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ABSTRACT Small object is one of the primary challenges in the field of object detection, which is notably
pronounced to the detection in the images from Unmanned Aerial Vehicles (UAV). Existing detectors based
on deep-learning methods usually apply the feature extraction networks with a large down-sampling factor
to obtain higher-level features. However, such big stride tends to make the feature information of small
objects become the little point or even vanish in the low-resolution feature maps due to the limitation of
pixels. Therefore, a novel structure called Multi-branch Parallel Feature Pyramid Networks (MPFPN) is
proposed in this article, which aims to extract more abundant feature information of the objects with a small
size. Specifically, the parallel branch is designed to recover the features that missed in the deeper layers.
Meanwhile, a supervised spatial attention module (SSAM) is applied to weaken the impact of background
noise inference and focus object information. Furthermore, we adopt cascade architecture in the Fast
R-CNN stage for a more powerful localization capability. Experiments on the public drone-based datasets
named VisDrone-DET demonstrate that our method achieves competitive performance compared with other
state-of-the-art detection algorithms.

INDEX TERMS Unmanned aerial vehicle, object detection, multi-branch parallel feature pyramid networks
(MPFPN), feature fusion, cascade architecture.

I. INTRODUCTION
UAVs have initially appeared in the last 1920s and are mainly
used in the military due to the advantages, i.e., small vol-
ume, convenient operation, and strong survival ability on the
battlefield [1]. In recent years, with the gradual advance of
UAV technology, the civil UAVhas beenwidely applied in the
world of real-life, including agricultural production [2], aerial
photography [3], fast delivery [4], environmental monitoring,
etc.

Simultaneously, with the rapid progress of deep con-
volutional neural networks (DCNNs), deep-learning-based
methods [5]–[8] have achieved a significant breakthrough
in various kinds of the field in computer vision. As for
object detection, many detection methods have been pro-
posed and reached great success in natural image detec-
tion(e.g., images in Pascal VOC [9], MS COCO [10]), such
as R-CNN series [11]–[13], YOLO series [14]–[17], SSD
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series [18], [19]. However, there exist many apparent differ-
ences between natural images and aerial images. For exam-
ple, the flight altitude of civil UAV is usually tens to hundreds
of meters which bring about a large scene to UAV-captured
images. In this situation, most objects are generally small
size and different viewpoints, which make object detection in
aerial images keep a hard challenge [20]. Figure 1 shows the
objects and corresponding annotated boxes. It can be easily
seen from the picture that the objects are not only small size
but also large numbers. This problem has become one of the
main factors that weaken the performance of current popular
detectors.

Recently, many methods [21]–[26] have been proposed
and try to solve the issue of small objects. However,
in the UAV-captured image, the object detection based on
deep learning still faces severe challenges. For example,
Faster R-CNN only uses the last layer (i.e., high-level
features) to implement the prediction, which does not ade-
quately consider the features of other layers, resulting in the
apparent shortage of its detection ability in the detection of
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FIGURE 1. Visualization of UAV-captured images. (a) Objects with a small
size and different viewpoint; (b) Ground-truth.

small targets. To solve this issue, SSD has been proposed
which extracts the features from different layers to predict.

However, it predicts from the deeper layer and still does not
consider the characteristics of the shallow layer. Therefore, its
detection ability for small targets is still not good. Later, the
classical feature fusion method is proposed, which combines
the multiscale feature information from the different layers.
For instance, the Feature Pyramid Network (FPN) [27] fuses
the low-level features and the high-level features by adopting
top-down architecture and lateral connections, which signif-
icantly improve the performance when detecting the objects
with small size. However, to obtain a larger receptive field
and higher-level features, most feature extractors [28]–[30]
has a large stride, such as 32× strides in ResNets [29]. Such
a large stride will directly make the small objects become a
little point or even disappeared in the deeper layers. Notably,
it makes the later up-sampling operation cannot recover its
missed feature information efficiently. This problem imposes
restrictions on the representation capability of FPN, in other
words, the feature information carried by its pyramid layers
is still insufficient to detect small objects effectively.

