
Received July 9, 2020, accepted July 29, 2020, date of publication August 7, 2020, date of current version August 19, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3015017

Team Formation in Software Engineering:
A Systematic Mapping Study
ALEXANDRE COSTA 1,2, FELIPE RAMOS 1,2, MIRKO PERKUSICH 1,
EMANUEL DANTAS1, EDNALDO DILORENZO1, FERDINANDY CHAGAS1,
ANDRÉ MEIRELES1, DANYLLO ALBUQUERQUE1, LUIZ SILVA 1,
HYGGO ALMEIDA 1, AND ANGELO PERKUSICH1
1Intelligent Software Engineering (ISE) Group, Federal University of Campina Grande (UFCG), Campina Grande 58429-900, Brazil
2Federal Institute of Paraíba (IFPB), Santa Luzia 58600-000, Brazil

Corresponding author: Alexandre Costa (alexandrecostapb@gmail.com)

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance
Code 001.

ABSTRACT Context: Software team formation is an important project management activity. However,
forming appropriate teams is a challenge for most of the companies.Objective: To analyze and synthesize the
state of the art on the software team formation research. Additionally, we aim to organize the identified body
of knowledge in software team formation as a taxonomy. Method: Using a Snowballing-based systematic
mapping study, 51 primary studies, out of 2516, were identified and analyzed. We classified the studies
considering the research methods used, their overall quality, and the characteristics of the formed teams and
the proposed solutions. Results: The majority of the studies use search and optimization techniques in their
approaches. Also, technical attributes are the most frequent type considered to build individuals’ profiles
during the team formation process. Furthermore, we proposed a taxonomy on software team formation.
Conclusion: There is a predominant use of search-based approaches that combine search and optimization
techniques with technical attributes. However, the adoption of non-technical attributes as complementary
information is a tendency. Regarding the research gaps, we highlight the level of subjectivity in software
team formation and the lack of scalability of the proposed solutions.

INDEX TERMS Team formation, software development, software engineering, software project planning,
systematic mapping study.

I. INTRODUCTION
Software Project Management (SPM) includes a set of activ-
ities to deliver a software product and related artifacts (e.g.,
source code, models, test case, and documentation) to accom-
plish specific goals while satisfying a set of constraints [1].
A widely used model of SPM constraints, suggested in
the Project Management Body of Knowledge (PMBOK),
is known as the triple constraint that include cost, time, and
scope. In the software industry, it is common to classify
projects that satisfy the triple constraint as successful [2].

Delivering software projects adherent to the constraints is
still a significant struggle for software companies [3]. In this
context, human resource allocation plays a critical role [4]
since people are directly involved in all software development

The associate editor coordinating the review of this manuscript and

approving it for publication was Resul Das .

activities. Therefore, forming an appropriate project team is
an essential activity for SPM. For this study, we define an
appropriate team as the most suitable configuration of the
software development team (i) to properly perform activities
of software development and (ii) to be compliant to the
project’s triple constraint.

Forming appropriate software teams is a challenge for most
of the companies. Traditionally, the teams are formed based
on the experience, subjective perception, and instinct of the
managers, resulting in a non-automated, human dependent,
and error-prone process, due to the problem’s complexity [5].
The problem’s complexity is associated with the number
of considered criteria during the decision making process.
Studies have presented relevant attributes to form a software
development team. da Silva et al. [6] performed qualita-
tive research and identified several attributes that managers
consider to select team members such as technical abilities,

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 145687

https://orcid.org/0000-0002-2258-5201
https://orcid.org/0000-0002-0937-811X
https://orcid.org/0000-0002-9433-4962
https://orcid.org/0000-0001-5803-2636
https://orcid.org/0000-0002-2808-8169
https://orcid.org/0000-0002-6113-4649


A. Costa et al.: Team Formation in Software Engineering: A Systematic Mapping Study

availability, project importance, individual cost, productivity,
behavior, and personality [6]. Gilal et al. [7] investigated the
use of members’ personality types and genders to form soft-
ware development teams. Tsai et al. [8] proposed a method
for human resource selection based on the individual’s pro-
ductivity and salary. André et al. [4] presented a formal model
for assigning human resources to software project teams
using attributes such as programming language proficiency,
graphic design abilities, product knowledge, teamwork, nego-
tiation skills, proactivity, personality types, independence,
and capacity to control. Chiang and Lin [9] proposed a frame-
work for assisting a software company for making decisions
regarding team formation based on project duration with
labor skill and budget constraint.

Given the high diversity of attributes to be consid-
ered, the complexity of building appropriate teams rises
fast with the increasing number of available candidates.
Lappas et al. [10] showed that this problem is NP-hard. As it
is widely known, solving NP-hard problem by evaluating
all possibilities becomes fastly prohibitive. Hence, building
appropriate teams without the support of proper tools can be a
time-consuming, error-prone, repetitive, and exhaustive task.

Several solutions (e.g., methods, techniques, guidelines,
and processes) have been proposed in the Software Engi-
neering community and by industrial practitioners, aiming to
address the software team formation problem. The solutions
are based on technical and non-technical attributes (or both).
For instance, Di Penta et al. [11] investigated the use of
search-based techniques to support software project manage-
ment, showing how they can be used to address problems of
(i) allocating staff to teams, (ii) staffing level adjustment, (iii)
reduction of project fragmentation, (iv) team formation based
on the expertise of the candidates and (v) the required knowl-
edge to deliver the given work package. Costa et al. [12]
proposed a Genetic Algorithm combined with tag-based pro-
files to represent the developers’ technical skills to form
multiple software project teams. Finally, Majumder et al. [13]
presented an approach to find socially close teams and a
division of the task among team members, aiming to cope
with allocation overload problems.

According to Petersen et al. [14], as a research area
matures, the number of reports and results made available
also increases, and it becomes important to summarize and
provide an overview. Therefore, given the relevance of the
software team formation problem and the diversity of avail-
able solutions, it raises the need to structure the field system-
atically. To the best of our knowledge, we did not find any
exploratory studies directly related to software team forma-
tion in the literature.

Aiming to address this research gap, we performed a
Systematic Mapping Study (SMS) [14] with the purpose
to characterize the state of the art on software team for-
mation. For doing so, we conducted the SMS following
the guidelines given by Wohlin [15] for the Snowballing
procedure. As a result, we analyzed 2510 papers, resulting
in 51 relevant, which we further classified into 40 studies.

Moreover, we used the data collected in this study to propose
a taxonomy to organize the knowledge on the research topic.

The results discussed in this SMS can benefit:
• researchers who are interested in comprehending the
state of the art on the software team formation. The
systematic classification of the existing research pro-
vides a body of knowledge for deriving hypotheses and
identifying new areas for future research;

• practitioners whomay be interested in understanding the
reported solutions in terms of methods and techniques to
support the software team formation.

The remainder of this article is structured as follows.
Section II presents the methodology used to conduct this
SMS. Section III discusses the results of the SMS. Section IV
details the proposed taxonomy. Section V shows the threats
to validity. Section VI presents the final remarks as well as
the main future works opportunities.

II. METHODOLOGY
We executed a Snowballing-based SMS [14], following
the guidelines presented by Wohlin [15]. In what follows,
we detail the study’s protocol.

A. RESEARCH QUESTIONS
The objective of this SMS is to provide an overview of the
state of the art on software team formation research. There-
fore, we formulated the Research Questions (RQs) shown
in Table 1.

B. SEARCH METHOD
The Snowballing procedure focuses on the analysis of a
seed set of papers, regarding the papers’ reference (back-
ward snowballing) and citation (forward snowballing) lists.
Therefore, an essential task to apply the Snowballing is to
determine the seed set. For this purpose, we established a
search string, discussed in Section II-B1, and used Google
Scholar as the reference search engine. Wohlin [15] recom-
mends Google Scholar to avoid bias in favor of any specific
publisher. Afterward, we used the selection criteria shown
in Section II-C to analyze the papers identified through the
search. As a result, we defined the seed set and started the
snowballing iterations. Figure 1 shows an overview of the
executed procedure.

1) SEARCH TERMS
To define the search terms, we selected a set of previ-
ously known papers related to the research topic. Then,
we extracted the relevant terms from these papers’ titles,
abstracts, and keywords. A very common term in the context
of software development is team formation, however, other
terms are also frequently used in the related literature such
as team allocation, team selection, team composition, and
team configuration. Additionally, the term human resource
allocation is also related to papers on the scope of this study.
Thus, we combined it with the previous ones to complement
the search. In what follows, we present the search string:

145688 VOLUME 8, 2020



A. Costa et al.: Team Formation in Software Engineering: A Systematic Mapping Study

TABLE 1. Research questions of the study.

FIGURE 1. Snowballing procedure presented by Wohlin [15].

(‘‘team formation’’ OR ‘‘team allocation’’ OR
‘‘team selection’’ OR ‘‘team configuration’’ OR
‘‘team composition’’ OR ‘‘human resource for-
mation’’ OR ‘‘human allocation resource’’ OR
‘‘human resource selection’’ OR ‘‘human resource
configuration’’)

Following the guidelines presented in [15], we set the
search parameters to return papers based on the title match,
with at least one of the terms, and only for 2016, the year
before the beginning of this SMS. The year constraint does
not negatively impact the study since previous papers are
supposed to be found during the backward process. In the
same way, papers from later years should appear during the
forward process.

C. SELECTION CRITERIA
The selection criteria (i.e., inclusion and exclusion
criteria) considered in this study were divided into three
phases: general exclusion, basic criteria, and advanced
criteria.

1) GENERAL EXCLUSION
In this phase, we aimed to eliminate irrelevant studies for our
SMS. We considered irrelevant the studies that met at least
one of the criteria listed following:

1) Papers published before the 21st century (i.e., before
2001).

