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ABSTRACT Context-aware computing has become a certainty due to the widespread use of smartphone
devices equipped with sensors. A wide range of services, such as vehicular traffic monitoring and smart
parking, can be accomplished with the help of awareness of user mobility. Transportation mode detection
(TMD) using machine learning algorithms and the data captured from smartphone embedded sensors
have attracted research community attention. In this research, ensemble learning is utilized to differentiate
between transportation modes, including walking, standing, riding a train, driving a car, and riding a bus.
The ensemble learning consists of three classifiers; each classifier votes independently on the instances,
and the majority vote is applied for robust generalization. The proposed method was validated using
three datasets; the samples included in these datasets were gathered by smartphone sensors (belonging
to heterogeneous users), such as rotation vector sensors, accelerometers, uncalibrated gyroscopes, linear
acceleration, orientation, speed, game rotation vector, sound, and gyroscopes. The proposed ensemble
learning method achieves an accuracy of 89%, 93%, and 95% on the first, second, and third datasets,
respectively, when 10% and 90% of the data are used for testing and training, respectively. On the other set of
experiments, in which 30% and 70% of the data are used for testing and training, respectively, the proposed
method yields accuracies of 86.8%, 92.1%, and 94.9% on the first, second, and third datasets, respectively.
The proposed method shows promising results compared to existing human activity recognition (HAR)
methods.

INDEX TERMS Context-aware computing, embedded sensors, ensemble learning, human activity recogni-
tion, Internet of Things (IoT), transportation mode detection.

I. INTRODUCTION
Context-aware computing was introduced by Schilit and oth-
ers in 1994. The terminology is defined as ‘‘the possibility
to exploit the changing environment with a new class of
applications that are aware of the context in which they are
run’’ [1]. Recently, context-aware computing has become a
reality due to the ease of sensor deployment through IoT
devices (e.g., smart wearables such as smartwatches and
fitness trackers) or smartphone devices [2]. For instance,
embedded sensors are integrated with smartphones to realize
the surrounding areas, recognize user activity, and locate
user location [3]. A popular research topic (i.e., a type of
human activity recognition (HAR)) known as transportation
mode detection (TMD) has gained noticeable attention [4]–
[6]. TMD is considered a HAR because smartphones carried
by users and embedded with sensors such as accelerome-
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ters and gyroscopes (a.k.a., microelectromechanical systems
(MEMS)) can be used to deduce what activity the phone
carrier is performing.

The awareness of a person’s transportation mode facilitates
planning for urban transportation [7], whichwas performed in
the past via telephone interviews, questionnaires, and travel
diaries [8], [9]. With these manual approaches, the traveler
could utilize several modes of transportation and might not
remember the certain times of the performed transportation
modes. Thus, context-aware computing replaces the tradi-
tional method, which is considered limited, not up-to-date,
erroneous, and expensive [10]. Moreover, human wellness
and physical activities can be observed using smartphones
[11], smartwatches, or fitness trackers. Such applications
can also provide daily activities and the number of calories
burned. Additionally, the activities that affect the environment
can also be estimated, and environmental hazard exposure
can be traced. Knowing the transportation mode of travelers
helps shops send real-time information to customers in the
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form of advertisements. For instance, detecting a consumer
driving a car allows for gas stations to send vehicle ser-
vices or gas coupons as advertisements. Unlike life critical
systems that cause death or injuries to people, environmental
hazards, or expensive equipment damage, such as heart-lung
machines, ventilation systems, and fire alarms, where an ideal
100% precision is essential, transportation mode detection
can tolerate a margin of error ranging from 5% to 10%.