In this article, in order to extract more contextual seman-
tic information of small objects, we propose a novel struc-
ture called Multi-branch Parallel Feature Pyramid Networks
(MPFPN), which aims to obtain sufficient feature informa-
tion of small objects. In the proposedMPFPN, we first design
two additional parallel branches to start up-sampling opera-
tion from the shallower layers for recovering more feature
information that missed in the deeper layers. Meanwhile,
to deal with the background noise, a supervised spatial atten-
tion module (SSAM) is added in the lateral connections of
MPFPN. Finally, all pyramid layers, including one initial
top-down pathway and two parallel pathways, are fused for
the final prediction. Besides, to obtain a more powerful local-
ization capability for objects in aerial images, cascade archi-
tecture with three stages is adopted to refine the bounding box
prediction in the Fast R-CNN stage. In summary, the main
contributions of this article are listed as follows.

1. A novel and effective structure called Multi-branch
Parallel Feature Pyramid Networks (MPFPN) is firstly
proposed for the object detection in UAV aerial images.

2. the Supervised Spatial Attention Module (SSAM) is
designed to against complex background noise and highlight
the foreground information with a supervised learning
method in MPFPN.

3. Cascade architecture is applied in the Fast R-CNN
stage to refine the bounding box regression and enhance the
capability of locating the objects.

4. Extensive experiments demonstrate the state-of-the-art
performance on the drone-based image dataset VisDrone-DET.

The rest of this article is organized as follows.
Section 2 gives the related work of general object detection
and small object detection. Section 3 shows the analysis and
description of the proposed framework. Section 4 presents
experiments of the drone-based dataset. Discussions of the
experiment result are discussed in Section 5. The last section
concludes this article.

II. RELATED WORKS
Small-object detection keeps an extremely challenging for a
long term in the field of computer vision. In the past few
years, Convolutional Neural Networks (CNNs) have made a
breakthrough development for object detection. In general,
the current detection methods can be mainly divided into two
categories, the one is one-stage detectors, and the other is
two-stage detectors.

Generally, the one-stage detectors are highly efficient due
to a direct prediction of predefined anchors without the pro-
cess of proposal generalization. In YOLO [14], it directly
predicts the bounding box’s coordinates from an image that is
gridded into several regions. YOLO9000 [15] and YOLO-v3
[16] take the experience from other works to achieve higher
accuracy, such as applying prior anchor mechanism and fea-
ture fusion network. SSD [18] sets the anchor box on the
feature maps with different scale and then directly make the
anchor classify and regress.

Although the one-stage detectors have a high speed, its
detected accuracy are generally lower than the two-stage
detectors. The reason is that the two-stage detectors gen-
erate and choose the suit region proposal at first and then
refine them in the next stage. Thus, they usually have a
better performance on accuracy. Faster R-CNN [13] improves
the Fast R-CNN [12] and R-CNN [11] by designing region
proposal network (RPN) to generate the proposals, which
not only improves the speed and accuracy but also allows
the detection networks to implement end-to-end training.
R-FCN [31] further improves the accuracy by adopting fully
convolutional neural networks. However, the above detectors
perform badly on the small objects due the inefficient uti-
lization of low-level features and high-level features. There-
fore, these detectors that simply utilize the features of a
single layer usually reach a lower accuracy in the image that
has large number of small objects, such as UAV-captured
images.
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FIGURE 2. The architecture of entire framework.

In UAV-captured images, the proportion of small objects
is very large in most cases. Generally, these small objects
pose a massive challenge to the recognition due to the small
number of pixels. To solve the problem of small objects,
FPN [27] achieves significant progress by adopting feature
fusion networks. As shown in Figure 3., FPN includes three
main parts, namely the bottom-up architecture, top-down
architecture, and lateral connection that fuse the multi-scale
features. In order to overcome the problem that the small
objects vanish in the deeper layers. DetNet [32] attempt
to maintain a high-resolution feature map by applying the
reduced layers of ResNet architecture to avoid the disappear-
ance of small objects, which aims to upsample the feature
information of small objects from the shallow layers, fur-
thermore, to compensate the discarded high-level features,
it applies dilated convolution to expand the receptive field.
The proposed MPFPN is inspired by the architecture of
FPN and DetNet, which can not only retain the high-level
features of deeper layers but also recover sufficient feature
information of small objects from the shallow layers.