2) Papers not written in English.
3) Duplicate or already analyzed papers.
4) Secondary studies.
5) Short papers or expanded abstracts.
6) Technical reports, dissertations, thesis, or books.
7) Papers not published in journals, magazines, confer-

ences, or workshops.
8) Primary studies that do not present a method, proce-

dure, model, methodology, (semi-)automated support,
guidelines, or any criteria that explicitly provide means
to form software development teams.

2) BASIC CRITERIA
In this phase, we randomly chose peer reviewers to analyze
the remaining papers’ titles, abstracts, and keywords from

VOLUME 8, 2020 145689



A. Costa et al.: Team Formation in Software Engineering: A Systematic Mapping Study

the general exclusion phase. Therefore, we classified them
according to the procedure defined in [16] as:
• Relevant: papers related to software team formation.
• Irrelevant: papers not related to software team forma-
tion.

• Uncertain: papers in which the information available
in the titles, abstracts, and keywords are insufficient or
inconclusive to classify the papers as relevant or irrele-
vant.

Ali et al. [16] suggest six levels of agreement between
reviewers, presented in Figure 2. The A and B levels mean
that at least one reviewer classified the paper as relevant, and
consequently, it will pass to the next phase. B indicates that a
reviewer classified as uncertain, but the paper will be included
so we can minimize the risk of discarding any relevant study.
This decision has no negative impact on the final set of papers
because if it is not relevant, it will be discarded in the next
phase. TheC level means none of the reviewers are sure about
their classifications, and an additional assessment is required.
In this case, both reviewers do a careful reading, in which they
start from the introduction of the paper and, if not sufficient,
they go to the conclusion section. D and E indicate that
reviewers disagreed, and they must discuss the reasons that
led them to that classification. If there is no consensus, a third
reviewer is called in to make a final decision. Finally, F level
means the reviewers agree that the paper is not relevant, and
it must not be included.

FIGURE 2. Levels of agreement between reviewers. Image extracted
from [16].

3) ADVANCED CRITERIA
In this phase, we fully evaluated the papers by performing as
complete as possible reading. For this purpose, once more,
we randomly chose two reviewers (data extractor and data
checker) to evaluate the remaining papers from the previous
phase. The data extractor was responsible for evaluating the
quality of the papers (Section II-D) and for extracting data
from them (Section II-E).Then, the data checker reviewed
all the extracted data to confirm their correctness, follow-
ing the guidelines suggested by Brereton et al. [17] and
Staples and Niazi [18].

D. QUALITY ASSESSMENT
To determine the quality of the papers, we considered 11 cri-
teria proposed in [19]. After a complete reading, the data
extractor evaluated each criterion using a Boolean scale

(i.e., 0 or 1). Next, the data checker reviewed the answers
and, in the case of divergence, the reviewers discussed with
each other and tried to reach a consensus; otherwise, a third
reviewer would be requested. The 11 criteria can be observed
as follow:

1) Does the paper represent scientific research?
2) Are the research objectives clearly defined?
3) Is there an adequate description of the context in which

the research was carried out?
4) The research design was appropriate to address the

aims of the research?
5) Was the recruitment strategy adequate to the research

objectives?
6) Was there a control group to compare the treatments?
7) Was the data properly collected to address the research

problem?
8) Was the data analysis sufficiently rigorous?
9) Was the relationship between the researcher and partic-

ipants considered to an adequate degree?
10) Is there a clear definition of the findings with credible

results and justified conclusions?
11) Does the study provide value for researchers or practi-

tioners?

E. DATA EXTRACTION
To acquire quantitative and qualitative data to answer our
research questions accurately, we extracted the following
data:

1) Document title.
2) Authors.
3) Publication year.
4) Publication channel.
5) Research question type (Table 2).
6) Research result type (Table 3).
7) Research validation type (Table 4).
8) For which software development methodology the

study aims to form teams.
9) The geographical distribution of the teams.

10) The role composition of the teams.
11) The type of attribute considered to form teams
12) The type of attribute assignment.
13) The technique used to form teams.
14) The objective of the proposed solution.
15) The output of the proposed solution.
16) The type of assessment used to validate the proposed

solution.

The items research question type, research result type
and research validation type were provided from the clas-
sification presented by Shaw [20] and can be seen in the
Tables 2, 3 and 4, respectively.

III. RESULTS
This section outlines the results of the SMS regarding the
research questions. Section III-A presents the results of the
search process and of classifying the selected studies given

145690 VOLUME 8, 2020



A. Costa et al.: Team Formation in Software Engineering: A Systematic Mapping Study

TABLE 2. Research questions types. Classification extracted from [20].

TABLE 3. Research result types. Classification extracted from [20].

the publication channel. The subsequent sections present
proper answers to the study’s research questions. We released
a link with supplementary material of the research.1

A. GENERAL RESULTS
During the Snowballing procedure, a total of 2516 papers
were evaluated with the selection criteria defined in
Section II-C. We analyzed 112 papers to build the start set
and chose seven relevant ones. Next, we performed five
Snowballing iterations and evaluated 2404 additional papers.

1https://bit.ly/2lB44LA

TABLE 4. Research validation types. Classification extracted from [20].

As a result, we selected an additional 44 relevant papers.
At the end of the search process, we identified 51 relevant
papers, published between 2001 and 2018. Table 5 shows the
distribution of the papers’ evaluation throughout the itera-
tions. In each iteration, we performed the backward and for-
ward Snowballing procedures. Table 8 (Appendix) presents
basic information of each included paper, which consists of
paper/study identification, paper title, Snowballing phase in
which the paper was found, and the paper reference.

Figure 3 shows the distribution of papers according to the
publication channel from 2001 to 2018. Out of 51 papers,
51.00% are published in journals, 35.30% in conferences,
7.80% in workshops, 3.90% in Symposium, and 2.00% in
magazines. Observing Figure 3, we notice an increasing
number of publications over the years but in a non-linear
way. In 2001, 2002, and 2007, we did not find any pub-
lished papers. Before 2008, the number of papers is smaller

VOLUME 8, 2020 145691



A. Costa et al.: Team Formation in Software Engineering: A Systematic Mapping Study

FIGURE 3. Distribution of the papers according to the publication channel from 2001 to 2018.

TABLE 5. Statistics of the Snowballing iterations.

compared to the last decade (2008-2018). We believe there
is a recent growing interest in the research area, with an
evident peak in 2016. The reduced number of papers iden-
tified in 2018 is due to the search process, in which the
last Snowballing iteration was executed in February 2018.
Therefore, the reader should not interpret the reduced number
of identified papers in 2018 as a lack of published papers.

Since multiple papers might be published as results of
a research study, to avoid bias in answering our research
questions, we classified the included papers into studies. The
classification was based on analyzing the papers’ authors.
The paper chose to represent the study on our analysis was
based on the most recently published research (by year) and,
in the case of a tie, the one which obtained the highest score
in the quality assessment. For instance, the papers P04 and
P05 were considered the same study (S04). The authors first
published the research in a conference and then submitted an
extended version, which was published in a journal. Although
both papers were published in the same year, we chose P04 to

represent the study S04, because it achieved a higher quality
score.

B. RQ-1.1: WHAT RESEARCH METHODS HAVE BEEN USED
IN SOFTWARE TEAM FORMATION STUDIES?
According to Figure 4, most studies seek to answer questions
about Method or means of development (85.00%), followed
by Method for analysis or evaluation (12.50%) and Design,

FIGURE 4. Classification of the studies according to the research question
type.

145692 VOLUME 8, 2020



A. Costa et al.: Team Formation in Software Engineering: A Systematic Mapping Study

evaluation, or analysis of a particular instance (2.50%).
We believe Method or means of development outstands the
other categories due to the nature of the identified studies:
solve a software engineering problem, namely, the team for-
mation problem in the context of software development.

Figure 5 shows the classification of the studies regarding
the research result types. 65.00% presented a Procedure or
technique, 17.50% a Tool or notation, 10.00% an Empirical
model, 2.50% a Qualitative or descriptive model, 2.50% a
Report, and 2.50% a Specific solution, prototype, answer,
or judgment. The higher percentage of Procedure or tech-
nique is justified because most studies present solutions to
automatize the team formation process, which endorse the
findings of the previous research question (R-1.1).

FIGURE 5. Classification of the studies according to the research result
type.

Figure 6 presents the distribution of the studies according
to the research validation types. Most of them used Anal-
ysis (47.50%), followed by Evaluation (32.50%), Example
(15.00%) and Blatant assertion (2.50%). In studies that use
Analysis as the validation type, the authors usually choose
specific metrics to check the quality of the achieved results.

On the other hand, studies that use Evaluation count on
the presence of specialists, usually managers who are familiar
with the software projects. These managers manually choose
their teams and then compare them to those provided by the
proposed solution or, in other cases, they qualitatively eval-
uate the teams provided by the solution. Table 9 (Appendix)
presents the classification of each included papers, regarding
research data.

C. RQ-1.2: WHAT ARE THE CHARACTERISTICS OF THE
RECOMMENDED SOFTWARE TEAMS?
To answer this question, we focused on four points we believe
represent the main characteristics of the recommended teams:
(i) to identify for which software development methodology

FIGURE 6. Classification of the studies according to the research
validation type.

the researches aims to form teams; (ii) to determine how the
formed teams are geographically distributed; (iii) identify the
role composition of the formed teams; (iv) identify the types
of attributes used to form teams and how their values are
assigned.

Software development methodologies are usually classi-
fied into plan-driven or agile [21]. In the former, all activities
are planned in detail, and progress is evaluated in comparison
with the initial planning. In the latter, planning is gradual, and
it is easier to change the process to reflect customers’ chang-
ing needs. Depending on the target development methodol-
ogy, the desired characteristics of the teams may vary. For
instance, plan-driven teams usually are document-oriented
and composed of specialists such as software architects and
system analysts.

