability without increase the
number of independent variables. In contrast to previous
studies which divided the displacement into water pressure
component, temperature component, and ageing component,
we model the displacement within three modules: recover-
able displacement δi,r , non-recoverable displacement δi,n−r ,
and measurement errors δi,e (see Figure 2). The recover-
able displacement is estimated by integrating the numerical
simulation into the statistical model, the non-recoverable
displacement is evaluated with an empirical equation, and
the measurement errors is assumed to follow a Gaussian
distribution.

1) RECOVERABLE DISPLACEMENT
The module of the recoverable displacement δi,r represents
the dam’s displacement induced by the external loads includ-
ing the water pressure δiH and temperature δiT . δiH and δiT
are regarded as linear elastic and satisfies small deformation
assumption, they hence can be expressed by the equilib-
rium equation (9), geometric equation (10), and constitutive
equation (11).

σij,j + fi = 0 (9)
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εij =
1
2
(ui,j + uj,i) (10)

εij =
1+ µ
E

σij −
µ

E
δijσ (11)

where σ , ε are the stress tensor and strain tensor, respectively;
u is the theoretical displacement field; f is the volume force
and δij is the Kronecker symbol, δij = 0 when i 6= j and
δij = 1 when i = j.

The δ0iH at different water levels and δ0iT at different tem-
peratures can be solved with Equation (9) to (11) using a
finite element method. The relation between the designed and
simulated displacement field δiH and δ0iH are:

δiH =
E0
c

Eic
· δ0iH = ζi · δ

0
iH (12)

where i is the serial number of monitoring points, E0
c is the

designed elastic modulus, Eic is the actual elastic modulus,
and ζi is the ratio of the designed elastic modulus E0

c to the
actual elastic modulus Eic.

Similarly, the relation between the actual linear expansion
δiT and the designed linear expansion δ0iT can be expressed as
δiT = ξi · δ

0
iT , in which ξi is the ratio of the designed linear

expansion to the actual linear expansion. The displacement of
the recoverable module exhibits:

δi,r = ζi · δ
0
iH + ξi · δ

0
iT (13)

δ0iH and δ0iT are provided by the numerical simulation, ζi and
ξi represent the fluctuations of the actual elastic modulus and
the actual linear expansion coefficients at indicated position.

2) NON-RECOVERABLE DISPLACEMENT
The non-recoverable displacement field δi,n−r represents the
displacement that results from the inherent variations of the
materials such as plasticity, creep, fatigue of concrete, and
etc. The physical mechanism of these influencing factors are
unclear until now. Here, we use the linear function and the
logarithmic function to characterize the divergence trend and
the convergence trend of δi,n−r , respectively. The expression
of δi,n−r is exhibited as:

δi,n−r =

L∑
i=0

M∑
m=0

(d1lmθ + d2lmlnθ )x li z
m
i (14)

where x is the horizontal coordinate and z is the vertical coor-
dinate, θ is the time, d1lm and d2lm are pending coefficients.

3) MEASUREMENT ERRORS
Themeasurement errors δi,e include the instrument errors and
the human errors. The measurement errors of the displace-
ment data at a monitoring point can be regarded as satisfying
a Gaussian distributionN (0, σ 2). The probability distribution
function of δi,e is:

f (δi,e) =
1
√
2π

exp(−
δ2i.e

2σ 2 ) (15)

FIGURE 3. Flowchart of the proposed numerical-statistical combined
model.

FIGURE 4. Sketch of the random coefficient model.

4) SOLVING THE MODEL
As presented in Section II-B1 to II-B3, the displacement field
can be exhibited as:

δi = δi,r + δi,n−r + δi,e

= ζi · δ
0
iH + ξi · δ

0
iT +

L∑
i=0

M∑
m=0

(d1lmθ + d2lmlnθ )x li z
m
i + ui

(16)

Figure 3 illustrates the flowchart of the proposed
numerical-statistical combined model.