Besides, the complicated scene usually brings an intense
background noise and result in a bad performance for
UAV-captured images. Attention mechanism [33]–[35] has
proved that it could effectively deal with the background
noise interference issue. The primary purpose of attention
mechanism is to focus on the objects of interests and weaken
the background inference existing in the images. In [34],
it proposed the multi-dimensional attention mechanism to
weaken the background noise and highlight the foreground
information, including the guided spatial attention and chan-
nel attention. Recently, researchers [36]–[39] also make
progress on the regression process for the general object
detection. Cascade R-CNN [39] adopts the multi-stage detec-
tion sub-network with different IoU threshold to refine the
bounding box regression. In this article, the proposed frame-
work gathers the feature fusion network, attention module
and the cascade architecture into the object detection in

UAV-captured images. The relevant details will be presented
in section 3.

III. THE PROPOSED METHOD
The framework of the proposed method is shown in Figure 2,
which mainly includes two parts, i.e., MPFPN for the first
stage and Cascade architecture for the Fast R-CNN stage.
Specifically, MPFPN aims to extract more powerful and
sufficient feature information from feature maps and fuse
these features before the final prediction of each pyramid
layer. Then the proposals are generated from the region pro-
posal networks (RPN) for the later stage. Finally, high-quality
regression and classification of proposals are processed by
cascade architecture, namely Cascade R-CNN.

A. MULTI-BRANCH PARALLEL FEATURE PYRAMID
NETWORKS
In order to obtain higher-level features, previous works usu-
ally adopt a large factor of down-sampling, which does well
in the classification task. For example, ResNets is a classical
kind of classification network with a very deep layer, and
the spatial resolution of its feature map is 32× sub-sampled,
which obtains the larger receptive field and higher-level fea-
tures. This is beneficial to identify the objects with large
size. However, 32× down-sampling is quite unfavorable to
detect the objects with a small size because these objects
will be easily vanished in the deep layer because of a limited
pixel. So previous works that only use a single large stride
network have a poor performance on small objects, and such
weakness is quite obvious to the objects in the aerial images.
Feature Pyramid Networks (FPN) adopts top-down architec-
ture and lateral connections to weaken the impact from the
small objects. However, since the small objects have van-
ished in the deeper layers, its contextual semantic information
will disappear simultaneously, and the following up-sampling
operation cannot effectively recover it. Therefore, there is still
much feature information that missed in feature maps that can
be exploited.
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FIGURE 3. The architecture of feature pyramid network.

FIGURE 4. The architecture of multi-branch parallel feature pyramid
networks.

In this work, a novel network called MPFPN is proposed
for the first time, which increases two additional parallel
branches to obtain more contextual semantic features of small
objects. Figure 4 gives the details of MPFPN, and the detailed
description is as follows.

1) FEATURE PYRAMID NETWORKS (FPN)
We describe the last feature map from each residual block
of ResNets as {C2,C3,C4,C5} (see above Figure 3) and the
strides of its corresponding layers are {4, 8, 16, 32} pixels.
In top-down architecture, the feature maps of pyramid layers
are described as {P2,P3,P4,P5}.

2) MULTI-BRANCH PARALLEL ARCHITECTURE
As shown in Figure 4, we increase two additional parallel
branches, which operates up-sampling and lateral connection
from the corresponding layers. Then these pyramid layers are
combined to gather its features. Here the first parallel branch
is described as the feature maps {R2,R3,R4}, and the second
parallel branch is defined as {S2, S3}. The specific definition
is as follows:

P∗5 = P5,P∗4 = P4
P∗3 = Conv3×3 {P3 ⊕ R3}

P∗2 = Conv3×3 {P2 ⊕ R2 ⊕ S2} (1)

where Convk×k indicates the k×k convolution, k is the kernel
size. ⊕ is the operation of concatenation. P∗i represents the

FIGURE 5. The architecture of supervised spatial attention module.

prediction of all fused feature maps from parallel branches
Ri or Si. Finally, we get the final prediction as to the feature
maps