Conversely, agile teams prioritize communication over
documentation; thus, they can be more collaborative. 15.00%
of the identified studies claim to form agile teams. However,
the majority (85.00%) does not specify the target method-
ology. Scrum and Extreme Programming are the only agile
methods specified, but just in two studies. Most of the pro-
posed solutions to form agile teams use data from agile
projects as input. However, they do not specify which ele-
ments their solutions incorporate to guarantee that the teams
will be truly agile.

Global software development has become an important
model for developing and delivering software products. Soft-
ware companies continue to expand and disperse geographi-
cally in search of high-skilled human resources, lower project
cycle times, and to reduce costs [22]. Conversely, physical
separation may difficult team members’ ability to properly
communicate and coordinate their work and stay aware of
other members’ activities [23]. 10% of the identified studies
proposed solutions to form global teams, i.e., teams in which
members are geographically distributed. These approaches

VOLUME 8, 2020 145693



A. Costa et al.: Team Formation in Software Engineering: A Systematic Mapping Study

typically use data from open-source development platforms
such as GitHub or Sourceforge to validate the results. These
platforms make possible professionals, from different places
around the world, work together as a team in several projects.

Software teams can be composed of multiple roles, such
as developers, architects, analysts, testers, designers, and
others. Figure 7 presents the roles identified during this
research. In 15.00% of the studies, the teams are composed
of Developers only, which is common in agile develop-
ment. For instance, in Scrum, the teams are cross-functional,
i.e., all members must have all the competencies needed to
achieve their goals with external dependence [24]. 15.00%
of the studies explicitly divide the team into Team leader
and team members. Some researchers [25]–[27] argue that
the leader role is directly related to the success or failure
of the team. Appropriate teams demand good leadership to
manage and facilitate team interaction and for assisting the
members during conflicts. 22.50% of the studies recommend
teams composed of Multiple roles such as quality manager,
requirement engineer, support specialist, configuration man-
ager, system analyst, and others. Generally, plan-driven teams
have specialists to focus their work on specific phases of the
development cycle. Themajority of the studies (47.50%) does
not specify any role in their solutions.

FIGURE 7. Team role compositions.

An important step of the team formation process is defining
the attributes that will be used to find the most appropriate
team. Normally, more than one type of attribute is used in the
process. Figure 8 shows five types considered in the primary
studies. Most of the studies consider Technical attributes such
as experience in programming, network techniques, soft-
ware design, quality control, database techniques, and others.
The second most frequent type of attribute is the Individual
cost (35.00%). The project over budget is one of the main
reasons for project failure [28] and remains a great concern in

FIGURE 8. Types of attributes used during the team formation process.

software companies. Therefore, a significant amount of solu-
tions seek to achieve teams that minimize the financial cost.
Usually, Individual cost is calculated using the salary per hour
of each candidate member. Personality traits are present in
27.50%of the studies. This type of attribute is originated from
Psychometric instruments such as Belbin’s Team Roles [29]
and Myers-Briggs Type Indicator [30]. 25.00% of the studies
use Interpersonal attributes such as communication, positive
criticism, creativity, emotional intelligence, leadership, and
others. Generally, in these studies, Interpersonal attributes
are used together with other types. 17.50% of the studies
use Social attributes that represent metrics that can establish
links between members. For instance, the number of projects
and the amount of time they worked together, their level
of friendship, the number of coworker friends they have in
common, and others. It is important to notice that the sum of
percentages exceeds 100% in Figure 8 because one study can
consider more than one type of attribute.

Another important step of the team formation process is
to define how the attribute values are assigned, which can
increase or reduce the process subjectivity. Figure 9 presents
the types of assignments identified in this SMS. 30.00%
of the studies use Historical data to define the attributes’
values. These studies retrieve data from private or public
software development repositories. In the first case, the data
is usually retrieved from the company’s repository, which
stores data of projects that were (or still are) executed in
the company. In the second case, the data is retrieved from
online repositories such as GitHub or Sourceforge. Expert
judgment is the second most frequent at 22.50%. In this
type of assignment, a set of experts is responsible for quan-
tifying the attributes. Generally, project managers are cho-
sen because they are familiar with the candidate members.
17.50% of the studies use Psychometric instruments, which
are questionnaire-based tools to measure candidate members’
personality traits. Self-assessment is used in 17.50% of the

145694 VOLUME 8, 2020



A. Costa et al.: Team Formation in Software Engineering: A Systematic Mapping Study

FIGURE 9. Types of assignments of the attributes used during the team
formation process.

studies and consists of candidate members assigning values
for their attributes. For instance, a questionnaire contain-
ing lists of predefined attributes is created, and the candi-
date members are invited to answer based on how they see
themselves. 5.00% of the studies use Teammate assessment,
which is similar to Self-assessment, but instead of evaluating
themselves, the candidate members are asked to assess their
colleagues. Expert judgment, Self-assessment, and Teammate
assessment are commonly used in 360◦ feedback, which is
a model for employee assessment and performance improve-
ment. 7.50% of the studies use the Curriculum data to assign
the attributes’ values. In this case, the data is extracted
and formatted to be used as input to the proposed solution.
15.00% of the studies do not specify how the values were
assigned. Analogous to the types of attributes, studies can use
more than one type of assignment.

D. RQ-1.3: WHAT ARE THE CHARACTERISTICS OF THE
PROPOSED SOLUTIONS?
To answer this question we defined four points to represent
aspects related to the proposed solutions: (i) identify the
objectives to be achieved using the proposed solution; (ii)
identify the category of the technique used in the proposed
solution; (iii) identify the outputs of the proposed solution;
(iv) identify how the proposed solution’s results are assessed.

According to Figure 10, most of the proposed solutions
(67.50%) aim to Maximize project’s requirements. This
objective consists of finding a team in which its member’s
skills match the target project requirements. Traditionally,
during the team formation process, dozens or even hundreds
of candidate members with several different skills are evalu-
ated. Thus, without automated support, it is difficult to find
the most appropriate team. 27.50% of the studies aims to
Improve work relationships, which means they try to find
a team where its members could easily interact with each
other to create a harmonic work environment. This objective

FIGURE 10. Objectives of the studies.

is particularly frequent in psychometric instrument-based
solutions. In 7.5% of the studies, the main purpose is to
find a team that can Minimize project’s cost by selecting
members based on their individual cost. Similarly, 7.50% of
the solutions seek to form a team that canMinimize project’s
delivery time, i.e., they focus on delivering the final product
as fast as possible to release the team members to work in
other projects.

We identify almost 30 different techniques used in the
proposed solutions, which were classified into five cate-
gories (Figure 11). The most popular is Search and optimiza-
tion (62.50%), which includes Genetic Algorithms (GAs),
Dynamic Programming, and Backtracking (i.e., Branch and
Bound) algorithms. In particular, GAs represent the most
commonly used technique, present in 20.00% of all studies.

FIGURE 11. Categories of the techniques used in the proposed solutions.

VOLUME 8, 2020 145695



A. Costa et al.: Team Formation in Software Engineering: A Systematic Mapping Study

Mathematics and statics appear in second place (30.00%),
and it is composed of regression models, distance measures,
statistical methods, and others. Probabilistic reasoning is the
thirdmost frequent category, present in 27.50% of the studies.
Within this category, Fuzzy Logic and Bayesian networks are
the frequently used techniques, and they are applied to handle
the uncertainty related to the generation of individuals’ pro-
files by managers. Within the fourth most frequent category,
Decision making (12.50%), we identified Gray decision the-
ory, Analytic Hierarchy Process, and Ontology techniques.
In general, studies using these techniques do not attempt to
automate tasks associated with forming development teams
but rather guide the decision-maker in selecting team mem-
bers. Tied with decision making, we identified Data min-
ing, which consists of techniques based on clustering and
association rules.

The most frequent output of the proposed solutions
(45.00%) is Multiple teams (Figure 12). Although this type
of output can vary from study to study. For instance, in some
studies, the output can be multiple teams, one for each target
project, and no member can be part of two different teams.
In other studies, the output can be multiple teams for the same
project, but with different members in each team. In this case,
the project manager can choose the best one. Additionally,
some studies output multiple teams for multiple projects,
and members can be part of more than one team. 22.50%
of the solutions outputs a Ranked list from which project
managers can choose candidate members to composed their
teams. This type of output allows the managers to choose
the top-k candidates or even those that are not necessarily on
the top of the list. 15.00% of the solutions output a Single
team and the project manager just decide to accept it or not.
In 10.00% of the solutions, the output is a Set of rules which
are automatically generated from data mining techniques
such as the Apriori algorithm. 5.00% of the studies output
a Set of criteria that consists of guidelines based on expert

FIGURE 12. Outputs of the proposed solutions.

experience or empirical research results. 2.50% of the studies
do not specify what the output of their solutions is.

Figure 13 shows the types of assessments used to validate
the proposed solution’s results. 42.50% of the studies use
Predefined metrics, which consists of verifying if the results
match expected thresholds such as cost, project duration,
and others. In 40.00% of the studies, the proposed solution’s
results were assessed by Expert judgment. The experts usu-
ally are project managers and the assessment can occur in two
ways: (i) the experts use their experiences and knowledge to
analyze the solution’s results and then they provide feedback;
or (ii) the experts define an optimal team formation which is
compared to the recommendation of the proposed solution
using accuracy metrics such as Precision and Recall. 10.00%
of the studies used Synthetic data to create examples to
demonstrate how useful the solution results are. 7.50% of the
studies did not assess the proposed solution’s results.

FIGURE 13. Types of assessments used to validate the proposed solution
results.

E. RQ-1.4: WHAT IS THE QUALITY OF THE SOFTWARE
TEAM FORMATION RESEARCH?
Figure 14 presents the overall score concerning the quality
assessment described in Section II-D. Two criteria have low
frequency: Control Group and Reflexivity. Studies that used
Control Group, conducted experiments in which teams were
formed using different methods such as the company’s and
the authors’ proposed solution. In these cases, the main
objective was to verify which teams were more appropriate
over time. This practice is not frequently used by the studies,
because companies usually have low interest in adopting
innovative and not validated solutions in such a high-risk
activity such as forming a team. Regarding Reflexivity,
we notice that most studies do not critically analyze their
results. For instance, they do not identify threats to the
validity of the research.