With known spatial coordinates of the monitoring points,
the geometric characteristics at each monitoring point can be
determined from the numerical simulation. The advantage of
the numerical method is that only two variables (ζi and ξi) are
left in the module of recoverable displacement.

We use the random coefficient model to solve the
numerical-statistical combined model, which assumes the
regression coefficients are random variables and obey aGaus-
sian distribution (See Figure 4).

By introducing the random effects, the correlation between
individual observations are taken into account, and the degree
of freedom of the model are reduced. Then, Equation 16 can
be exhibited as:

δit =

K∑
k=1

βkiakit + uit =
K∑
k=1

(βk + γki)akit + u (17)

where δit is a two-dimensional data panel of the displace-
ments containing temporal and spatial information; akit is
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FIGURE 5. Photo of the selected dam.

a two-dimensional data panel of explanatory variables; t is
time; i is the dam’s cross-section index; k is the explanatory
variables index and u is a random term. The pending coeffi-
cient βki includes βk and γki, with βk = (β1, · · · , βK )′ the
common mean coefficient vector, and γ = (γ1i, · · · , γKi)′

the derivation from the individual data to the common mean
value. According to the central limit theorem, βki approxi-
mately obeys an asymptotic Gaussian distribution.

III. DATASETS
In the present study, we used the monitoring displacement
data of the concrete arch dam at the Jinping-I hydropower
station, which is one of the highest concrete arch dam in
the world (see Figure 5). The elevations of the crest and
foundation of the dam are 1885m and 1580 m, respectively.
The normal impoundedwater level and the level of deadwater
are 1880m and 1800m, respectively.

For the dataset, we selected the radial displacement mon-
itoring data of 23 monitoring points distributed in six plumb
lines (5#, 9#, 11#, 13#, 16# and 19#) from July 1, 2015
to December 31, 2018. Figure 6 shows the distribution
of the monitoring points. Displacement to the downstream
direction counts for positive, and the displacement to the
upstream direction counts for negative. The displacement
data were recorded once a day. After eliminated the miss-
data, we obtained 914 validated data in total. The dataset was
divided into two parts: data from July 1, 2015 to June 30, 2018
were selected as training dataset, whereas data from July 1,
2018 to December 31, 2018 were selected as testing dataset.

Figure 7 shows the time variation of the upstream water
level and the monitoring data of the selected monitoring
points.

IV. RESULTS AND DISCUSSIONS
A. RESULTS OF THE PROPOSED MODEL
We analysed the module of the recoverable displacement in
ABAQUS. We firstly established a three-dimensional finite
element model for the selected dam, which consists of the
dam body, dam pedestal, and the surrounded mountain.
The dam body contained 38537 elements and 31941 nodes.

FIGURE 6. The distribution of monitoring points (view from the upstream
side.

FIGURE 7. Time variation of the upstream water level and monitoring
data of the monitoring points at different plumb lines: (a) 5#, (b) 9#,
(c) 11#, (d) 13#, (e) 16#, (f) 19#.

The model was constrained in the normal direction for all
lateral boundaries, and was fixed in all directions for the
bottom boundary (see Figure 8). The parameters of the
material properties used the designed value (see Table 1).
The density, Young’s modulus and Possion ratio were used
to calculate the hydrostatic pressure-induced displacement,
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FIGURE 8. The finite element model of the selected dam: (a) the overall
structure, (b) the dam body and dam pedestal, (c) the dam body and the
surrounded mountain.

TABLE 1. The settings of material properties in the finite element model.

FIGURE 9. The simulated radial displacement at different upstream water
levels: (a) 1700 m, (b) 1780 m, (c) 1860 m, (d) 1880 m.

and the expansion coefficient was used to calculate the
temperature-induced displacement. We simplified the dam
body as concrete, and the dam pedestal and foundation as
rock.

As the upstream water level varied between 1700 m
to 1880 m in the real world, we simulated the dam’s displace-
ment at six different upstream water levels (see Figure 9).
Results showed that the displacement field was approxi-
mately horizontal symmetry, with the displacement at the
midline larger than at the border areas.

