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ABSTRACT In recent years, with the widespread application of encryption technology, criminals can
hide malicious data without being discovered by security regulatory authorities, which has brought serious
challenges to computer forensic investigation. Therefore, it is urgent to study the technology of detection
and forensics of encrypted data. This paper proposes a method for encryption detection based on a deep
convolutional neural network. The method first converts the raw data into two-dimensional matrixes as the
input of the convolutional neural network. Then, the multiscale feature extraction mechanism with multiple
activation functions is utilized to provide representative features as the input of subsequent layers. Next,
the residual learning operation can further enhance the discrimination of features. By this mean, a network
which can automatically extract and learn global contextual information of encrypted data is constructed. The
experiment results show that the proposed method achieves high accuracy in the detection of storage file and
network transmission data compare to the competitive methods and the detection accuracy on different types
of mixed data is higher than 99%. Moreover, the proposed method can accurately detect data encrypted with
different algorithms. The average detection rate of DES-encrypted data is higher than that of competitors by
more than 5%.

INDEX TERMS Encryption detection and forensics, storage file, network transmission data, deep learning.

I. INTRODUCTION

With the increasing popularity of the Internet and increasing
awareness of privacy protection, encryption technology has
been widely used in all aspects of daily life [1]. For example,
people encrypt important files stored in their computers
to prevent browsing and theft, use encryption technology
to pre-process when transferring files through communica-
tion tools, or transfer important information through VPNs.
Encryption technology can provide legal users with higher
data security, but like many other technologies, encryp-
tion technology is also a double-edged sword. It can be
used to protect the privacy of users and prevent legal data
leakage, but it can also be used by criminals to hide their
illegal data. Encryption technology enables criminals to
transmit malicious data through a secure channel. In addition,
the widespread use of encryption technology has also brought
challenges to digital investigations and forensics. The main
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objective of a computer forensic investigation is to search
and analyze any data and files that may contain any illegal
information. Generally, most of the illegal information is
hidden by encryption. How to find the encrypted data is the
main problem faced by computer forensics which is also the
key to further analysis of criminal information. Thus, research
on detection and forensics of encryption data is urgent.

There are two scenarios of data encryption: one is to
encrypt the data and store it in various storage media (such as
hard disks, USB flash disks, optical disks, etc), these media
can be easily transported. The second is to encrypt the data
and then transmit it over the network or directly encrypt the
original data through an encrypted channel (such as VPN).
Whatever encryption method is used, the input accepted by
the detector is a binary data stream. Thus, the essence of
encryption detection is to quickly determine whether the
binary data is encrypted.

As a basic step for more refined identification, encryption
detection is of great importance. Currently, the entropy-based
method [2] is a general method to identify whether data
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is encrypted or not. However, the entropy-based method is
ineffective in distinguishing between compressed media data
and encrypted data [3]. Therefore, it is insufficient for detect-
ing a large amount of audio and video data. On the other
hand, the machine learning-based method [4], [5] needs to
carry out the random statistical test on test data to obtain
random feature values, and then feature selection is con-
ducted. The feature selection operation is often completed by
manual design, which leads to the problems of unstable qual-
ity, low representativeness, and low robustness, etc. Finally,
the machine learning algorithm is used for model training and
detection. The machine learning-based method is not end-
to-end because it requires hand-crafted features. Therefore,
the process is cumbersome and the detection accuracy is not
high.

The application of deep learning (DL) algorithms has
grown tremendously in the last few years. Thus, some schol-
ars have proposed methods for applying deep learning frame-
works to encrypted data classification [6], [7]. However, most
of the current deep learning frameworks are used in the
detection and classification of malicious traffic. The method
utilizing deep learning models for detection and forensics of
encryption data in storage files and network transmission data
has not been proposed yet.

In this paper, we propose an efficient end-to-end detec-
tion and forensics method based on deep learning called
EDNet (Encryption Detection Network). To improve the
feature extraction performance, multiscale feature extraction
mechanism is used. It utilizes different activation functions
to capture different feature responses. Followed, the residual
learning mechanism combined with a pooling layer can fur-
ther enhance the presentation of the features to retain richer
information of input data. Last, we use the linear classifica-
tion layer to calculate the encryption probability of the input
sample. The contributions of this paper are as follows:

1) The proposed method is the first approach for the detec-
tion and forensics of encryption behavior of storage file
and network transmission data based on deep learning.
It has great reference value for other similar tasks in
this field.