{
P∗2,P

∗

3,P
∗

4,P
∗

5

}
. Besides, each feature map of pyramid

layer is defined as:

P5 = Conv1×1(C5)

Pi = Conv3×3 [Conv1×1(Ci)+ Upsample(Pi+1)] (2)

where Conv1×1 is applied to make the number of the channel
to 256.Upsample represents bilinear up-sampling in this arti-
cle. Meanwhile, the parallel branch is similar to the definition
of the pyramid layer, for example, feature maps of the parallel
branch-1 is defined as:

R4 = Conv1×1(C4)

Ri = Conv3×3 [Conv1×1(Ci)+ Upsample(Ri+1)] (3)

3) SUPERVISED SPATIAL ATTENTION MODULE (SSAM)
In UAV-captured images, the complexity of the scene usually
brings strong noise interference. As shown in Figure 6a,
excessive noise such as buildings or trees can disturb small
objects’ recognition. Therefore, inspired by [34] and [40],
the supervised spatial attention module called SSAM is
designed into MPFPN to weaken the impact of the back-
ground noise and highlight the foreground information.
Figure 5 gives its detailed architecture, as shown in the
picture, the input feature map first goes through the Tri-
dent Dilated Convolution Module (TDCM), which contains
three different rates of dilated convolution to capture the
multi-scale objects in aerial images. Then, the saliency map
(see figure 6d) is obtained by the convolution operation
with 2-channel output. Meanwhile, we get the binary map
(see figure 6e) from the ground-truth label, and then a super-
vised learning method is utilized to guide the saliency map to
learn its instancemask. Next, softmax operation is performed,
and then one of its channels is selected to multiply with
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FIGURE 6. The visualization of the supervised spatial attention module.
(a) Input image; (b) feature map before applying SSAM; (c) feature map
after applying SSAM; (d) Saliency map; (e) Binary map, the color black is
the background, the color white is the instance mask of the ground truth.

the input feature map. Finally, the new output feature map
is obtained after the above process. Note that we adopt the
cross-entropy loss as the attention loss function.

As shown in Figure 6b, there is much background noise
in the feature map, which can overwhelm the information of
small objects. Figure 6c is the visualization result after being
processed by SSAM, and it can be seen that the background
noise is weakening obviously, and the object information is
also enhanced in the meantime. Besides, we can observe a
clear boundary of objects in Figure 6c, which helps avoid
missed detection.

B. CASCADE ARCHITECTURE
In the first stage of the proposed framework, we have intro-
duced MPFPN to improve the capability of extracting feature
information for small objects. However, in the Fast R-CNN
stage (i.e., the second stage), most works pay less atten-
tion to the precise localization for objects in aerial images,
which usually bring a bad accuracy when detecting with
the high IoU (intersection over union) threshold. Therefore,
we replace the initial single regressor with cascade archi-
tecture [39] in the Fast R-CNN stage to enhance the local-
ization capability for the objects in UAV-captured images.
Furthermore, we replace the RoI pooling with RoI Align [41]
to avoid the feature misalignment. As is depicted in Figure 7,
the architecture refines the bounding box regression by uti-
lizing a multi-stage detection sub-network, {H1,H2,H3} rep-
resents the head of each network, {B1,B2,B3} indicates
the coordinates of the bounding box, {C1,C2,C3} is the
classification score.

FIGURE 7. The architecture of Cascade R-CNN.

Bounding box regression in the cascade architecture is
defined as:

f (x,b) = fT ◦ fT − 1 ◦ · · ·f 1 (x,b) (4)

where the bounding box b =
(
bx , by, bw, bh

)
contains

four coordinate values of an image path x, T represents the
number of the total cascaded stages. Due to an appropriate
value of IoU threshold is used to each corresponding stage,
all of the cascaded regressors {fT ◦ fT − 1 ◦ · · ·f 1 (x,b)} can
be optimized with the sample distribution

{
bt ,bt−1 · · · b1

}
.

Therefore, cascade architecture can improve the operation of
the bounding box regression effectively.