Similarly, as the temperature in the real world varied
from 4 ◦C to 24 ◦C, we selected 4◦C, 8◦C, 12◦C, 16◦C, 20◦C
and 24◦C as the boundary conditions of the downstream dam
surface and the dam crest. The boundary conditions of the
upstream dam surface were set to 3◦C, 4◦C, 5◦C, 8◦C, 11◦C
and 14◦C, which are the average temperatures of the water
body in the above six configurations. Figure 10 exhibits the
displacement field with the temperature of the upstream dam
surface varied systematically from 4◦C to 24◦C. The dam’s
crest deforms toward downstream at low temperature and
toward upstream at high temperature.

FIGURE 10. The simulated radial displacement at different upstream dam
surface temperatures: (a) 4◦C, (b) 12◦C, (c) 20◦C, (d) 24◦C.

TABLE 2. The coordinates of the selected monitoring points.

With the numerical simulations of the configurations at dif-
ferent water level and temperature, we obtained the regression
relationship between H and δ0H (i.e., δ0H =

∑4
i=0 aiH

i), and
the relation between T and δ0T (i.e., δT =

∑2
i=0 biT

i). Table 2
exhibits the coordinates of all the selected monitoring points.

With the random coefficient model, the coefficients of the
explanatory variables in Equation 16 can be obtained, which
are exhibited in Table 3.

B. PREDICTION ACCURACY
In order to evaluate the proposed model, we calculated the
coefficients of determination R2 of the training data and the
root of mean square error RMSE of the testing dataset:

R2 =

∑n
i=1(δ̂i − δi)

2∑n
i=1(δi − δi)2

(18)

RMSE =

√∑n
i=1(δ̂i − δi)2

n
(19)
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TABLE 3. The coefficients of independent variables of the proposed
model at each monitoring point.

where δi is the average of the monitoring data and n is the
number of displacement data.

As shown in Table 4, we compared the coefficient of deter-
mination R2 of the proposed model with the statistical model
(S model) and coordinates-included statistical model(C-S
model). The coefficients of the explanatory variables in the S
model and C-S model are shown in Appendix (Table 6 and 7).
The number of variables of a single monitoring points of the
S model, C-S model, and the proposed model were 9, 160,
and 5, respectively. For the displacement prediction of single
monitoring point, the number of variables of the C-S model
was more than those of the S model and the proposed model.
Here, to establish model for all monitoring points, the number
of variables were 207, 160 and 115 for the S model, C-S
model, and the proposed model, respectively. For the whole
dataset, S model had the most numerous variables (207) and
thus had the best fitting results but also a larger possibility
of having the over-fitting problem. The R2 of the C-S model
was slightly smaller than those of all monitoring points in
S model and the proposed model. Overall, the coefficient of
determination R2 of all these three models exceeded 0.95 for
the prediction of all the monitoring points, which means all
these models performed well in fitting the training data.

Figure 11 (a) presents the RMSE of three models for
each monitoring point, the average RMSE of all monitoring
points were 0.315, 1.679 and 0.270 for the S model, the
C-S model, and the proposed model, respectively. For the
whole 23 monitoring points, S model had the lowest RMSE
in 8 monitoring points, the proposed model had the lowest
RMSE in 15 monitoring points. Since more than half of the
variables in the C-S model were fairly small (almost close
to zero), the number of effective variables is the smallest.

TABLE 4. The coefficient of determination R2 of the coordinates-included
statistical model (C-S model) and the statistical model (S model).

Therefore, C-S model performed the worst of three models in
fitting and predicting displacement. The prediction accuracy
of the proposed model was as good as S model, because it
considered the deterministic relation between the variables
and the dam’s displacement using the numerical simulation.