2) Different from manually extracting features,
a multiscale feature extraction mechanism with mul-
tiple activation functions and residual learning layers
are combined in the EDNet to enhance the ability of
feature expression and improve network performance.
The proposed EDNet can not only detect different
types of data encrypted with different methods but also
have a good performance on mixed data. The detection
accuracy of EDNet on different types of mixed data
is higher than 99%. At the same time, EDNet achieves
state-of-the-art performance on storage file and also has
a good performance on network transmission data.

The remaining of this paper is organized as follows:
In Section II we summarize the relevant research works on
encryption detection. In Section III we describe the EDNet
model in detail. In Section IV, we explain the experimental
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settings and discuss the results. The conclusion is in
Section V.

Il. RELATED WORK

The traditional approaches of encrypted data detection are
to extract and learn the data features which can correctly
determine whether the data is encrypted. Jozwiak et al. [2]
detect encryption by calculating the entropy value of the
data. Thurner er al. [3] test the stored data using the test
statistics proposed by Knuth [8], and set the confidence level.
If the value of the test statistical feature is higher than the
confidence level, the data will be considered as encrypted
data. However, this method has limited performance on com-
pressed data.

Feature selection is an important step in the traditional
encryption detection process. Anderson and Mcgrew [9]
have found that feature engineering played a decisive role
in identifying malware traffic. Feature extraction [10]—[12]
has a much greater impact on the performance of encryp-
tion detection. Meng et al. [5] propose an encrypted traf-
fic identification method based on randomness estimation.
First, 188-dimension randomness features are produced by
randomness test and realized dimension reduction by sparse
logistical regression based on 1-norm regularization. Then,
the encrypted traffic can be identified using the Extreme
Learning Machine (ELM). However, the feature dimension
selection procedure in this method has a great influence
on the result. The method in [4] conducts a randomness
test on the test data using the 15 test items published by
NIST SP800-22standard [13]. The test first extracts a total of
188-dimensional features and then selects features utilized
the greedy algorithm. Finally, the Support Vector Data
Description (SVDD) algorithm [14] is used to train and test
the model with these selected features. The feature selection
operation of the greedy algorithm is a very tedious work
that requires at least 375 times of feature selections and a
maximum of 17766 times in extreme cases. Thus, the model
requires extensive computational time and resources in the
training and testing phase. According to our survey, there are
few related works for the detection and forensics of encrypted
data.

Although the detection and forensic methods of encrypted
data have not been fully studied, as a kind of encrypted
data detection, the identification of encrypted network traf-
fic has attracted a lot of attention, and many works in this
aspect have been proposed recently. Dorfinger et al. [15]
propose a real-time detection method of Skype encrypted
traffic based on the entropy estimation method, but the
performance of this method is poor when the encrypted
data traffic is small. Moreover, the detection performance
of encrypted and unencrypted compressed traffic is not
discussed. Anderson and McGrew [16] concentrate on identi-
fying malware communication in encrypted leveraging com-
munication flow context information. Nonetheless, this paper
focuses more on the extraction and identification of malicious
traffic characteristics, rather than general traffic encryption
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detection and identification. The methods in [16], [17] pro-
pose a port-based encrypted traffic identification method and
believe that current major encryption protocols often have a
fixed default port which can help to identify the encryption
type. Works [18], [19] consider that encryption protocol data
has specific content functions, and propose recognition meth-
ods based on content signature recognition. At the same time,
the purpose of encryption protocol recognition is achieved
by matching content signatures. Some researchers [20]-[23]
propose identification methods based on flowing features
and believe that the encryption protocol needs to establish a
connection to complete version negotiation and key exchange
before transmitting encrypted data. At the stage of estab-
lishing a connection, the interactive protocol package has a
relatively fixed format, content, and specific stream charac-
teristics so that encryption identification can be performed
according to these stream characteristics. Unfortunately, the
above identification methods based on the port, content signa-
ture, and traffic characteristics, can only be implemented for
specific encryption protocol identification and the details of
the encryption protocol must be known. In fact, in an open
network environment, the emergence of private encryption
protocols makes it difficult to identify these encrypted net-
work traffic.