Concerning the remaining criteria, 75.00% of the stud-
ies scored, which can be considered a positive indicator.

145696 VOLUME 8, 2020



A. Costa et al.: Team Formation in Software Engineering: A Systematic Mapping Study

FIGURE 14. Quality score achieved by the studies per criteria.

Table 11 (Appendix) shows the full quality score of each
included paper.

F. RQ-2: WHAT ARE THE TRENDS AND GAPS IN
SOFTWARE TEAM FORMATION RESEARCH?
As a trend, we highlight the growing number of search-based
approaches to mitigate the team formation problem in the
context of software development. Figure 15 presents the
distribution of the studies’ technique categories from 2001 to
2018. We notice a high number of solutions based on Search
and optimization techniques in the last decade. This tendency

is justified because the team formation problem is trivially
treated as a search and optimization one, and there are
known approximation algorithms (e.g., Greedy and Dynamic
Programming) and meta-heuristic algorithms (e.g., GAs and
Simulated Annealing) that are useful to handle the NP-hard
problems, which is the case for the team formation problem.
If used properly, they provide solutions with acceptable
running time complexity and good enough results to assist
in the decision-making process [31].

Figure 16 presents the distribution regarding the types of
attributes over the past years. The use of technical attributes
has been overcoming the other ones through the last decade,
which matches the adoption of Search and Optimization in
a similar period. This behavior can be confirmed by the
high number of studies using technical attributes and Search
and Optimization techniques (see Figure 17). We believe the
reason for this phenomenon is that this type of attribute is
easier to identify, measure, and collect since technical charac-
teristics are more common in technological-based fields such
as Software Engineering.

On the other hand, there is also an increasing number
of studies using non-technical attributes, also known as
soft skills (e.g., personality traits, social, and interpersonal
attributes). Some researchers argue that only the techni-
cal ones are not sufficient to form appropriate teams. For
instance, Ahmed et al. [32] conducted a survey in the industry
about the importance of soft skills in various roles of software
development activities. The results indicate that this type of
attribute is critical in the software industry, having communi-
cation skills as the top required. Themain drawback of adding
soft skills to the team formation process is the cost to build the
individuals’ profiles, since soft skills are more challenging to
identify, measure, and quantify. Moreover, we did not find
any research accurately comparing the costs and benefits of
adding soft skills.

Feldt et al. [33] presented ten levels of automation (Table 6)
for Artificial Intelligence (AI) techniques applied to SE. This
classification conveys how different human operators and
systems/solutions should cooperate by sharing the control of
determining and selecting options to perform tasks. Thus,
we decided to use this classification to provide an overview of
the level of automation of the proposed solutions. Although
not all studies use AI techniques, we performed the classifi-
cation considering the computational technique used during
the team formation process. Figure 18 shows the distribution
of the studies according to the level of automation. Level one
(10.00%) correspond to studies that did not use any computa-
tional technique. Instead, the authors proposed guidelines or a
set of criteria based on surveys or expert experiences. Studies
in level two (2.50%) propose a solution that generates rules
to form teams, based on analyzed data. Studies in level three
(20.00%), do not provide a team, but a ranked developer list
based on specific criteria, that assist managers in selecting the
members to their teams. Level four (67.50%) is composed of
studies that present a computational technique that suggests
an optimal team configuration, and the manager must accept

VOLUME 8, 2020 145697



A. Costa et al.: Team Formation in Software Engineering: A Systematic Mapping Study

FIGURE 15. Distribution of the technique categories over the years.

FIGURE 16. Distribution of the attribute types over the years.

or not. We did not identify any study with a level higher
than four of automation. We believe this occurs because of
the high risks associated with excessive automation for the
task of forming software teams. As mentioned before, human
resource allocation is a critical factor in a project’s success or
failure. Given the challenges associated with characterizing
the individuals’ profiles, projects’ requirements, and model-
ing the relationship between candidatemembers to predict the
team efficiency, the software team formation is a process that
highly depends on human knowledge and reasoning. Given
our experience and the data collected in this study, we believe

that this paradigm will not change, but tools can help humans
to make better decisions.

Regarding the research gaps, we identified several points
in the proposed solutions, which are summarized in Table 7.
As mention before, the team formation problem is NP-hard.
However, most of the solutions are validated with toy exam-
ples or in simplistic scenarios. In real-world environments,
these solutions might not be scalable, i.e., they will probably
fail to provide proper support in complex scenarios. For
instance, Figure 12 points out that 15% of the solution outputs
a Single team. A single team selection tool will probably not

145698 VOLUME 8, 2020



A. Costa et al.: Team Formation in Software Engineering: A Systematic Mapping Study

FIGURE 17. Frequency of combination between the technique categories and types of attributes.

TABLE 6. Levels of automation of decision and action. Classification
extracted from [33].

be useful for a large company with dozens of projects and
hundreds of employees. Similarly, small companies may not
need an automated tool to form a single team.

We also identified a gap related to the construction of
the individuals’ profiles. Most of the studies define a set of

FIGURE 18. Levels of automation identified in the included studies.

TABLE 7. Summary of the identified gaps.

attributes to represent the individuals’ knowledge and skills
to form teams that match projects’ requirements. However,
these attributes are usually specified with a high level of
abstraction. For instance, when quantifying programming
language experience, the considered attribute does not specify
the languages, it only has a score representing the attribute
magnitude. Therefore, it is not possible to know exactly how
extensive the individual’s experience is.

VOLUME 8, 2020 145699



A. Costa et al.: Team Formation in Software Engineering: A Systematic Mapping Study

Moreover, the attributes’ scores are usually defined by the
project managers, by the individual himself or by his cowork-
ers. This practice results in subjective and error-prone profiles
since the data created may not reflect reality. We believe this
gap occurs because most solutions focus on the allocation
step and do not provide a systematic way to record the indi-
viduals’ knowledge and skills.

Another gap regards the assessment of the proposed solu-
tions’ results. Figure 13 indicates that 7.50% do not provide
any assessment and 40% provide expert judgment. A proper
assessment is essential to know the extent to which the
proposed solution can support the software team formation.
Furthermore, human judgment is predisposed to cognitive
biases; consequently, it is possible to pose a potential threat
in the validity of this type of assessment.

Finally, we identified a gap concerning the lack of solutions
and data made available to the community. The identified
studies do not provide the necessary means to enable other
researchers to use their solutions or replicate their stud-
ies, which hinders their evaluation in different contexts.
Consequently, there is a lack of studies comparing their
results with similar ones available in the literature.
Kitchenham et al. [34] suggest that whenever a new solution
is proposed, it is crucial to compare its results in contrast to
existing ones. In particular, these two gaps indicate the area
has still not reached an adequate level of maturity.

IV. ORGANIZING THE KNOWLEDGE ON SOFTWARE
TEAM FORMATION
A taxonomy is a valuable tool to organize knowledge in an
area. It allows the description of terms and their relationships,
which is beneficial for both practitioners and researchers [35].
Based on the achieved results, we concluded that the soft-
ware team formation area is maturing; however, it did not
reach an adequate level yet. For instance, during this study,
we analyze titles, abstracts, and keywords of the primary
studies. As a result, we identified 16 different terms that
refer to the research topic, presented in Figure 19. Team
formation is the most popular term, present in 27, 50% of the

FIGURE 19. Research field’s common terms.

studies; however, there is no consensus in the area. This lack
of a common terminology makes it difficult for researchers
and practitioners to share knowledge, identify gaps in the
area, understand the interrelationships between the factors
associated with the area, and make decisions [36].

To the best of our knowledge, there is no taxonomy for
software team formation. Therefore, we decided to propose a
taxonomy to organize and communicate the knowledge in this
area for the research community and industrial practitioners.
Usman et al. [35] proposed a method for taxonomy develop-
ment, which has 4 phases with 13 activities. The development
process and the proposed taxonomy are presented next.

A. PHASES AND ACTIVITIES
1) PLANNING
This phase is composed of six activities. First, we defined
the Software Engineering knowledge area for the taxonomy.
For this purpose, we used the classification of SWEBOK [37]
and selected Software Engineering Management. Afterward,
we determined the objective of our taxonomy, which is to
propose a classification scheme that can be used to charac-
terize software team formation. The third activity consists of
specifying the subject matter of the classification, which is
Software Team Formation research. As we mentioned before,
team formation is the most used term in the research topic.
We then chose a facet-based classification structure because
it can provide more than one perspective to view and classify
the research area. Facet-based structures are also used in [35],
[36], [38]. Additionally, each facet is independent and can
have its own classes, which allow the taxonomy to be easily
evolved. Next, we selected qualitative type as classification
procedure type, since our classification is based on nominal
scales. The last activity of this phase is to identify information
sources to extract the relevant data. In this study, the source
consists of peer-reviewed empirical studies on software team
formation published between 2001 and 2018.

2) IDENTIFICATION AND EXTRACTION
This phase has activities for extracting and controlling the
terms related to the subject matter. First, we extracted relevant
terms from the data collected in this study. The second activ-
ity is the terminology control, which consists of removing
remove inconsistencies in the extracted data.

3) DESIGN AND CONSTRUCTION
This phase comprises four activities to assist the definition
of dimensions, categories and relationships of the taxonomy.
First, we defined the top-level dimensions as Team char-
acteristics, Solution, and Criteria. Then, we specified the
categories for each of the dimensions. The Team character-
istics dimension is composed of development methodology,
geographical distribution, team roles, and team size. The
Solution dimension incorporates objective, technique cate-
gory, output, and level of automation. TheCriteria dimension
has attribute type and attribute assignment as categories.