Further, to evaluate the prediction accuracy at different
time period, we calculated the RMSE from one to six months
for the testing dataset. Figure 11 (b) exhibits the average
RMSE of 23 monitoring points, which varied from 1.67 to
1.97 for the C-S model, from 0.36 to 0.93 for the S model,
and from 0.21 to 0.35 for the proposed numerical-statistical
combined model. For all these three models, the average
RMSE of all monitoring points kept increasing with the pre-
diction period last longer.When the prediction time rose from
five months to six months, the RMSE increased intensely.
Compared with the other two models, the S model had a more
obvious increase of RMSE, especially at the sixth month,
the increase rate was 52.4 % (increased from 0.61 for five
months’ prediction time to 0.93 for six months). The average
RMSE of the C-S model for all predicting period was the
highest but its increment was smaller than the S model.
To conclude, the prediction accuracy of all these three models
decline when the predicting time lasts longer. By comparing
the RMSE and its increments for the prediction time varied
from one month to six months, we noticed that the pro-
posed model had the most steady prediction accuracy. This is
because the proposed model limits the variables with random
coefficient model.

C. MODEL STABILITY
Here, we select change ratio of coefficient (CRC) as the
indicator to evaluate the model stability, which represents the
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FIGURE 11. The RMSE of the S model, the C-S model and the proposed
model (a) at different monitoring point and (b) with different prediction
time.

sensitivity of the coefficients of themodel to the varied inputs.
The expression of CRC is exhibited as:

CRC =
|Coefini − Coef ′|
|Coefini|

(20)

where CRC denotes the change ratio of coefficient, Coefini
and Coef ′ are the coefficients calculated with the initial
inputs and varied inputs, respectively. A larger CRC signifies
that the coefficients calculated with varied inputs have greater
fluctuation, thus a more unstable model.

We adopted the varied training datasets and varied mea-
surement errors (δi,e) to obtain the CRC in this section.
To calculate CRC of varied training datasets, we defined a
comparison scheme and used the coefficients calculated with
the whole training dataset as a control group.We then reduced
5% and 10% of the training dataset, receptively, and obtained
the differences of the coefficients calculated with these three
datasets. Similarly, CRC of varied δi,e was obtained by the
coefficients calculated with the initial δi,e and varied δi,e
according to Equation 20. Here, we set δi,e fluctuated in
the ranges of [-10%, 10%], [-20%, 20%], [-30%, 30%],
[-40%, 40%] and [-50%, 50%], respectively as varied inputs.

1) VARIED TRAINING DATASETS
Figure 12, Figure 13 and Figure 14 exhibit the CRC5% and
CRC10% of the S model, the C-S model and the proposed
model (CRC5% and CRC10% denotes the CRC with 5% and
10% reduced training datasets, respectively). In Figure12, 20
monitoring points had a higher average CRC of all coeffi-
cients (ai, i=1,2,3,4; bi, i=1,2; ci, i=1,2 and constant term)
with the 10% reduced training dataset than with the 5%
reduced training dataset. The average CRC5% of PL19-5
(3.677) was maximum, and the fluctuations of the coeffi-
cients of PL9-4 (0.571), PL11-5 (0.917), PL16-4 (0.596) and
PL19-4 (0.521) were relativelymore obvious.When the train-
ing dataset was reduced by 10%, the coefficients of PL9-4,

FIGURE 12. The change ratio of coefficient CRC of the S model with
(a) 5% and (b) 10% reduced training dataset.

PL9-5, PL11-5, PL16-4, PL19-4 and PL19-5 had the most
obvious fluctuations whose CRC10% were above 0.5.
In Figur 13, the CRC5% of A1ln, A2ln and B11ln (l=0,1,2,3;

n=0,1,2,3) and CRC10% of A1ln, A2ln, B01ln, B10ln and B11ln
(l=0,1,2,3; n=0,1,2,3) were relatively large. As more than
half coefficients were not used in the C-S model, the CRC of
these coefficients were considered as 0. However, in the C-S
model, the maximum CRC5% and CRC10% were 67 and 55,
which were 18.26 and 59.98 times as much as the maximum
CRC in the S model. In this case, the coefficients in the C-S
model were quite sensitive when the training dataset varies,
and thus the model was unstable.