Traditional identification methods of encrypted informa-
tion are mostly based on feature engineering technology.
Recently, technologies based on deep learning have con-
tinuously produced promising results [25]. Moreover, it is
believed that deep learning-based methods are highly desir-
able approaches for encrypted network traffic classification
since it automatically extracts and selects features through
training [26]. Wang et al. [27] propose an encrypted traffic
data classifier based on three deep learning models (multi-
layer perceptron MLP, stacked autoencoder [28], and CNN),
achieving distributed application perception through classify-
ing the data traffic in smart home networks. Zeng et al. [26]
propose encrypted traffic classification and intrusion detec-
tion using deep learning. The paper uses CNN for spatial
feature learning, LSTM [29] for time-domain feature learn-
ing, SAE for coding feature learning, and finally combines
these three aspects of features to enhance the understanding
of the original input data. Ran et al. [30] first propose the
application of 3D CNN networks for traffic classification.
All these deep learning based methods for encrypted traf-
fic classification have achieved good results. Unfortunately,
the study applying deep learning to encrypted data detection
and forensics has not yet been proposed.

IIl. EDNet FOR ENCRYPTION DETECTION AND
FORENSICS

We proposed a novel deep learning-based method for detec-
tion and forensics of encryption behavior called EDNet.
In this section, we will illustrate the details of our pro-
posed network. First, the original encrypted binary data will
be converted into a two-dimensional matrix which can be
viewed as a grayscale image. Second, to extract representative

VOLUME 8, 2020

features from encrypted data, the multiscale feature extrac-
tion mechanism is used to enhance the performance of feature
extraction. Then, to ensure the depth and learnability of the
network, the residual learning and pooling layers are com-
bined to improve the performance of the proposed network.
Last, EDNet uses a linear classifier to get the final label of
the input data.

A. OVERVIEW

The proposed EDNet framework is shown in Fig. 1. As can be
seen that the new framework includes four processing stages:
the data pre-processing (highlights in red), the multiscale
feature extraction (highlights in green), the residual learning
(highlights in yellow), and the linear classifier (highlights in
blue). The number of kernels in convolutional layers in each
layer of “Inception architecture’ is shown in Table 1.

TABLE 1. The number of kernels in each convolutional layer of the
“Inception Structure” in the EDNet model.

Type name activation 1xl1  3x3 3x3 5x5 5x5 pooling
InceptionR Relu 64 32 64 16 32 32
InceptionT Tanh 64 32 64 16 32 32
InceptionA Relu 128 128 192 32 96 64

The original data to be detected from encrypted files and
the network traffic is a binary sequence composed of 0 and 1.
Moreover, the data lengths of different sources are different.
Therefore, the data to be detected cannot meet the input
requirements of a two-dimensional CNN network. In other
words, the deep learning framework cannot directly accept
raw data as input data. To overcome the input problem,
the data pre-processing is used to convert the original input
data into a handleable format. To accomplish this goal,
EDNet transforms every 8 bytes of binary data into the
corresponding decimal numbers and gather them into an
asymmetric two-dimensional matrix. In this manner, the data
pre-processing phase extracts part of data from the files or
the network traffic to be detected, then convert them into
2-D matrixes as the input of deep learning framework which
can be seen as a grayscale image as well. For example,
when the length of the input data is 16 bytes, each byte will
be converted into the corresponding pixel value fixing in a
grayscale image with size 4 x 4.

Extracting distinguishable features from encrypted data is
the focus of traditional detection methods. In the EDNet,
a multiscale feature extraction mechanism is realized by the
Group 1 layer which contains a convolution operation and
Inception modules. After that, a reconstructed feature vector
will be obtained as the input of the next neural network layer.
Group 1 starts from a 3 x 3 convolution filter, followed by
Batch normalization [31], Relu [32] activation function, and
average pooling. To extract rich spatial details and enhance
the feature representation, EDNet feeds the pooling out-
put into two parallel Inception structures [33] (displayed as
InceptionR and InceptionT in Fig. 1). The difference between
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FIGURE 1. The architecture of the proposed EDNet. Conv(a x a + x;(s)) indicates that the kernel size in the convolution layer is
a x a, and the stride is x;. Avgpool(b x b + x,(s)) indicates that the window size in the average pooling layer is b x b, and the
stride is x,. Batch normalization is abbreviated as BN. The number “[n]” indicates the number of kernels in the convolution layer.
The number “xn" outside the “Bottleneck block” indicates the numbers of Bottleneck blocks stacked.