145700 VOLUME 8, 2020



A. Costa et al.: Team Formation in Software Engineering: A Systematic Mapping Study

4) VALIDATION
This is the last phase of the taxonomy development method
proposed by Usman et al. [35]. The purpose of this phase
is to demonstrate the working or usefulness of the designed
taxonomy. Existing validation approaches for a taxonomy
include demonstrating the orthogonality of its categories,
benchmarks against existing taxonomies, and by demonstrat-
ing its utility to classify existing knowledge [39], [40]. Since
there is no existing taxonomy on software team formation,
benchmark the proposed taxonomy against existing ones is
not possible. Our taxonomy’s orthogonal demonstration is
ensured by design. The three dimensions (Figure 20) are dis-
tinguishable from each other and their categories aremutually
exclusive. Concerning the utility demonstration, the taxon-
omy was created based on the identified studies in this SMS.
Theoretically, by performing this SMS, we already found all
the relevant studies. Consequently, we cannot demonstrate
the taxonomy’s utility since it would not be appropriate to
apply the same set used to build it. Therefore, we intend to
demonstrate taxonomy’s utility in future work.

FIGURE 20. Taxonomy dimensions.

B. OVERVIEW OF THE PROPOSED TAXONOMY
We organized the identified knowledge of software team
formation as a taxonomy. Figure 20 shows the facet-based
classification structure and its dimensions: Team character-
istics, Solution, and Criteria.

Figure 21 presents the Criteria dimension which repre-
sents attribute related characteristics (see Section III-C). This
dimension is composed of two facets and seven facet values.
To preserve the taxonomy’s orthogonality, we merged the
attribute types (Figure 8) and attribute assignments (Figure 9).
The Attribute type facet is composed of Technical, Non-
technical (i.e., personality traits, interpersonal skills, social
skills, and others), and Both (when the solution considers
technical and non-technical attributes). The Attribute assign-
ment facet comprises Data-driven (when the values derived
from historical data or similar sources), Expert judgment
(when specialists are responsible for assigning the values),
Collaborative assessment (when the individual himself or his
coworkers assigned the values), andOther (when the previous
three facet values do not apply).

The Solution dimension (Figure 22) has four facets and
16 facet values. It represents characteristics related to the
solutions identified in the literature (see Section III-D).
Regarding the Objective facet, we merged the objectives

FIGURE 21. Taxonomy dimension: criteria.

(Figure 10) Maximize project’s requirements, Minimize
project’s cost and Minimize project’s delivery into Satisfy
project’s constraint to the preserve the taxonomy’s orthog-
onality. Similarly, some identified studies use more than one
technique in their solutions (Figure 11); thus the Technique
category facet must represent the main technique of the solu-
tion, i.e., the technique applied to optimize the team forma-
tion process. The Output facet was extracted from the results
presented in Figure 12. Finally, the Level of automation facet
was based on the classification presented by Feldt et al. [33].

The Team characteristics dimension (Figure 23) includes
four facets and 13 facet values. This dimension incorporates
the main characteristics to be considered during the team
formation process (see Section III-C). The novelty is the Team
size facet which can be Small (3 to 9 members), Medium
(10 to 30 members), and Large (31 or more members).
We used the team size classification presented in [41]. The
remaining categories were derived from the data collected
during this SMS.

V. THREATS TO VALIDITY
As well as other empirical studies, this SMS also has
limitations that must be considered for analyzing the poten-
tial impact of the validity threats related to its findings.
We pointed out the following three main types of validity
threats associated with the activities of this SMS.

A. REGARDING PRIMARY STUDIES IDENTIFICATION
In the literature search strategy, we aimed to retrieve as
many relevant studies as possible to avoid any potential

VOLUME 8, 2020 145701



A. Costa et al.: Team Formation in Software Engineering: A Systematic Mapping Study

FIGURE 22. Taxonomy dimension: solution.

FIGURE 23. Taxonomy dimension: team characteristic.

literature selection bias. We faced a challenge in determin-
ing our research scope as the notion of ‘‘team formation’’
means different things to different research communities,

including software engineering, artificial intelligence, agile
development, and many others. Therefore, to cover them all
and avoid bias, we searched the literature based on relevant

145702 VOLUME 8, 2020



A. Costa et al.: Team Formation in Software Engineering: A Systematic Mapping Study

TABLE 8. Basic information of the included papers.

VOLUME 8, 2020 145703



A. Costa et al.: Team Formation in Software Engineering: A Systematic Mapping Study

TABLE 8. (Continued.) Basic information of the included papers.

145704 VOLUME 8, 2020



A. Costa et al.: Team Formation in Software Engineering: A Systematic Mapping Study

TABLE 9. Research data of the included papers.

VOLUME 8, 2020 145705



A. Costa et al.: Team Formation in Software Engineering: A Systematic Mapping Study

TABLE 10. Publication data of the included papers.

145706 VOLUME 8, 2020



A. Costa et al.: Team Formation in Software Engineering: A Systematic Mapping Study

TABLE 10. (Continued.) Publication data of the included papers.

terms and combined them in our search string. While this
search strategy and search string composition significantly
increase the search work [15], however, it enabled us to find
a comprehensive set of relevant studies.

B. REGARDING THE QUALITY OF STUDIES AND DATA
EXTRACTION CONSISTENCY
The results and quality of this empirical study are based on
the quality of the reviewed studies. In case the quality of the
primary studies is low, the claims and supporting evidence
can be weak and lack confidence. Therefore, it is vital to
(i) minimize the threats regarding the quality of selected
studies and (ii) ensure a consistent representation of data
extracted from these studies. The ideal scenarios may strictly
adhere to the guidelines in [15], [17], however, the quality
metric can be subjective based on the goals of this SMS and
the consensus among researchers.

C. REGARDING DATA SYNTHESIS AND RESULTS
REPORTING
A limited number of researchers and their expertise
(i.e., intelligent software engineering) may have an inter-
nal bias on the style and results report. The validity threat
related to (i) reliability of data synthesis and (ii) results report
was mitigated based on discussion and peer review of the
extracted data by the researchers. For this purpose, we used
a structured template for data synthesis and performed sev-
eral steps to refine and evaluate the scheme and process.
Whereas, we followed the guidelines described in [15], [17]
to conduct this empirical study, we had deviations from the

ideal approaches based on the requirements and peculiarity of
this study. Finally, it is worth noting the taxonomy proposed
in this article is based on the primary studies selected for
this research. This means the completeness of the proposed
taxonomy is directly related to the primary studies included
in the data extraction activity. Tominimize this threat’s effect,
we seek covering the literature more broadly by following the
guidelines mentioned above.

VI. CONCLUSION
Forming an appropriate team is crucial for a software
project’s success. As a result, there has been an increas-
ing number of studies in this context. Our SMS identified
51 primary studies, further classified into 40 distinct studies.
Most of the proposed solutions (62.50%) approach the given
problem as a Search and optimization one, which character-
izes them into the growing field of Search-based Software
Engineering [42]. In this context, the most popular technique
is the Genetic Algorithm (20.00%). Other techniques identi-
fied are the Greedy Method, Dynamic Programming, Linear
Programming, and Backtracking (i.e., Branch and Bound).

Most of the identified solutions (80.00%) consider
Technical attributes to build the individuals’ profiles.
However, we noticed a significant number of recent propos-
als that consider non-technical attributes to form software
teams. All of the solutions focus on supporting humans during
the team formation process. They provide (semi-)automatic
methods to optimize the allocation of individuals into teams
to support the final decision.

VOLUME 8, 2020 145707



A. Costa et al.: Team Formation in Software Engineering: A Systematic Mapping Study

TABLE 11. Quality points of the included papers.

145708 VOLUME 8, 2020



A. Costa et al.: Team Formation in Software Engineering: A Systematic Mapping Study

The main limitations of the identified solutions are that
most of them rely on subjective attributes and may lack
scalability. We believe removing the subjectivity is not pos-
sible, especially, for soft-skills (i.e., non-technical attributes),
but it can be reduced. For instance, instead of asking a man-
ager to assess the individual’s knowledge and skills concern-
ing technology, information regarding his productivity and
delivered artifacts’ quality can be retrieved from historical
data of projects in which he participated. We believe that
reducing the subjectivity would remove bias from the man-
agers and, consequently, reduce the effort of using the pro-
posed solutions. Furthermore, most of the identified solutions
might not be suitable for a real-world environment since they
used toy examples.

Regarding the studies’ methodology, we did not identify
solutions available for use, neither the data collected through-
out their studies. As a consequence, reproducing the studies
becomes unfeasible, and the cost of (i) executing comparative
studies against the available tools and (ii) transferring the
technology to the industry are high.

From an industry perspective, the results of our study pro-
vide knowledge on the key attributes, techniques, and other
characteristics to form software teams. Through this study,
practitioners can improve their decision-making process
while forming a software team. Regarding the researchers,
this study identifies essential limitations on the state of the
art that must be addressed. Our findings indicate a need to
define a gold standard regarding the attributes, metrics, and
techniques used to form software teams. We believe that this
will be possible if researchers make available the developed
tools and data, following the open science initiative.

As future work, we intend to investigate further some of the
research directions presented in this research by elaborating
on new research questions on software team formation. For
example, we could look closely at the techniques that support
the various dimensions and facets of the proposed taxonomy.
Additionally, we can analyze in-depth, which are the most
relevant technical and non-technical attributes for software
team formation, providing an especial catalog. Moreover,
we intend to continue this empirical study, extending the
number of selected studies by query other relevant scientific
databases, and by performing new snowballing procedures.
We hope, from the increase of the sample of studies, we can
reconfirm the main findings of this SMS or even point out
new ones.

APPENDIX
DETAILED INFORMATION OF THE INCLUDED PAPERS
See Table 8–11.

REFERENCES

[1] R. T. Futrell, L. I. Shafer, and D. F. Shafer, Quality Software Project
Management. Upper Saddle River, NJ, USA: Prentice-Hall, 2001.

[2] R. Latorre and J. Suárez, ‘‘Measuring social networks when forming
information system project teams,’’ J. Syst. Softw., vol. 134, pp. 304–323,
Dec. 2017.