Currently, three distinguished types of methods are uti-
lized to detect transportation modes: sensor-based techniques
[12], global positioning system (GPS)-based techniques [13],
and cellular-network-based attempts. Furthermore, several
research papers [14]–[16] have attempted to build patterns of
transportation modes and improve the accuracy of these tech-
niques. Moreover, some industries, through their applications
and operating systems (e.g., Android operating system), have
implemented their own TMD in which users are informed
of their mode of transportation. However, some of these
applications or systems limit their capabilities of detecting
activities to four categories: riding a bicycle, riding in a
vehicle, standing, and walking [3]. All of the techniques share
the following identical general principle for the detection of
the transportation mode: collecting raw data from sensors
integrated with mobile phones, preprocessing the raw data
to be fed into the classification model, feeding part of the
preprocessed data into the classifier for training purposes, and
passing the rest of the preprocessed data to the predictor for
generalization purposes.

Although TMD methods have achieved considerable suc-
cess in many applications, there are still some limitations
regarding the studies that have been proposed to help improve
the usefulness of these methods. First, due to the lack of a
benchmark dataset, the published results are hard to compare.
Additionally, the proposed techniques are not well defined
because of either the limited number of smartphone users
involved in the testbed or the heterogeneity of sensors that
have been utilized (i.e., it is hard for industries to adopt
one of these methods). Fortunately, two recent datasets [3],
[17] have been published in which researchers can compare
their results. Moreover, a large number of proposals have
used binary classification in which the classifier needs to
distinguish between only two modes of transportation. For
instance, smart parking techniques only considered modes
of transportation: riding a vehicle and walking. The notifi-
cation is sent once a busy or free area is found [18]. Finally,
various techniques have been proposed to detect the mode
of transportation using a single machine learning algorithm
to improve the accuracy. Certain sets of samples might be
fit well by a single machine learning algorithm; however,
overfitting or underfitting might become visible to the rest
of the samples. Thus, even with parameter optimization,
an upper limit of accuracy might be reached when utilizing
one machine learning algorithm. Combining various machine
learning algorithms (ensemble learning) is used to overcome
this shortcoming [19]. Recently, several ensemble methods,
such as random forests (RFs), gradient boosting (GB), and

extreme gradient boosting (XGBoost), have been investigated
to differentiate the mode of transportation. However, these
ensemble methods can only combine machine learning algo-
rithms with identical types, such as decision trees (DTs).
However, ensemble methods that combine machine learning
algorithms with different types, such as stacked learning,
have not been utilized by the TMD research community.
Stacked learning bundles lower level models of different
types by a higher level generalized model to maximize accu-
racy.

Motivated by the released public datasets and the room
for improvement, a stacked learning model consisting of
variousmachine learning algorithmswith different types (i.e.,
the investigated machine learning algorithms in this study
that generate the most accurate final prediction when bundled
together in the stack) is presented to detect the transportation
mode using available smartphone sensors that remarkably
improve the detection accuracy compared to TMD methods.

The contributions of this research can be summarized as
follows:

1) A comprehensive study of different machine learning
algorithms is presented to investigate which machine
learning algorithm best fits the problem of TMD.

2) Based on the observations from this study, a new
ensemble method is proposed to differentiate trans-
portation modes. This method achieves promising
results compared to existing techniques.

The remainder of this article is organized as follows.
Section II summarizes the related methods, the proposed
method is introduced in Section III, and IV presents the
experimental settings and the utilized dataset that help to eval-
uate the proposed method. Section V presents the parameter
optimization, Section VI validates the proposed method and
analyzes the results, Section VII discusses the results, and
Section VIII concludes the research paper.