In the proposed model, the maximum average CRC5%
was 0.146 at the monitoring point PL19-5, and the average
CRC5% of the monitoring points PL9-5, PL13-4, PL19-3 and
PL19-4 exceeded 0.05. The CRC of over 80% monitoring
points (19 of 23) had a trend of increase with the reduced
training datasets, in which CRC10% of PL11-5 and PL19-5
exceeded 0.2. Compared with the Smodel and the C-Smodel,
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FIGURE 13. The CRC of the C-S model with (a) 5% and (b) 10% reduced
training dataset.

TABLE 5. Maximum CRC of different measurement errors inputs of S
model, C-S model and the proposed model.

the proposedmodel wasmore stable when the training dataset
changes. From Figure 12 and 14, it is noted that the monitor-
ing points around the dam foundation (i.e., PL19-5, PL19-4
and PL9-5) had a more significant influence by varying the
training dataset.

2) VARIED MEASUREMENT ERRORS
Table 5 represents the maximum CRC of the three models,
in which, the maximum CRC of S model, C-S model and
proposed model increased from 15.3235 to 448.5635, from
15.8318 to 285.4802 and from 0.0436 to 0.2361, respectively.
The coefficients in the proposed model fluctuated much less
in response to the varied δi,e compared with the other two
models.

In Figure 15, the average CRC of S model, C-S model
and the proposed model varied from 0.1898 to 3.8137, from
0.8939 to 4.9890 and from 0.0085 to 0.0209, respectively.
In general, the coefficients of all three models fluctuated
more obviously with the measurement errors inputs varied in
a wider range. The coefficients in S model and C-S model
were sensitive to the variation of measurement errors inputs,
on average, a change that is nearly three times as much as the

FIGURE 14. The CRC of the proposed model with (a) 5% and
(b) 10% reduced training dataset.
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TABLE 6. The coefficients of explanatory variables in the statistical model.

FIGURE 15. The average CRC of S model, C-S model and the proposed
model with different varied measurement errors series.

initial inputs. Whereas the coefficients of the proposed model
had little variation toward varied measurement errors inputs.

V. CONCLUSION
In the domain of dam’s displacement prediction based on
monitoring data, most previous studies gave emphasis on
improving the prediction accuracy and paid less atten-
tion on the model stability. In this study, we proposed a
numerical-statistical combined model to enhance the model
stability. The proposed model considered the spatial correla-
tions of different monitoring points and the randomness of
the coefficients of explanatory variables. We quantified the

dam’s displacement via three modules: the recoverable dis-
placement, the non-recoverable displacement, and the mea-
surement error. Numerical simulation was used to construct
the coefficients of the explanatory variables in the module of
recoverable displacement. The randomness of the coefficients
of the explanatory variables was constrained with a random
coefficient model.

We used the monitoring displacement data of a concrete
arch dam at the Jinping-I hydropower station to validate the
proposed model. The coefficients of determination R2 of the
proposed model were above 0.9 for the training dataset of
all monitoring points. Compared with the statistical model
(S model) and the coordinates-introduced statistical model
(C-S model), the proposed model had a better prediction
ability: the smallest increase of RMSEwith the increase of the
prediction time. In addition, the proposed model had the best
stability: the average change ratio of coefficient when reduce
5% and 10% of the training dataset (CRC5% and CRC10%)
were the lowest compared with the S model and the C-S
model, and the lowest CRC in response to five different varied
δi,e series.With the better model stability, the proposedmodel
is more suitable for the long-term displacement prediction of
large dams.

ABBREVIATIONS
The following abbreviations are used in this manuscript:

S model Statistical model
C-S model Coordinates-introduced statistical model
RMSE Root Mean Squared Error
CRC change ratio of the coefficient
R2 Coefficient of determination
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TABLE 7. The coefficients of the explanatory variables in the coordinates-included statistical model.

APPENDIX
COEFFICIENTS RESULTS OF THE S MODEL AND THE C-S
MODEL
Tables 6–7 show the coefficients of explanatory variables in
the statistical model and the coordinates-introduced statistical
model, respectively.
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