[3] R. N. Charette, ‘‘Why software fails [software failure,’’ IEEE Spectr.,
vol. 42, no. 9, pp. 42–49, Sep. 2005.

[4] M. André, M. G. Baldoquín, and S. T. Acuña, ‘‘Formal model for assigning
human resources to teams in software projects,’’ Inf. Softw. Technol.,
vol. 53, no. 3, pp. 259–275, Mar. 2011.

[5] S. T. Acuña and N. Juristo, ‘‘Assigning people to roles in software
projects,’’ Softw., Pract. Exper., vol. 34, no. 7, pp. 675–696, Jun. 2004.

[6] F. Q. B. da Silva, A. C. C. Franca, T. B. Gouveia, C. V. F. Monteiro,
E. S. F. Cardozo, and M. Suassuna, ‘‘An empirical study on the use of
team building criteria in software projects,’’ in Proc. Int. Symp. Empirical
Softw. Eng. Meas., Sep. 2011, pp. 58–67.

[7] A. R. Gilal, J. Jaafar, M. Omar, S. Basri, and A. Waqas, ‘‘A rule-based
model for software development team composition: Team leader role with
personality types and gender classification,’’ Inf. Softw. Technol., vol. 74,
pp. 105–113, Jun. 2016.

[8] H.-T. Tsai, H. Moskowitz, and L.-H. Lee, ‘‘Human resource selection for
software development projects using Taguchi’s parameter design,’’ Eur. J.
Oper. Res., vol. 151, no. 1, pp. 167–180, Nov. 2003.

[9] H. Y. Chiang and B. M. T. Lin, ‘‘A decision model for human resource
allocation in project management of software development,’’ IEEE Access,
vol. 8, pp. 38073–38081, 2020.

[10] T. Lappas, K. Liu, and E. Terzi, ‘‘Finding a team of experts in social
networks,’’ in Proc. 15th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining (KDD), New York, NY, USA: ACM, 2009, pp. 467–476, doi:
10.1145/1557019.1557074.

[11] M. Di Penta, M. Harman, and G. Antoniol, ‘‘The use of search-based opti-
mization techniques to schedule and staff software projects: An approach
and an empirical study,’’ Softw., Pract. Exper., vol. 41, no. 5, pp. 495–519,
Apr. 2011.

[12] A. Costa, F. Ramos,M. Perkusich, A. Freire, H. Almeida, andA. Perkusich,
‘‘A search-based software engineering approach to support multiple team
formation for scrum projects,’’ in Proc. 30th Int. Conf. Softw. Eng. Knowl.
Eng., San Francisco Bay, CA, USA, Jul. 2018, pp. 473–474.

[13] A. Majumder, S. Datta, and K. V. M. Naidu, ‘‘Capacitated team formation
problem on social networks,’’ in Proc. 18th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining (KDD), 2012, pp. 1005–1013.

[14] K. Petersen, S. Vakkalanka, and L. Kuzniarz, ‘‘Guidelines for conducting
systematic mapping studies in software engineering: An update,’’ Inf.
Softw. Technol., vol. 64, pp. 1–18, Aug. 2015.

[15] C. Wohlin, ‘‘Guidelines for snowballing in systematic literature stud-
ies and a replication in software engineering,’’ in Proc. 18th Int. Conf.
Eval. Assessment Softw. Eng. (EASE), New York, NY, USA: ACM, 2014,
pp. 38:1–38:10, doi: 10.1145/2601248.2601268.

[16] N. B. Ali, K. Petersen, and C. Wohlin, ‘‘A systematic literature
review on the industrial use of software process simulation,’’
J. Syst. Softw., vol. 97, pp. 65–85, Nov. 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121214001502

[17] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil,
‘‘Lessons from applying the systematic literature review process within the
software engineering domain,’’ J. Syst. Softw., vol. 80, no. 4, pp. 571–583,
Apr. 2007, doi: 10.1016/j.jss.2006.07.009.

[18] M. Staples and M. Niazi, ‘‘Experiences using systematic review guide-
lines,’’ J. Syst. Softw., vol. 80, no. 9, pp. 1425–1437, Sep. 2007, doi:
10.1016/j.jss.2006.09.046.

[19] T. Dybå and T. Dingsøyr, ‘‘Empirical studies of agile software devel-
opment: A systematic review,’’ Inf. Softw. Technol., vol. 50, nos. 9–10,
pp. 833–859, Aug. 2008, doi: 10.1016/j.infsof.2008.01.006.

[20] M. Shaw, ‘‘Writing good software engineering research papers: Minitu-
torial,’’ in Proc. 25th Int. Conf. Softw. Eng. (ICSE), Washington, DC,
USA: IEEE Computer Society, 2003, pp. 726–736. [Online]. Available:
http://dl.acm.org/citation.cfm?id=776816.776925

[21] M. Hirsch, ‘‘Moving from a plan driven culture to agile development,’’ in
Proc. 27th Int. Conf. Softw. Eng. (ICSE), 2005, p. 38,

[22] N. Ramasubbu, M. Cataldo, R. K. Balan, and J. D. Herbsleb, ‘‘Configuring
global software teams: A multi-company analysis of project productivity,
quality, and profits,’’ in Proc. 33rd Int. Conf. Softw. Eng. (ICSE), 2011,
pp. 261–270.

[23] G. M. Olson and J. S. Olson, ‘‘Distance matters,’’Hum.-Comput. Interact.,
vol. 15, nos. 2–3, pp. 139–178, 2000.

[24] K. Schwaber and J. Sutherland. (2017). The Scrum Guide: The Definitive
Guide to Scrum. EUA, Wheaton, IL, USA. Accessed: Jun. 20, 2020.
[Online]. Available: https://www.scrumguides.org/scrum-guide.html

[25] M. Omar, Z. A. Aljasim, M. Ahmad, F. Baharom, A. Yasin, H. Mohd, and
N.M. Darus, ‘‘Team formation model of selecting team leader: An analytic
hierarchy process (AHP) approach,’’ ARPN J. Eng. Appl. Sci., vol. 10,
no. 3, pp. 1060–1067, 2015.

VOLUME 8, 2020 145709

http://dx.doi.org/10.1145/1557019.1557074
http://dx.doi.org/10.1145/2601248.2601268
http://dx.doi.org/10.1016/j.jss.2006.07.009
http://dx.doi.org/10.1016/j.jss.2006.09.046
http://dx.doi.org/10.1016/j.infsof.2008.01.006


A. Costa et al.: Team Formation in Software Engineering: A Systematic Mapping Study

[26] S. M. Henry and K. Todd Stevens, ‘‘Using Belbin’s leadership role to
improve team effectiveness: An empirical investigation,’’ J. Syst. Softw.,
vol. 44, no. 3, pp. 241–250, Jan. 1999.

[27] S. Faraj and V. Sambamurthy, ‘‘Leadership of information systems devel-
opment projects,’’ IEEE Trans. Eng. Manag., vol. 53, no. 2, pp. 238–249,
May 2006.

[28] L. Wallace and M. Keil, ‘‘Software project risks and their effect on out-
comes,’’ Commun. ACM, vol. 47, no. 4, pp. 68–73, Apr. 2004.

[29] A. Aritzeta, S. Swailes, and B. Senior, ‘‘Belbin’s team role model: Devel-
opment, validity and applications for team building,’’ J. Manage. Stud.,
vol. 44, no. 1, pp. 96–118, Jan. 2007.

[30] A. Furnham, ‘‘Myers-Briggs type indicator (MBTI),’’ in Encyclopedia
of Personality and Individual Differences. Cham, Switzerland: Springer,
2017, pp. 1–4.

[31] G. Antoniol, M. Di Penta, and M. Harman, ‘‘Search-based techniques
applied to optimization of project planning for a massive maintenance
project,’’ in Proc. 21st IEEE Int. Conf. Softw. Maintenance (ICSM),
Sep. 2005, pp. 240–249.

[32] F. Ahmed, L. F. Capretz, S. Bouktif, and P. Campbell, ‘‘Soft skills and
software development: A reflection from the software industry,’’ J. Inf.
Process. Manage., vol. 4, no. 3, p. 171, 2013.

[33] R. Feldt, F. G. de Oliveira Neto, and R. Torkar, ‘‘Ways of applying artificial
intelligence in software engineering,’’ in Proc. 6th Int. Workshop Realizing
Artif. Intell. Synergies Softw. Eng., 2018, pp. 35–41.

[34] B. Kitchenham, L. Pickard, and S. L. Pfleeger, ‘‘Case studies for method
and tool evaluation,’’ IEEE Softw., vol. 12, no. 4, pp. 52–62, Jul. 1995.

[35] M. Usman, R. Britto, J. Börstler, and E. Mendes, ‘‘Taxonomies in
software engineering: A systematic mapping study and a revised tax-
onomy development method,’’ Inf. Softw. Technol., vol. 85, pp. 43–59,
May 2017.

[36] M. Usman and E. Mendes, ‘‘A taxonomy of Web effort predictors,’’ J. Web
Eng., vol. 16, nos. 7–8, pp. 541–570, 2017.

[37] P. Bourque and R. E. Fairley, Guide to the Software Engineering Body
of Knowledge (SWEBOK(R)): Version 3.0. Washington, DC, USA: IEEE
Computer Society Press, 2014.

[38] M. Usman, J. Börstler, and K. Petersen, ‘‘An effort estimation taxonomy
for agile software development,’’ Int. J. Softw. Eng. Knowl. Eng., vol. 27,
no. 04, pp. 641–674, May 2017.

[39] G. R. Wheaton, ‘‘Development of a taxonomy of human performance:
A review of classificatory systems relating to tasks and performance,’’
Amer. Inst. Res., Pittsburgh, PA, USA, Tech. Rep. R-68-756, 1968.