II. RELATED WORK
Due to the widespread use of smartphones and the Internet
of things (IoT) devices that are equipped with embedded sen-
sors, the context-aware computing topic has regained inter-
est in the research community. TMD is an important field
in which embedded sensors play an integral role in fulfill-
ing its purpose. TMDs can be categorized into three main
types of techniques: sensor-based, GPS-based techniques,
and cellular-network-based attempts. GPS-based techniques
are the most famous category because of the ease of acces-
sibility to GPS in smartphones and the high achieved perfor-
mance in terms of accuracy in differentiating between pedes-
trian movements and riding vehicles. The GPS-based tech-
niques share two shortcomings: the accuracy degrades once
the smartphone carrier enters an indoor environment or passes
by an urban canyon due to multipath fading and smart-
phones equipped with battery-constrained capability (i.e.,
these methods consume batteries) [15].
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Cellular network-based attempts employ record-keeping
via three techniques to determine the transportation mode
of mobile phone owners: signaling data, handovers, and call
detail records (CDRs). These records are kept by telecommu-
nication companies for management assistance, maintenance,
and billing. Consequently, users are not required to make any
efforts and are not aware of the stored records that can be used
to estimate their locations andmode of transportation through
cellular towers. These methods share a deficiency related to
revealing the data privacy of end users. Although mobile
phone networks employ anonymity mechanisms to conceal
the identity or location of end users before data analysis,
recognizing four spatiotemporal points can be a key factor
in revealing the identity or location of a given user with high
probability. Thus, new techniques, i.e., those compatible with
governmental authorities or intergovernmental organizations
(e.g., the European Union (EU)), and regulations such as
general data protection regulations (GDPRs) should be devel-
oped to protect the data privacy and anonymity of mobile
phone users [20].

Sensor-based methods use the raw data captured by smart-
phone embedded sensors. The captured data in the form of
series reading are preprocessed, and the dimensionality of
the captured data might be reduced to improve the perfor-
mance or to make the approach less complex. The prepro-
cessed data are then fed into a machine learning algorithm
for training purposes. Consequently, theweight of the training
phase is used to predict the mode of transportation captured
by the smartphone embedded sensor. The most likely smart-
phone embedded sensor that best fits the area of the TMD
is the accelerometer, which has two advantages: its ability to
help detect human activities and its light energy consumption
[21]. One of the most widely used machine learning algo-
rithms in TDM is RFs [22]–[24].

The authors of [4] investigated several machine learning
algorithms to generalize a multiclass method capable of rec-
ognizing the mode of transportation. The dataset that the
authors used consists of five classes: bike, car, bus, walk,
run. The authors tested various machine learning methods,
including support vector machines (SVMs), DT, k-nearest
neighbors (KNNs), bagging, and RFs. The raw data were cap-
tured from three smartphone embedded sensors: the rotation
vector, accelerometer, and gyroscope. During the training and
testing phases, the authors utilized both the out-of-bag error
and k-fold cross-validation to select the model that performs
better. A feature selection method known as minimum redun-
dancy maximum relevance (mRMR) was used to eliminate
the features that negatively affect the classifier performance.
The authors found that data captured by smartphone embed-
ded sensors provide meaningful patterns that distinguish
between different types of transportation modes. The authors
compared the performance of the tested machine learning
algorithms after applying a feature selection method and
found that the RFs ensemble method and SVMs performed
better than the other methods. The authors also attempted
to combine both the simulated annealing (SA) algorithm

(i.e., to combine important features that could improve the
performance) and RFs to improve the performance.

Xiao et al. [25] proposed a TMD method based on ensem-
ble learning in which three machine learning algorithms were
combined. The authors used the GPS to detect the trans-
portation mode. To create global features and extract various
local features, the authors utilized a statistical technique in
which features were generated from subtrajectories. Then,
these features were fed into the classifier in the training
phase. The ensemble model consists of three base methods:
GB, XGBoost, and RFs. The most accurate method among
the base estimators is the XGBoost method (its accuracy is
90.77%) when it is applied to the GEOLIFE dataset [26]. The
authors also reduced the time required to predict the mode of
transportation by using a feature selectionmethod (i.e., a tree-
based ensemble technique).