InceptionR and InceptionT is that they use different activation reduced to a 1024-D feature vector by computing the statisti-

functions. Since different activation functions respond differ- cal average of each 14 x 14 feature map).

ently to input data, different feature structures can be retained Last, the linear classifier module is followed to realize

by two parallel Inception layers. the identification of encrypted data. First, the output of the
Next, the residual learning mechanism is introduced into Groupl-7 flows through a global average pooling and a full

the EDNet to expand the depth of the network while ensur- connection layer. Then a softmax function is used to calculate

ing the learning ability of the network. The feature maps the probability of whether the input data is encrypted.
outputted from the multiscale feature extraction layer are

concatenated and pass through Group 2-6 to complete the B. MULTISCALE FEATURE EXTRACTION

residual learning. Finally, the global averaging pooling layer As described above, the quality of feature extraction has a
in Group 7 merges each spatial map into a single element great influence on the detection results. The EDNet utilizes
(for example, when the input is assumed to be a grayscale a multiscale feature extraction mechanism to enhance the
224 x 224 image, 1024 feature maps of size 14 x 14 are performance of feature representation.
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The multiscale feature extraction mechanism includes mul-
tiple convolution modules and different activation functions.
Specifically, a form of horizontal multiscale convolutional
kernels is constructed firstly, so that multiple convolutional
kernels of different sizes in the same layer can simultane-
ously extract features of different scales. Then use different
activation functions to capture different feature responses. As
shown in Fig. 1 the first half of the EDNet (Group1-Group3)
focuses on extracting rich multiscale features and the last half
(Group4-Group7) extracts more complex high-level features
by multiple convolutional groups.

Activation functions are an important part of the multiscale
feature extraction mechanism. Different activation functions
have different statistical modeling characteristics, such as
the Tanh function, its mathematical expression is shown
in (1) below.

e —e*

Tanh(x) = e (1)
Because of its saturated regions, it is possible to limit
the range of data values and prevent the subsequent layers
from modeling large values. It is generally believed that
large values are sparse and their statistical properties are not
significant. In [34], a hybrid of Tanh and Relu activations
is employed. Tanh is used as the activations in the previous
Groupl and Group?2 layers, and Relu is used as the activations
in the deeper layer. The performance is better than using Relu
alone. The mathematical expression of the Relu activation is

shown in (2) below.

x, x>0
Relu(x) = 2
u(x) 0, otherwise @

To learn the different multiscale features of encrypted
data, we adopt multiple activations module in Group1, which
include InceptionR and InceptionT, using Relu, Tanh func-
tion, respectively. And concatenating the resulting feature
maps for the subsequent Group 2.

It is expected that each kind of activation unit in the diverse
activation module has different responses to the encrypted
data. At the same time, it can be seen from Fig. 1 that
the multiple activations module is not used in the deeper
groups. On one hand, this can avoid increasing the number
of parameters in the convolutional layer, on the other hand,
since both Tanh and Sigmoid function have saturated regions,
the backward propagation of the gradient is difficult when
the network is deeper, because of the vanishing gradient
phenomenon [35]. So, the multiple activations module is
only used in the shallow layer and we choose Relu as the
activations for the subsequent convolutional layers.

To intuitively understand the design of multiple activations
module in Group 1, Fig. 2 shows the heat feature maps
generated by a 224 x 224 train image through InceptionR,
InceptionT, and the data distribution of the feature map. It can
be seen from Fig. 2, with different activations, each kind of
activation unit has different responses to the input, so that
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FIGURE 2. Feature maps and distribution. The first row is the heat feature
maps generated by a 224 x 224 train image through InceptionR and
InceptionT. The second row is the data distribution of the corresponding
feature map.

different features can be obtained. The mean value activated
by Relu is around 0.1, while by Tanh it is around —0.03.