[40] D. Šmite, C. Wohlin, Z. Galvina, and R. Prikladnicki, ‘‘An empirically
based terminology and taxonomy for global software engineering,’’ Empir-
ical Softw. Eng., vol. 19, no. 1, pp. 105–153, Feb. 2014.

[41] L. R. Vijayasarathy and C. W. Butler, ‘‘Choice of software development
methodologies: Do organizational, project, and team characteristics mat-
ter?’’ IEEE Softw., vol. 33, no. 5, pp. 86–94, Sep. 2016.

[42] M. Harman and B. F. Jones, ‘‘Search-based software engineering,’’ Inf.
Softw. Tech., vol. 43, no. 14, pp. 833–839, 2001.

[43] A. S. Jat, P. Kohli, and D. Soni, ‘‘Teammember selection in agile,’’ in Proc.
4th Int. Conf. Sci., Technol. Manage., 2016, pp. 584–588.

[44] A. Arunachalam, N. P. Nagarajan, V. Mohan, M. Reddy, and
C. Arumugam, ‘‘Resolving team selection in agile development using
NSGA-II algorithm,’’ CSI Trans. ICT, vol. 4, nos. 2–4, pp. 83–86,
Dec. 2016, doi: 10.1007/s40012-016-0105-0.

[45] D. Schall, ‘‘Skill-based team formation in software ecosystems,’’ in Proc.
Int. Workshop Qual. Assurance Comput. Vis. Int. Workshop Digit. Eco-
Syst., 2016, pp. 35–41.

[46] M. Omar, B. Hasan, M. Ahmad, A. Yasin, F. Baharom, H. Mohd, and
N.M. Darus, ‘‘Applying fuzzy technique in software team formation based
on belbin team role,’’ J. Telecommun., Electron. Comput. Eng., vol. 8, no. 8,
pp. 109–113, 2016.

[47] M. Omar, B. Hasan, M. Ahmad, A. Yasin, F. Baharom, H. Mohd, and
N. M. Darus, ‘‘Towards a balanced software team formation based on
belbin team role using fuzzy technique,’’ in Proc. AIP Conf., vol. 1761,
2016, Art. no. 020082.

[48] A. R. Gilal, J. Jaafar, M. Omar, S. Basri, and I. Abdul Aziz, ‘‘Balancing
the personality of programmer: Software development team composition,’’
Malaysian J. Comput. Sci., vol. 29, no. 2, pp. 145–155, Jun. 2016.

[49] R. Britto, P. S. Neto, R. Rabelo, W. Ayala, and T. Soares, ‘‘A hybrid
approach to solve the agile team allocation problem,’’ inProc. IEEECongr.
Evol. Comput., Jun. 2012, pp. 1–8.

[50] T.-L. B. Tseng, C.-C. Huang, H.-W. Chu, and R. R. Gung, ‘‘Novel approach
to multi-functional project team formation,’’ Int. J. Project Manage.,
vol. 22, no. 2, pp. 147–159, Feb. 2004.

[51] N. Gorla and Y. W. Lam, ‘‘Who should work with whom?: Building effec-
tive software project teams,’’ Commun. ACM, vol. 47, no. 6, pp. 79–82,
Jun. 2004, doi: 10.1145/990680.990684.

[52] A. R. Gilal, M. Omar, and K. I. Sharif, ‘‘A rule-based approach for dis-
covering effective software team composition,’’ J. Inf. Commun. Technol.,
vol. 13, pp. 1–20, Feb. 2014.

[53] A. R. Gilal, M. Omar, and K. I. Sharif, ‘‘Discovering personality types
and diversity based on software team roles,’’ in Proc. Int. Conf. Comput.
Informat. (ICOCI), 2013, pp. 259–264.

[54] L. G. Martínez, G. Licea, A. Rodríguez-Díaz, and J. R. Castro,
‘‘Experiences in software engineering courses using psychometrics with
RAMSET,’’ in Proc. 15th Annu. Conf. Innov. Technol. Comput. Sci.
Educ. (ITiCSE), 2010, pp. 244–248.

[55] S. Kr. Misra and A. Ray, ‘‘Software developer selection: A holistic
approach for an eclectic decision,’’ Int. J. Comput. Appl., vol. 47, no. 1,
pp. 12–18, Jun. 2012.

[56] A. R. Gilal, J. Jaafar, M. Omar, S. Basri, and I. A. Aziz, ‘‘A set of
rules for constructing gender-based personality types’ composition for
software programmer,’’ in Proc. 2nd Int. Conf. Adv. Data Inf. Eng., 2015,
pp. 363–374.

[57] R. Valencia-Garcia, F. Garcia-Sanchez, D. Castellanos-Nieves,
J. T. Fernández-Breis, and A. Toval, ‘‘Exploitation of social semantic
technology for software development team configuration,’’ IET Softw.,
vol. 4, no. 6, pp. 373–385, 2010.

[58] A. Barreto, M. D. O. Barros, and C. M. L. Werner, ‘‘Staffing
a software project: A constraint satisfaction and optimization-based
approach,’’ Comput. Oper. Res., vol. 35, no. 10, pp. 3073–3089,
Oct. 2008. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0305054807000226

[59] A. Barreto, M. Barros, and C. Werner, ‘‘Staffing a software project:
A constraint satisfaction approach,’’ in Proc. ACM SIGSOFT Softw. Eng.
Notes, vol. 30, 2005, pp. 1–5.

[60] J. Huang, Z. Lv, Y. Zhou, H. Li, H. Sun, and X. Jia, ‘‘Forming grouped
teams with efficient collaboration in social networks,’’ Comput. J., vol. 60,
pp. 1–16, Nov. 2016.

[61] C. Stylianou and A. S. Andreou, ‘‘A multi-objective genetic algorithm for
intelligent software project scheduling and team staffing,’’ Intell. Decis.
Technol., vol. 7, no. 1, pp. 59–80, Jan. 2013.

[62] C. Stylianou, S. Gerasimou, and A. S. Andreou, ‘‘A novel prototype tool
for intelligent software project scheduling and staffing enhanced with
personality factors,’’ in Proc. IEEE 24th Int. Conf. Tools with Artif. Intell.,
vol. 1, Nov. 2012, pp. 277–284.

[63] J. Ren, M. Harman, and M. Di Penta, ‘‘Cooperative co-evolutionary
optimization of software project staff assignments and job
scheduling,’’ in Proc. Int. Symb. Search Based Softw. Eng., 2011,
pp. 127–141.

[64] D. Strnad and N. Guid, ‘‘A fuzzy-genetic decision support system for
project team formation,’’Appl. Soft Comput., vol. 10, no. 4, pp. 1178–1187,
Sep. 2010.

[65] A. C. C. França, E. F. Lucena, and F. Q. da Silva, ‘‘A quantitative
assessment on team building criteria for software project teams,’’ in
Proc. 6th Exp. Softw. Eng. Latin Amer. Workshop (ESELAW), 2009,
p. 12.

[66] A. Gray, A. Jackson, I. Stamouli, and S. L. Tsang, ‘‘Forming successful
extreme programming teams,’’ in Proc. AGILE, 2006, p. 10.

[67] A. R. Gilal, J. Jaafar, S. Basri, M. Omar, and M. Z. Tunio, ‘‘Making
programmer suitable for team-leader: Software team composition based on
personality types,’’ in Proc. Int. Symp. Math. Sci. Comput. Res. (iSMSC),
May 2015, pp. 78–82.

[68] M. Doman, A. Besmer, and A. Olsen, ‘‘Managing software engineering
student teams using Pellerin’s 4-D system,’’ J. Inf. Syst. Educ., vol. 26,
no. 4, p. 257, 2015.

[69] M. Farhangian, M. Purvis, M. A. Purvis, and B. T. R. Savarimuthu,
‘‘Personalities and software development team performance,
a psycholinguistic study,’’ in Proc. 24th Eur. Conf. Inf. Syst., 2016,
pp. 1–15.

[70] S. Licorish, A. Philpott, and S. G. MacDonell, ‘‘Supporting agile
team composition: A prototype tool for identifying personality
(In)compatibilities,’’ in Proc. ICSE Workshop Cooperat. Hum. Aspects
Softw. Eng., 2009, pp. 66–73.

[71] L. G. Martínez, G. Licea, A. Rodríguez, J. R. Castro, and O. Castillo,
‘‘Using MATLAB’s fuzzy logic toolbox to create an application for RAM-
SET in software engineering courses,’’ Comput. Appl. Eng. Educ., vol. 21,
no. 4, pp. 596–605, Dec. 2013.

145710 VOLUME 8, 2020

http://dx.doi.org/10.1007/s40012-016-0105-0
http://dx.doi.org/10.1145/990680.990684


A. Costa et al.: Team Formation in Software Engineering: A Systematic Mapping Study

[72] R. Colomo-Palacios, I. González-Carrasco, J. L. López-Cuadrado, and
Á. García-Crespo, ‘‘ReSySTER: A hybrid recommender system for scrum
team roles based on fuzzy and rough sets,’’ Int. J. Appl. Math. Comput.
Sci., vol. 22, no. 4, pp. 801–816, Dec. 2012.

[73] C. Stylianou and A. S. Andreou, ‘‘A multi-objective genetic algorithm for
software development team staffing based on personality types,’’ in Proc.
IFIP Int. Conf. Artif. Intell. Appl. Innov. Cham, Switzerland: Springer,
2012, pp. 37–47.

[74] M. Arias, J. Munoz-Gama, and M. Sepúlveda, ‘‘A multi-criteria approach
for team recommendation,’’ in Proc. Int. Conf. Bus. Process Manage.
Cham, Switzerland: Springer, 2016, pp. 384–396.

[75] E. Jiménez-Domingo, R. Colomo-Palacios, and J. M. Gómez-Berbís,
‘‘A multi-objective genetic algorithm for software personnel staffing for
HCIM solutions,’’ Int. J. Web Portals, vol. 6, no. 2, pp. 26–41, Apr. 2014.