The authors in [27] studied transportation mode classifi-
cation utilizing big data generated by smartphone embedded
gyroscope, magnetometer, and accelerometer sensors. They
investigated three well-known machine learning algorithms
to recognize transportation modes, specifically, SVMs,
KNNs, and DTs. The authors used large-scale experiments
in which the performance of these methods was compared in
terms of accuracy, model size, and prediction time. The per-
formed experiments show promising results in which SVMs
perform better than the other two methods in terms of accu-
racy, but it was the most expensive method in terms of time.

Shafique and Hato [28] examined four machine learn-
ing algorithms, specifically adaptive boosting (AdaBoost),
RFs, DT, and SVM, to differentiate the exercised mode of
transportation. There are four detected modes of transporta-
tion: walk, train, bike, and car. The generated data are col-
lected from three Japanese cities, and the target sensor is an
accelerometer. Among the tested methods, RFs outperform
the other methods. The second best method is DT, then SVMs
and the worst method in terms of accuracy is AdaBoost.

Fang et al. [29] proposed a deep learning-based approach
to effectively construct a nonlinear shape between labeled and
sequential data captured by sensors. This approach utilized a
deep neural network (DNN) and built two types of feature
sets. One feature set was small compared to the other feature
set to investigate the tradeoff between performance and bat-
tery consumption. The other only considered the performance
of the proposed method. The authors compared their method
with three machine learning algorithms: SVMs, KNNs, and
DT. The proposed method yielded better results compared to
the other three methods.

Liang and Wang [30] proposed a deep learning tech-
nique (i.e., convolutional neural network (CNN)) to automat-
ically detect the transportation mode using data generated by
accelerometer sensors. Various machine learning algorithms
are tested to compare the proposed method with the other
methods. The authors tried several CNN architectures and
proposed a lightweight and accurate architecture. The pro-
posed architecture is compared with several machine learn-
ing algorithms. The proposed CNN model outperforms the
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other methods, and Gaussian naive Bayes (GNB) is the least
accurate method among the tested methods.

III. PROPOSED METHOD
The proposed framework shown in Fig. 1 utilizes several
machine learning algorithms to discriminate the mode of
transportation performed by the subjects. The predictions of
threemachine learning algorithms namely, DT [31], RFs [32],
and GB [33], are fed into an ensemble to better generalize
the predictions by taking the majority vote of these three
algorithms. Subsequently, the predictions of the ensemble
along with two other machine learning algorithms, namely,
KNNs [34] and random subspace [35] (a.k.a., bagging) are
bundled into stacked learning in which a neural network
architecture known as multilayer perceptron (MLP) [36] is
used to eventually predict the mode of transportation. Twelve
machine learning algorithms are intensively tested using two
data splits to determine which machine learning algorithms
when bundled together in the stack produce a final prediction
that best fits the TMD problem. Thus, the base estimators
are selected because when bundled together in the stack,
the final prediction of the stack is the most accurate. With the
exception of SVMs that are eliminated because of the time
complexity (i.e., linear SVM (LSVM) and nonlinear SVM
(NLSVM)), these machine learning algorithms, including
RFs, bagging, GB, XGB, AdaBoost [37], DT, MLP, KNNs,
logistic regression (LR), and GNB are tested in each phase of
the proposed method in an interchangeable manner, and the
most accurate attempt is chosen.

FIGURE 1. Representation of the proposed stacked method that is
bundled with three machine learning algorithms, namely, KNNs, bagging,
and an ensemble method consisting of three base estimators: DT, GB, and
RFs.

More formally, to train the model, let s represent the
activity measurements captured by the subject smartphone
embedded sensors and t denote the target class labeling that

activity, thus:

t =



0 if s represents standing still activity
1 if s represents riding a bus activity
2 if s represents riding in a vehicle activity
3 if s represents riding a train activity
4 if s represents a walking activity

The whole training set can be denoted by:

d = (s1, t1), (s2, t2), . . . , (sn, tn) (1)

Moreover, the feature space F (i.e., always the vertical
depiction of the dataset) consists of several characteristics
representing smartphone embedded sensor measurements
applied to all the samples in the dataset. For instance, the first
feature f1 in the dataset can represent the average of the
first sensor measurement, the second feature f2 the standard
deviation of the first sensor measurement, and so on.