C. RESIDUAL LEARNING

Generally speaking, the deep network has a stronger ability to
extract features. In other words, more representative features
can be learned as the network deepens. To this end, aiming
at increasing the depth of the network, EDNet employs a
deep residual learning strategy to capture the important global
contextual information. Specifically, a “Bottleneck block”
architecture with the shortcut is used. As illustrated in Fig. 1,
Group 2-7 consist of Bottleneck block and Inception.
Moreover, the average pooling is utilized for dimensionality
reduction.

The ‘“Bottleneck block” architecture in Group 2-7 is
shown at the bottom of Fig. 1. As can be seen from the
figure, each residual function is constructed by a stack of 3
convolutional layers. The three layers are 1 x 1, 3 x 3, and
1 x 1 convolutions, where the number of the first 1 x 1
kernels and the followed 3 x 3 kernels are shown in the figure.
Moreover, the expansion of the ““Bottleneck block” is set to 2,
which means after the calculation of the residual function,
the number of output dimensions will be expanded twice as
the input dimensions. The identity shortcuts can be directly
used when the input and output are of the same dimensions
(shown as structure (b) in Fig.1). Otherwise, we consider
using 1 x 1 convolutions to match the dimensions (shown
as structure (a) in Fig.1).

Next, an average pooling layer follows the residual func-
tion. In Image classification, image is classified according to
image objects, and may only be related to some local regions,
but encryption detection is related to the content of the entire
image. Convolution with a stride of 2 will weaken some local
features while strengthening a certain local feature. On the
contrary, average pooling can better preserve the feature cor-
relation by averaging the adjacent pixels, thus, the average
pooling layer is used in EDNet.
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IV. EXPERIMENT

In this section, we will introduce the experimental dataset,
experimental settings, and training methods. Moreover,
we also expand on performance analysis and comparison of
the EDNet.

A. DATASETS AND PLATFORM ENVIRONMENTS

In this paper, to evaluate the performance of the proposed
method, we establish two datasets including datasetl (DS1)
and dataset2 (DS2). The DS1 consists of 1335133 grayscale
images of size 224 x 224, which are generated from
353 randomly downloaded videos. Then, we use the DS1 to
pre-train our model. As analyzed previously in the introduc-
tion section, locally stored data and network traffic data are
the two encryption detection scenarios. The DS2 is divided
accordingly into these two types. For locally stored data,
we first download 12000 audio, 12000 video, and 10000 text
files whose size is more than 1MB from the Internet, covering
a variety of data formats, as shown in Table 2. For each
file, we take a data piece in the middle of a certain length
(e.g. 49KB) and convert it into a two-dimensional gray image
through the data pre-processing module. Note that only one
such image will be extracted from each file and all images
will finally be collected to form the original video, audio, text
dataset.

TABLE 2. The Stored data sets.

Data types Number of data per type

MP4 3000

. AVI 3000
Video

MOV 3000

MKV 3000

MP3 3000

. WMA 3000

Audio AAC 3000

WAV 3000

TXT 3000

WORD 3000

Text PDF 3000

PPT 3000

HTML 3000

For network traffic data, we divide it into internet surf-
ing traffic and FTP transmission traffic. Within the inter-
net surfing traffic, the encrypted data stream is generated
by the encryption proxy software VPN, while the unen-
crypted traffic is the network traffic that is generated while
browsing through a browser. Within the FTP transmis-
sion traffic, the non-encrypted traffic is captured when the
above-mentioned audio, video, and text files are transmitted
through FTP, while the encrypted traffic is captured when the
AES encrypted audio, video, and text files are transmitted.
All the above-mentioned network traffic data are captured by
wire shark software. Similarly, for each of these four traffic
types, we select 32000 segments of the fixed length of 49KB
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and convert them into 224 x 224 size 2D grayscale to get the
final Internet traffic dataset, which is shown in Table 3.

TABLE 3. Internet traffic data sets.