Taking into account the characteristics of aerial images,
we set the hyper-parameter T to 3 in all experiments,
which means three cascaded stages are adopted. Meanwhile,
to match the size of most objects, we assign the IoU threshold
of positive RoIs to each stage to {0.5, 0.6, 0.7}, specifically,
0.5 is applied for the first stage, 0.6 for the second stage,
0.7 for the third stage. These settings ensure a high-quality
regression for the objects with a small size. Figure 8 gives
the visualization of negative RoIs and positive RoIs in
three stages with different IoU thresholds, it can be seen a
continuous refinement of bounding box regression.

C. LOSS FUNCTION
We use multi-task loss function in this work, which is defined
as follow:

L =
1

h× w

h∑
i

w∑
j

Latt
(
uij, u∗ij

)

+
1
N

T∑
t=1

N∑
n=1

Lcls
(
ctn, c∗tn

)
+
λ

N

T∑
t=1

N∑
n=1

Lreg
(
rtn, r∗tn

)
(5)

In this formula, Latt refers to the attention loss function,
which uses softmax cross-entropy. h, w is the height and
width of the labeled binary map. Lcls represents the classifi-
cation loss calculated by softmax cross-entropy. loss function
Lreg refers to the regression loss, which adopts the smooth
L1 loss as defined in [12]. T represents the number of the
total cascaded stage, and the hyper-parameter λ in Eq. 5 is
set to balance different task, we set T = 3, λ = 1 in all
experiments. Furthermore, the function Latt , Lcls and Lreg are
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FIGURE 8. The visualization of negative RoIs (left-row) and positive RoIs
(right-row) in three stages. (a), (b) the first stage; (c), (d) the second
stage; (e), (f) the third stage.

respectively defined as follow:

Latt
(
uij, u∗ij

)
= −u∗ij log uij (6)

Lcls
(
ctn, c∗tn

)
= −c∗tnlogctn (7)

Lreg
(
rtn, r∗tn

)
= smoothL1

(
rtn − r∗tn

)
(8)

smoothL1 (x) =
{
0.5x2, |x| < 1
|x| − 0.5, otherwise

}
(9)

IV. EXPERIMENTS AND RESULTS
In this section, the used datasets will be introduced at first,
then we present four groups of experiments to explore the
detection performance of the proposed framework. All exper-
iments are constructed on GTX 1080Ti GPU and imple-
mented in Python 3.6 using the Tensorflow framework with
a version 1.12.

A. DATASETS AND EVALUATION METRICS
We demonstrate our framework on the drone-based dataset,
namely VisDrone-DET [42], which has been released in
http://aiskyeye.com/. The benchmark dataset focuses on four
core problems, i.e., single-object tracking, object detection
in images, crowd counting, and multi-object tracking. This
article mainly aims to object detection in images, including

FIGURE 9. The visualization detection result of two methods on the
VisDrone dataset. (a), (c) detection results of initial FPN; (b), (d) detection
result of MPFPN. Different color represents its corresponding category.

10,209 static images from drones. Ten common categories are
involved, such as car, truck, pedestrian, bicycle, motor, etc.

Due to the used datasets has its evaluation method, in this
article, its existed evaluation metrics evaluate the whole
experiment results. According to the setting of dataset MS
COCO [10], VisDrone uses the Average Precision (AP) and
Average Recall (AR) metrics to measure the detection per-
formance, including AP0.5:0.05:0.95, AP0.5, AP0.75 and AR500.
Specifically, AP0.5:0.05:0.95 refers to the computation on the
average value over all ten IoU thresholds from 0.5 to 0.95with
the step size 0.05. AP0.5 and AP0.75 are computed in a sin-
gle IoU threshold 0.5 and 0.75 respectively. Also, the max
detections per image are 500.

B. IMPLEMENTATION DETAILS
Extensive experiments in this article are measured on the
validation set of VisDrone2020. We adopt the pre-training
model ResNets-101 to initialize the network. Besides, Input
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TABLE 1. Comparative results in each category. All categories are evaluated in AP0.5:0.95. FPN: Feature Pyramid Networks. MPFPN: Multi-branch Parallel
Feature Pyramid Networks. All methods use Cascaded R-CNN as the baseline network. Class ped. refers to the pedestrian, awn. refers to the
awning-tricycle.