The proposed model is divided into three phases. In the
first phase, the samples and their labels are assigned to three
classifiers: DT, GB, and RFs. Given both the sample vectors
in the form of real numbers: Sn ∈ Ri, where n = 1, . . . ,N
represent the samples and the target vector T ∈ Rj, the DT
classifier groups the instances with identical labels together
by recursively partitioning the dimension space. Since it is a
multiclass classification problem, the output is in the form of
0, 1, . . .L − 1, for a given decision node d , exemplifying a
region Rd in the dimension space in which the observation is
Zd , thus

rdl =
1
Zd

∑
Sn∈Rd

I (Tn = l) (2)

is the probability of l observations in the decision node d ,
where I (.) is an indicator function that receives 1 if the
statement is true, and 0 otherwise; therefore, the value of
I (Tn = l) is 1 if this statement is true, and 0 otherwise.
Then, the Gini impurity function G is applied

G(Xd ) =
∑
l

rdl(1− rdl) (3)

where Xd represents the training data in decision node d .
In that phase (i.e., the first phase), the samples and their

labels are given to another machine learning technique,
namely, GB, in which base estimators (a.k.a., weak learners),
usually in the context of DTs, are the building blocks that
fulfill the demand of the final substantial ensemble prediction
model. DTs grow sequentially with respect to errors. Each
tree learns from the mistakes of the previous tree to improve
performance. Let M1(s) = t denote the DT model that fits
the data. The next DT H1(s) learns from the mistakes of the
previous DT

H1(s) = t −M1(s) (4)

This new DT is added to GB, which is denoted as

M2(s) = M1(s)+ H1(s) (5)
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This procedure continues until interruption occurs by a
certain mechanism such as cross validation. The ensemble
model, known as an additive model of o individual trees,
is built after several stages are performed (similar to other
boostingmethods), as shown in the next equation, and an arbi-
trary differential loss function is optimized for generalization
purposes [38].

m(s) =
O∑
o=1

mo(s) (6)

The third machine learning algorithm utilized in this phase
is RFs. RFs is an ensemble method consisting of trees, and
each tree utilizes random variable collection. Given the sam-
ples and their labels to RFs, the aim is to predict the class
target t using a prediction function f (S) in which this function
is used to reduce the loss value and defined by a given
loss function. The prediction function is constructed utilizing
some base estimators e1(s), . . . , ei(s). The base estimators
are integrated to establish the ensemble predictor f (s) using
voting as follows:

f (s) = argmax
t∈T ′

I∑
i=1

I (t = ei(s)) (7)

where T ′ is a set of potential values of t .
In the second phase, the predictions of the three classifiers

are passed to the ensemble. Let the classifier’s decision of cth

beDc,t ∈
{
0, 1

}
. where c = 1 . . . ,C represent the classifiers.

If the target class t′ is chosen by the cth classifier, then dc,t =
1 and 0 otherwise. The plurality voting is utilized in which the
predicted class is the one that has received the highest number
of votes, as shown in the next equation [39]:

C∑
c=1

Dc,t∗ = max
c

C∑
c=1

Dc,t (8)

Two other machine learning techniques come into play
in this phase: KNNs and bagging. The input of the KNNs
algorithm is the k-closest training instances constructed in the
feature vector. The output is a member of a specific class in
which a given object is selected by the neighbors of that object
using a plurality vote. The function of KNNs is approximated
locally, and the classification is carried out after postponing
all computations; thus, KNNs is a typical example of lazy
learning or instance-based learning [40]. Let K (s) = t denote
the label function in which a training instance is assigned a
class target out of l possible labels t ∈ 0, 1 . . . ,L − 1 by that
function. Thus, the nearest neighbors of k for a query data
point s[p] are:

Qk =
{〈
s[1],K

(
s[1]
)〉
. . . ,

〈
s[k],K

(
s[k]
)〉}

(9)

and the hypothesis of the KNNs can be defined as:

h
(
s[p]
)
= arg max

t∈
{
0,1...,L−1

} k∑
i=1

δ(t,K
(
s[i]
)
) (10)

where δ is a delta function known as the Kronecker delta
named after its inventor Leopold Kronecker.