Data types Image number
VPN encrypted 32000
Web Browsing Traffic
Unencrypted 32000
FTP encrypted 32000
FTP Transmission Traffic
FTP non-encrypted 32000

All the experiments in this paper are based on the PyTorch
framework. The hardware platform is a server equipped with
an NVIDIA RTX 2080TT graphics card. This GPU has 11GB
on-chip memory and its single-precision floating-point com-
puting capability can reach 13.45 TFLOPS.

B. EDNet TRAINING

Transfer learning [36] is widely used in many deep learning
tasks. It can further improve the learning capability of a
deep learning model. To get better initial parameters for our
task, the EDNet model is pre-trained with the DS1. Then,
we fine-tune it by applying the pre-trained model into our
encrypted data detection task. Moreover, to prevent over-
fitting, we adopt the RandorizontalFlip data enhancement
strategy to enrich our DS2.

In the pre-training stage, we select Adamax [37] as the
optimizer with a minibatch of 16. The weight of filters is
initialized by He Kaiming initializer [38] and regularized
with L2 regularization of 2e-4. The fully connected layer is
initialized by a standard normal distribution. We divide the
DS into the training, validation, and testing set with a ratio
of 7.5:1:1.5. A validation operation will be performed on a
validation set every 50000 iterations. Moreover, to avoid the
model falling into local optimum, a learning decay strategy is
applied when the accuracy on the validation dataset no longer
rises.

After the pre-trained model is obtained, we will train our
model on DS2, which is divided into three parts: training set,
validation set, and test set. The proposed method needs large
amounts of data for training. And the training process is time-
consuming. During the fine-tuning, the number of the epoch
is limited to 100, and validation is conducted on the validation
set every 1000 iterations. The initial learning rate is set to
0.0001 and reduced to 0.00005 after 20 epochs.

C. ABLATION STUDY

A wider network can capture richer spatial information in
the early stage of the network. The EDNet uses Inception to
increase the width of the network. To be specific, in Groupl,
the Inception is used to widen the network with different
activation functions, which can extract multiscale features.
Furthermore, InceptionA in Group2 and Group3 can further
enhance the representation of features. Besides, the residual
learning mechanism avoids the problem of gradient disap-
pearance or gradient explosion while the network deepens.
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To analyze the impact of different function modules,
we conduct a series of ablation studies with different network
architecture. 1) Using a 3 x 3 convolutional layer replaces
the Inception module in the Group1, named “No_inception™.
2) Only use the InceptionR in the Gtoupl called “only Incep-
tionR”. 2) Only use the InceptionT in the Groupl called
“only InceptionT”. 3) Using InceptionR and InceptionT
without pooling operation in the Group 4-7, termed ‘‘no
pooling”. The comparison results of different network archi-
tectures are illustrated in Table 4.

TABLE 4. Detection accuracy of each model on video test dataset.

Model Accuracy(test)
EDNet 98.83%
only InceptionR 98.70%
only InceptionT 98.77%
no_pooling 98.52%
no_inception 98.62%

From Table 4, it is obvious that the EDNet has the highest
accuracy on the test video datasets. Besides, without the
pooling layer results in a terrible decrease in performance.
Which means the average pooling layer can extract the repre-
sentative features from the upper input. Moreover, compared
with the network without the inception module, the EDNet
improve the accuracy of the network by 0.21%. This means
the employment of the multiscale feature extraction mecha-
nism plays a positive role in improving the results.

D. PERFORMANCE ANALYSIS
In this section, the length of data pieces in all experiments
is set to 49KB except Experiment 2, and the corresponding
image size is 224 x 224. Note that all stored data are encrypted
with AED except experiment 1.

According to the previously stated relevant researches in
Section II, works [2]-[5] are most closely related to research
in this paper. References [2] and [4] are relatively com-
mon methods for detecting encrypted data, [3] is a specific
detection method for stored data, and [5] is an encrypted
network traffic detection method. Therefore, when analyz-
ing the performance of our model, we compare our EDNet
model with the methods [2]-[4] on stored data, and with
methods [2], [4], [5] on network traffic. The corresponding
experimental settings are set following the conditions of the
best result in these methods.