TABLE 2. Comparative results in each category with five IoU threshold. All detection results are measured in the proposed framework.

TABLE 3. Ablation study on MPFPN. Add: the operation of addition. Concat: the operation of concatenation. SSAM: Supervised spatial attention module.

images are resized to 1440 × 800 pixels, MomentumOpti-
mizer is chosen as the network optimizer, the weight decay is
set to 0.0001, and Momentum is 0.9. Meanwhile, we trained
a total number of 90k iterations, with the learning rate
of 0.001 for the first 70k iterations, 0.0001 for the next
15k iterations, and 0.00001 for the rest of 5k iterations.
For data augmentation, randomly flipping image is used
in the training stage. In order to match a suitable size of
objects in drone-based images, we set the base size of the
prior anchor to {16, 32, 64, 128, 256} and the anchor ratio is
{1 : 2, 1 : 1, 2 : 1}.

C. COMPARATIVE RESULT IN EACH CATEGORY
We firstly compare all categories to investigate the validity of
MPFPN. Cascaded R-CNNwith ResNets-101 as the baseline
network is structured. Figure 9 gives the visual comparison of
MPFPN and FPN, and it can find as a noticeable improvement
of our method these objects with a small size. For example,
as shown in the red line of Figure 9a, the initial FPN can
hardly effectively detect the objects with a tiny area. As a
comparison, in Figure 9b, the proposed method can capture
and recognize many objects with a few pixels, such as person
class depicted in the color green, and the motor class drawn
in the color chocolate.

As shown in Table 1, the experiment result suggests that
our method reached 29.05% in AP0.5:0.95, which is increased

FIGURE 10. Comparison of the precision-recall curves for different IoU
threshold. (a) pedestrian; (b) motor; (c) truck; (d) bus.

by 2.05 points, and the result of each class is better than the
initial FPN. It is because the presented MPFPN has more
robust feature extraction capability and excellent detection
performance. The experiment demonstrates the effectiveness
of the method we proposed.

As is described in Table 2, the presented method achieves
a satisfying performance in most categories when using the
lower IoU threshold of 0.5. Meanwhile, we find that the
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TABLE 4. Comparison of the state-of-the-art algorithms.

FIGURE 11. Visualization of the proposed framework.

detected results of the above six categories in Table 2 are
less affected by the increase of the IoU threshold than the
lower four categories. For example, the accuracy in AP0.5 and
AP0.6 of the bus class is declined from 65.19% to 63.07%,
while the AP0.5 and AP0.6 of the person class go sharply
decreased from 54.85% to 42.91%, such condition is more
obvious in the threshold of 0.7. It suggests that result of some
categories is more easily to be affected by the increase of
the IoU threshold and thus resulting in a poor performance

in the high-IoU threshold detection. Figure 10 plots the
precision-recall curves in picked four categories to compare,
in Figure 10a and 10b, although the good results are reached
in the AP0.5, there is a big shift in the higher threshold
for the person class and motor class. One of the possi-
ble reasons we guess is that it is quite hard to match the
ground-truth of these categories precisely in the process of
bounding box regression due to a relatively smaller size to
others.
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D. ABLATION STUDY
1) EFFECT OF THE PARALLEL BRANCH
In section 3.1, we have analyzed that the parallel branch
helps recover feature information of small objects. In Table 3,
a comparison is presented to analyze the effect of each paral-
lel branch. As we can see from the table, detection accuracy
of AP0.5:0.95 is increased by 1.13 points when only applying
parallel branch-1 and 0.81 points when only using parallel
branch-2. Results indicate that these two parallel branches are
both effective in providing more sufficient and useful feature
representations.

2) FUSION STRATEGY
Comparative results of two different fusion methods of
feature maps are also presented in Table 3. We can see that
the addition operation reaches 28.05% in AP0.5:0.95, the Con-
catenation operation is increased to 28.32%. It suggests that
the fusion method of concatenation can achieve a higher
detection accuracy, but more computing resources are also
occupied when applying this method in networks.