The last technique in this phase is bagging (a.k.a., ran-
dom subspace). Different bootstrap samples are generated
by invoking a base learning algorithm to train several base
learners. Subsampling the data with replacement in the train-
ing set produces bootstrap samples that have the same size
as the size of the training set. Once the base learners are
acquired, the random subspace technique is used to combine
the base learners and takes the majority vote in which the
prediction occurs when a specific class gets the majority.
More formally, let B denote the base learning algorithm, and
R is the number of rounds in the learning process. For all the
rounds r = 1 . . . ,R, bootstrap samples bs are produced from
the data d (i.e., dr = bs(d)), and a base learner hr is trained
from the bootstrap samples hr = B(dr ). Thus, the iteration of
this process generated the following output.

f (s) = argmax
t∈T ′

R∑
r=1

I (t = hr (s)) (11)

where the value of I (t = hr (s) is 1 if this statement is true
and 0 otherwise [41].

In the last phase, a metalearner (i.e., a special type of DNN
called MLP) is utilized to combine the second phase learning
algorithms, namely, ensemble learning, KNNs, and bagging,
that have been produced from the training data. At least
three layers are involved in constructing MLP: an input layer,
a hidden layer, and an input layer. The hidden layer is the
computational unit (neuron). The objective of the hidden
layer is to receive an input from other sources or hidden layers
and generate an output. The following equation is utilized by
MLP:

f (s) = V2j(V T
1 s+ a1)+ a2 (12)

where V1 is the input layer weight, V2 is the hidden layer
weight, a1 is the hidden layer bias, a2 is the output layer
bias, and j is the activation function. This research utilizes
the hyperbolic tangent activation function, which can be rep-
resented as:

j(x) =
yx − y−x

yx + y−x
(13)

where yx−y−x represents the hyperbolic sine of y and yx+y−x

represents the hyperbolic cosine of y.
f (s) is the size of a vector of the number of classes that

passes via the softmax function as follows:

softmax(x)n =
exp(xn)∑k
i=1 exp(xi)

(14)

The nth element of input to softmax is denoted by xn,
and the number of classes is represented by k . This function
produces a vector consisting of the probabilities in which
sample s is categorized to each class and the class with the
highest probability is the output [42].

The dataset consisting of the samples and their labels is
the input to this phase. Let B1 . . . ,BR denote the second
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phase learning algorithms and B denote the current phase
learning algorithm. For all the rounds r = 1 . . . ,R, a second
phase individual learner dr using the second phase learning
algorithm br and applying it to the original dataset d , so math-
ematically speaking dr = bs(d). A new dataset d ′ = ∅ is
generated from the previous process. For all the new training
samples n = 1 . . . , i and for all the new rounds r = 1 . . . ,R,
classify the training instance si by utilizing dr (i.e., znr ) to
produce the following dataset.

d ′ = d ′ ∪
{((

zn1, zn2, . . . , znR
)
, tn
)}

(15)

After the new dataset is completely generated, the current
phase learner c′ is trained utilizing the current phase learning
algorithm B and the newly produced dataset d′; thus, c′ =
B(d ′). This phase generates the following output:

f (s) = c′
(
c1
(
s
)
. . . , cR

(
s
))

(16)

IV. EXPERIMENTAL SETTINGS
The device that is used to evaluate the proposed method
is a laptop equipped with a Windows 10 operating system,
i7 central processing unit (CPU), and 32 gigabyte (GB) ran-
dom access memory (RAM). The Anaconda distribution and
Python programming language are used to utilize the well-
known machine learning library (i.e., Scikit-learn).