1) THE DETECTING PERFORMANCE OF DIFFERENT
ENCRYPTION ALGORITHMS ON DIFFERENT TYPES OF DATA
Since the random statistical properties of encrypted data are
affected by the encryption algorithm, to evaluate the robust-
ness of the EDNet model, we choose AES and DES to encrypt
different types of data. The experimental results are shown
in Table 5.
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TABLE 5. Encryption detection accuracy of current methods and EDNet.

i?;ﬁﬁg Datatype paper[2] paper[3]  pape[4] EDNet
Video 50.80% 82.58% 94.3% 98.83%

AES Audio 68.95%  93.94%  99.96% 100%
Text 90.02%  92.03% 100% 100%

Mean 69.92% 89.52% 98.09%  99.61%

Video 50.67% 82.03% 92.31%  98.75%

DES Audio 62.35% 81.25% 91.48%  99.90%
Text 88.76% 86.9% 99.93%  99.98%

Mean 67.26% 83.39% 94.57%  99.54%

As illustrated in Table 5, the encryption detection of video
data is more difficult than other data. For the video dataset,
the EDNet model offered improvements of 48.03%, 16.25%,
and 4.53% compared with the methods in paper [2], [3],
and [4] respectively when encrypted with AES. Besides a
similar value of 48.08%, 16.72%, 6.44% are offered when
encrypted with DES. Methods in [2]-[4] are essentially
based on the detection of randomness testing value to judge
whether the data is encrypted. The randomness of data varies
when encrypted with different algorithms. Thus, different
encryption algorithms would result in a great impact on
detection accuracy. Compared with AES encrypted data,
DES-encrypted data has poor randomness, so the encryption
detection accuracy of DES-encrypted data in works [2]-[4]
is poor. In contrast, the EDNet showed better performance
on both encryption algorithms because it can automatically
learn the representative feature for encrypted data. Last,
from the mean value, the EDNet has the highest accuracy
on the dataset generated by different encryption algorithms.
Moreover, the superiority of the EDNet model shows its
inherently good robustness.

2) EVALUATE THE IMPACT OF DATA LENGTH ON

DETECTING PERFORMANCE

The length of the data can greatly affect the randomness
test value. At the same time, the different image resolutions
generated by different data lengths can affect the performance
of the neural network. Therefore, we conduct experiments on
three different lengths of all datasets to evaluate the effect of
data length on existing methods and the proposed EDNet. The
experimental results are shown in Table 6.

It is easy to be seen that generally speaking, the detection
accuracy gets higher as the data length gets longer or the
image size gets larger. Despite the EDNet has the highest
mean accuracy on the datasets of all different lengths, its
performance on a few datasets is slightly behind the compar-
ison algorithms. Note that when the data length is 5.06 KB,
the detection accuracy of EDNet on the video and audio
datasets is 0.08% and 0.02% lower than that of paper [4],
respectively. What’s more, a lower accuracy on the text
dataset can also be seen when the data length is 10.06 KB.
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TABLE 6. Detection accuracy of current methods and EDNet on different
data length.

Data length

(image size) Method  Video

Audio Text Mean

paper[2] 50.98% 68.40% 90.00% 69.79%

paper[3] 75.50% 90.58% 91.75% 85.94%

5.06KB
(T2%72)  paper(4] 84.58% 99.96% 99.30% 94.61%
EDNet 84.50% 99.94% 99.40% 94.61%
paper[2] 50.80% 68.55% 90.02% 69.79%
loaekp  Paper(3] 75.00% 91.63% 91.78% 86.14%
(102x102)  oher[4] 86.10%  100%  99.68% 95.26%
EDNet 91.21% 100% 99.65% 96.95%
paper[2] 50.80% 68.95% 90.02% 69.92%
sokp  Paper[3] 82.58% 93.94% 92.03% 89.52%
(224x224)  oner[4] 94.30% 99.96% 100%  98.09%
EDNet 98.81% 100% 100% 99.60%

The reason behind this is that, in the experiment, the param-
eter in the paper [4] method is selected to get optimal perfor-
mance for each dataset, while the parameter of EDNet model
is just a global optimal one, which is used on all dataset.

When the data length is 5.06 KB, the detection accuracy
of the EDNet model is 33.52%, 9%, and —0.08% higher
than that of the paper [2], [3], and [4] respectively. on the
video dataset, 31.54%, 9.36%, and 0.02% on the audio dataset
and 9.4%, 7.65%, and 0.1% on the text dataset. In general,
the EDNet model is superior in detection performance regard-
less of the data length.