[76] L. C. e Silva and A. P. C. S. Costa, ‘‘Decision model for allocating human
resources in information system projects,’’ Int. J. Project Manage., vol. 31,
no. 1, pp. 100–108, Jan. 2013.

[77] M. S. Gharote, R. J. Patil, and S. P. Lodha, ‘‘Minimal cost stable workforce
allocation in presence of ties,’’ in Proc. IEEE Int. Conf. Ind. Eng. Eng.
Manage. (IEEM), Dec. 2016, pp. 1146–1150.

[78] M. Gharote, R. Patil, and S. Lodha, ‘‘Scatter search for trainees to soft-
ware project requirements stable allocation,’’ J. Heuristics, vol. 23, no. 4,
pp. 257–283, Aug. 2017.

[79] F. A. Zaraket, M. Olleik, and A. A. Yassine, ‘‘Skill-based framework for
optimal software project selection and resource allocation,’’ Eur. J. Oper.
Res., vol. 234, no. 1, pp. 308–318, Apr. 2014.

[80] M. Y. Allaho, W.-C. Lee, and D.-N. Yang, ‘‘Staffing open collaborative
projects based on the degree of acquaintance,’’ in Proc. Int. Conf. Database
Syst. Adv. Appl. Cham, Switzerland: Springer, 2013, pp. 385–400.

[81] C. E. Otero, L. D. Otero, I. Weissberger, and A. Qureshi, ‘‘A multi-
criteria decision making approach for resource allocation in software
engineering,’’ in Proc. 12th Int. Conf. Comput. Modeling Simulation, 2010,
pp. 137–141.

[82] M. A. Paredes-Valverde, M. D. P. Salas-Zárate, R. Colomo-Palacios,
J. M. Gómez-Berbís, and R. Valencia-García, ‘‘An ontology-based
approach with which to assign human resources to software projects,’’ Sci.
Comput. Program., vol. 156, pp. 90–103, May 2018.

[83] R. Jana, M. Sanyal, and S. Chakrabarti, ‘‘Binary fuzzy goal programming
for effective utilization of it professionals,’’ in Proc. 1st Int. Conf. Intell.
Comput. Commun. Cham, Switzerland: Springer, 2017, pp. 395–405.

[84] A. R. Gilal, J. Jaafar, L. F. Capretz, M. Omar, S. Basri, and I. A. Aziz,
‘‘Finding an effective classification technique to develop a software team
composition model,’’ J. Softw., Evol. Process, vol. 30, no. 1, p. e1920,
Jan. 2018.

[85] J. Xiao, Q. Wang, M. Li, Q. Yang, L. Xie, and D. Liu, ‘‘Value-based
multiple software projects scheduling with genetic algorithm,’’ in Proc.
Int. Conf. Softw. Process. Cham, Switzerland: Springer, 2009, pp. 50–62.

[86] D. Surian, N. Liu, D. Lo, H. Tong, E.-P. Lim, and C. Faloutsos, ‘‘Recom-
mending people in developers’ collaboration network,’’ inProc. 18thWork.
Conf. Reverse Eng., Oct. 2011, pp. 379–388.

ALEXANDRE COSTA received the M.Sc. and
Ph.D. degrees in computer science from the Fed-
eral University of Campina Grande, Campina
Grande, Brazil, in 2014 and 2019, respectively.
He has been a Professor with the Federal Insti-
tute of Paraíba, since 2020. Further, he is also
a Researcher with the Intelligent Software Engi-
neering Research Group, VIRTUS, which is a
Research, Development, and Innovation Center
in Information Technology. His current research

interest includes artificial intelligence applied to software engineering to
solve complex problems. In the software engineering field, his research
interests include software project management, agile software development,
resource allocation focused on team formation for software development,
and others.

FELIPE RAMOS received the M.Sc. and Ph.D.
degrees in computer science from the Federal
University of Campina Grande, Campina Grande,
Brazil, in 2014 and 2019, respectively. He is
currently a Professor with the Federal Institute
of Paraíba. Further, he is also a member of the
Intelligent Software Engineering Research Group,
VIRTUS, which is a Research, Development, and
Innovation Center in Information Technology. His
current research interest includes artificial intelli-

gence applied to software engineering to solve complex problems. His main
research interests include agile software development and requirement engi-
neering focused on supporting the elicitation of non-functional requirements
on scrum-based projects.

MIRKO PERKUSICH is currently pursuing the
Ph.D. degree in computer science with the
Federal University of Campina Grande (UFCG).
He is also the Research Manager at Virtus, where
he is leading the Intelligent Software Engineer-
ing Research Group. His current research interest
includes applying intelligent techniques, including
recommender systems, to solve complex software
engineering problems.

EMANUEL DANTAS received the M.Sc. degree
in computer science from the Federal University
of Ceará, Fortaleza, Brazil, in 2014. He is cur-
rently pursuing the Ph.D. degree with the Federal
University of Campina Grande, Campina Grande,
Brazil. He has been a Professor with the Federal
Institute of Paraíba, since 2015. Further, he is
also a Researcher with the Intelligent Software
Engineering Research Group, VIRTUS, which is
a Research, Development, and Innovation Center

in Information Technology. His current research interest includes artificial
intelligence applied to software engineering to solve complex problems.
In the software engineering field, his research interests include software
project management, agile software development, effort estimation, risk
management, and others.

EDNALDO DILORENZO received the M.Sc.
degree in computer science from the Federal
University of Pernambuco, Brazil, in 2012. He is
currently pursuing the Ph.D. degree with the Fed-
eral University of Campina Grande. He is also a
Professor with the Federal Institute for Education,
Science, and Technology of Paraíba (IFPB) and a
Researcher with the Intelligent Software Engineer-
ing Group (ISE/VIRTUS). His research interest
includes the application of intelligent techniques
to software engineering problems.

FERDINANDY CHAGAS is currently pursuing
the Ph.D. degree in computer science with the
Federal University of Campina Grande, Brazil.
He is also an Assistant Professor with the
Federal Rural University of Semi-Arid Region,
Brazil. He is a member of the Intelligent Soft-
ware Engineering (ISE) Research Group, Fed-
eral University of Campina Grande. His main
research interests include technical debt, soft-
ware quality, empirical software engineering,
ontologies, and multiagent systems.

VOLUME 8, 2020 145711



A. Costa et al.: Team Formation in Software Engineering: A Systematic Mapping Study

ANDRÉ MEIRELES is currently pursuing the
Ph.D. degree in computer science with the Federal
University of Campina Grande, Campina Grande,
Brazil. He is also a Professor with the Federal
University of Ceará. He is a Researcher at the VIR-
TUS Research Center. His main research interests
include software engineering, smart engineering,
software architecture, and edge computing.

DANYLLO ALBUQUERQUE received the M.Sc.
degree in informatics from the Federal Univer-
sity of Paraíba, Brazil, in 2013. He is currently
pursuing the Ph.D. degree in computer science
with the Federal University of Campina Grande.
He has been a Professor with the Federal Institute
for Education, Science, and Technology of Paraiba
(IFPB), since 2020. He is also a Systems Analyst
with the Federal University of Campina Grande.
Further, he is also a member of the Intelligent

Software Engineering Research Group, VIRTUS, which is a Research,
Development, and Innovation Center in Information Technology. His current
research interests include software quality, technical debt, software archi-
tecture, artificial intelligence, and intelligent techniques applied to solve
complex software engineering problems.

LUIZ SILVA received the M.Sc. degree in com-
puter science from the Federal University of
Campina Grande, Brazil, in 2019. He is currently
a Researcher with the Laboratory of Instrumen-
tation and Control (LIEC). His research interests
include machine learning and application of intel-
ligent techniques to solve software engineering
problems.

HYGGO ALMEIDA received the M.Sc. degree in
computer science and the Ph.D. degree in elec-
trical engineering from the Federal University of
Campina Grande (UFCG), in 2004 and 2007,
respectively. He has been a Professor with the
Computer and Systems Department, UFCG, since
2006. He is currently the Head of the Intelligent
Software Engineering Group and the Founder and
the Director of operations at the VIRTUS Innova-
tion Center (VIRTUS/UFCG). He is a Researcher

of the Embedded and Pervasive Computing Laboratory (Embedded/UFCG).
He is also the Executive Director of the EMBRAPII Unit at CEEI/UFCG,
with more than 150 RDI projects developed in cooperation with industrial
companies within the area of information, communication, and automation
technologies. He has over 15 years of teaching experience in the university as
well as training courses for industry in the context of software engineering.
He has more than 200 articles published and 37 master thesis and 13 doc-
toral dissertations advised. His current research interest includes applying
intelligent techniques to solve complex software engineering problems.

ANGELO PERKUSICH received the master’s
and Ph.D. degrees in electrical engineering from
the Federal University of Paraíba, in 1987 and
1994, respectively. He has been a Professor with
the Electrical Engineering Department (DEE),
Federal University of Campina Grande (UFCG),
since 2002. He was a Visiting Researcher with
the Department of Computer Science, University
of Pittsburgh, Pittsburgh, PA, USA, from 1992 to
1993, where he developed research activities on

software engineering and formal methods. He is currently the Principal
Investigator of research projects financed by public institutions such as
FINEP (Brazilian Agency for Research and Studies) and CNPq (Brazilian
National Research Council), as well as private companies. He is the Founder
and the Director of VIRTUS Innovation Center and the Embedded and
Pervasive Computing Laboratory. His focus on research projects is on formal
methods, embedded systems, mobile pervasive and ubiquitous computing,
and software engineering. He has over 30 years of teaching experience in the
university as well as training courses for industry in the context of software
for real-time systems, software engineering, embedded systems, computer
networks, and formal methods. He has more than 300 articles published and
80 master thesis and 21 doctoral dissertations advised. His main research
interests include embedded systems, software engineering, mobile pervasive
computing, and formal methods.

145712 VOLUME 8, 2020