3) EFFECT OF SSAM
Based on the operation of using parallel branch and concate-
nation, we further evaluate the effect of attention module,
as shown in Table 3, AP0.5:0.95 is increased from 28.32% to
29.05%, which is improved by 0.73 points. This shows that
using SSAM can weaken the impact of background noise and
enhance the representation of objects.

E. COMPARING WITH SOME STATE-OF-THE-ART
ALGORITHMS
Wemake a comparisonwith the existing popular object detec-
tion method on the validation set of VisDrone. As shown
in Table 4, the experiment result of our method suggests a
state-of-the-art performance on both AP and AR compared
with others. Specifically, we reach 29.05% in the AP0.5:0.95
and 45.69% in the AR500. The visualization results of the
proposed framework suggest that our method has a com-
petitive performance, as show in Figure 11. Besides, in the
competition of the VisDrone-2020 challenge, our method
achieves 22.85% and ranks 38th in all 85 participating teams,
the leaderboard of the VisDrone-2020 challenge has been
released in http://aiskyeye.com/leaderboard/. Note that we
don’t use any image augmentation tricks or model fusion
methods due to the limitation of GPU memory or other
hardware.

V. DISCUSSIONS
Many groups of experiments have been presented to ver-
ify the validity of the proposed method. The advantage of
our framework can be summarized as follow: (1) MPFPN
has a better capability to extract sufficient and contextual
semantic information for the discriminative representation
of the objects with a small size. (2) Cascade architecture
implements a high-quality bounding box regression, which
provides a precise localization of objects in UAV-captured
images. However, there are still some deficiency existing

FIGURE 12. The percentage of the training samples. Categories awn.
refers to awning-tricycle, ped. refers to pedestrian.

FIGURE 13. Visual comparison. (a) detected result in the proposed
method; (b) Ground-truth. The Red dashed line refers to the confused
objects. The Green dashed line refers to the categories with a lack of
training sample.

in the proposed networks, which can be attributed to two
aspects: unbalanced training samples and false alarm.

A. UNBALANCED TRAINING SAMPLES
Although the proposed structure achieves a satisfying perfor-
mance in most category, we can see from above Table 1 that
the detection accuracy in some classes is extremely lower
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than others. For example, the detected result of the car class
produces 57.85% in AP0.5:0.95, while only reaches 12.01%
and 12.41% on awning-tricycle and bicycle. One of the pos-
sible reasons is that there exists an unbalanced number of
trained samples. As shown in Figure 12, awning-tricycle and
bicycle occupy 1% and 3% respectively in all samples, in
Figure 13a, it can be seen an undesirable visual result to class
awning-tricycle, which is drawn by the green dashed line.
To address this issue, A data augmentation strategy for small
data will be considered to promote detection performance in
future work.

B. FALSE ALARM
Another issue that weakens the proposed detection networks
is the incorrect recognition when detecting the objects with
a similar appearance to the ground-truth. In Figure 13a,
the objects inside the red dashed line are detected to the
class motor, but it does not belong to the training samples
(see figure 13b). One possible reason is that such
objects or scenario never appear in the training images; there
exists a big gap in the testing set and training set. To deal
with this issue, we consider adopting the training strategy to
learn the specific characteristic of some interferential objects
on the testing images or using the trained model on the other
datasets for removing it in the post-processing stage.

VI. CONCLUSION
In this article, considering the difficulty of detecting small
objects, we have proposed an object detection framework for
UAV-captured images, many novel methods were presented
in this model. For example, the proposed MPFPN utilizes
two additional parallel branches to obtain sufficient feature
representation of small objects, based on that, a supervised
spatial attention module named SSAM is adapted to restrain
the noise interference and highlight the object information
effectively. Meanwhile, to enhance the localization capabil-
ity of objects in UAV-captured images, we took cascade
architecture in the Fast R-CNN stage. Extensive experi-
ments were performed on the drone-based datasets named
VisDrone-DET, and the results demonstrate that the pre-
sented framework has a competitive effect and reached a
state-of-the-art performance in object detection in UAV aerial
images. Despite reaching a desirable performance in most
classes, there are still some issues existing in the framework,
such as unbalanced training samples and incorrect recogni-
tion of the objects that never showed up in the training images.
In the future, we need to find out the solution to solve the
existed problems in our framework.
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