3) EVALUATE THE VERSATILITY OF EDNet MODEL FOR
VARIOUS DATA TYPES

To prove the versatility of the EDNet model to various data
types, we conducted blind detection experiments by mixing
video, audio, and text datasets in different combinations. The
experimental results are shown in Table 7.

TABLE 7. Accuracy of blind detecting with current methods and EDNet.

Data types paper[2]  paper[3] pape[4] EDNet

Mix of Vid;i’t audioand e 730, 89.68%  97.57%  99.17%
Mix of video and audio ~ 59.87% 88.26%  96.57%  99.18%
Mix of video and text 68.62% 86.88% 97.83%  99.11%
Mix of audio and text 78.53% 93.07% 99.98%  99.99%
Mean 68.94% 89.47%  97.99%  99.36%

The experimental results demonstrate that the EDNet
method performs better than the comparison algorithm in dif-
ferent types of mixed data. Furthermore, from the mean point
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of view, compared with the sub-optimal method, the accuracy
of the EDNet is improved by nearly 2%. Meanwhile, it can be
seen from the experimental results that the detection of video
data is more difficult, and the detection accuracy of different
types of mixed datasets which contain video data is lower than
that of datasets without video data. Overall, the accuracy of
the EDNet method on different types of datasets can reach
more than 99%, which is a satisfactory result.

4) EVALUATE THE DETECTING PERFORMANCE OF EDNet
MODEL ON ENCRYPTED INTERNET TRAFFIC

The above experiments prove the effectiveness of the EDNet
model for storing data. This experiment focuses on the appli-
cability of the EDNet model to data generated during network
transmission.

The test set used in this section includes web brows-
ing traffic and FTP traffic. In the web browsing traffic,
the encrypted data flow is generated by the encrypted VPN,
and the unencrypted traffic is the network traffic generated by
the normal use of the browser. In FTP traffic, non-encrypted
traffic is traffic captured when audio, video, and text files are
transferred via FTP. Encrypted traffic is the traffic captured
when audio, video, and text files are encrypted using AES
encryption and transmitted.

The experimental results are described in Table 8. It is
indicated that even for network traffic, the EDNet model still
shows a better performance than the existing methods. Espe-
cially on FTP data, the accuracy of the EDNet is significantly
better than the comparison algorithms. Furthermore, in the
mean value, the accuracy of the new method is also in a
leading position. This means that in the tested mixed network
traffic, EDNet is stronger than other methods in expressing
representative features. Although EDNet is slightly weaker
than methods in paper [4], [S] in the accuracy of network
traffic detection, the difference is very small and acceptable.
In summary, EDNet not only improves the detection accuracy
of stored files but also has better performance on network
transmission Data.

TABLE 8. Detection accuracy of current methods and EDNet on internet
traffic.

Data types paper[2] paper[4] pape[S] EDNet
Web browsing 68.40%  99.83%  99.99%  99.96%
traffic
FTP traffic 52.91% 95.11%  92.23%  98.80%
Mean 60.66% 97.47%  96.11%  99.38%

V. CONCLUSION

In this paper, a deep learning-based method for the detec-
tion and forensics of encryption behavior of storage file and
network transmission data is proposed. The newly proposed
method is called EDNet, which first maps the data into a
two-dimensional gray image to solve the input problem of
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encrypted data in the neural network. Then, EDNet applies
different activation functions that respond differently to dif-
ferent upper-layer inputs to complete the multiscale feature
extraction operation. Then the residual learning mechanism
and the average pooling layer further improve the learning
ability of the new network. Finally, use the linear classifica-
tion layer to assign labels to the input data.

The effectiveness of network architecture has been proved
by the ablation study. Further, the experiment indicated
that the detection accuracy of EDNet on different lengths
of data and mixed encrypted data is outstanding compare
to the competitive methods, and the detection performance
under different encryption algorithms is also very superior.
Moreover, EDNet has also achieved satisfactory results in
detecting whether the network traffic data is encrypted.
In future work, we will consider designing an encryption
detection network by combining design ideas of other great
classification networks such as DenseNet [39].
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