To validate the generalization of the proposed method,
a recent dataset [43] is used, which is one of the only two
TMD sensor-based public datasets that have been found. This
dataset consists of 5,894 trips representing five modes of
transportation. As shown in Table 1, this dataset is favored
because it is more thorough, unlike the other dataset [44]
that captures sensor measurements from three users using
one device model (i.e., Huawei Mate 9). This dataset col-
lects sensor measurements from thirteen different users (three
female and ten male) with diverse genders, occupations,
Android versions, device models, and ages using the Android
app. There are no restrictions imposed by the creators of the
dataset on the use of the Android app that captures the mode
of transportation. Therefore, each user records the sensor
measurements when an activity is performed to simulate real-
world situations. Each user assigns an action to perform to
record the sensor measurements generated by that action. The
modes performed by these individuals include standing still,
walking, riding in a car, riding a bus, and riding a train. The
dataset has been constructed to follow general practices taken
by authors of other datasets in the TMD area [12].

The sensor events are then gathered by an application
that sets a maximum frequency of 20 hertz (Hz). The max-
imum sampling rate of 20 Hz is a decent choice because
the frequency elements of body motions are measured and
recognized to be lower than 20 Hz [45], [46]. Furthermore,
the vibration frequency of the vehicle seat while the engine is
on ranges between 3 and 5 Hz, even when the vehicle is not in
motion [47]. The subjects using this application were asked
to perform the five activities and were authorized to start and
stop capturing measurements when performing one of these

TABLE 1. Dataset consisting of sensor measurements collected from
thirteen different subjects with diverse genders, occupations, device
models, and ages.

activities, enter their names, and label the performed activ-
ities. Some information is provided once the change in the
measured parameters occurs, such as the sensor’s name, sen-
sor’s raw data, and timestamp. Each measurement is stored
in a comma-separated values(CSV) file; thus, the dataset
contains 226 CSV files (i.e., a total of 31 hours of recording,
as shown in Table 2) representing the actions taken by the
individuals performing the five activities. The distribution of
these activities in the dataset is as follows: walking activities
correspond to 26% of the dataset, driving car activities cor-
respond to 25%, standing still class records represent 24%,
riding a train represents 20% of the dataset, and only 5%
represents measurements of individuals riding a bus.

TABLE 2. A total of 31 hours of recording, representing the actions taken
by the individuals performing the five activities.

The collected dataset is a combination of measurements
captured by all available twenty-three sensors in smart-
phones. Among these twenty-three available sensors, fifteen
sensors are supported by enough smartphones, so these sensor
measurements are retained for further analysis. Due to bias
measurements captured by some sensors, six sensors were
eliminated from the dataset, including pressure, magnetic
field, uncalibrated magnetic field, proximity, gravity, and
light. The remaining nine sensors are used to construct the
dataset, including rotation vector sensors, game rotation vec-
tor, accelerometers, uncalibrated gyroscopes, linear acceler-
ation, orientation, speed, sound, and gyroscopes. Measure-
ments generated by speed and sound sensors are converted to
positive values.

The dataset was divided into time windows. The size of
the time window was set to 5 seconds by the creators of the
dataset for two reasons: to capture the action being performed
and following other researchers’ suggestions [12], [48]–[50]
in which a 5-second window was the perfect candidate to
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TABLE 3. The first dataset contins 12 features, the second dataset encompasses 32 features, and the third dataset comprises 36 features. Each dataset
consists of 5,894 samples which are measured by smartphones carried by 13 subjects, accumulated of 31 hours of recording, and sampled at a maximum
frequency of 20 Hz. Note: maximum is denoted by max, min denote minimum, µ denote mean, and standard deviation is denoted by σ .

measure the whole action being performed by a specific sub-
ject. Therefore, setting a small window size results inmisclas-
sification because some modes require a certain amount of
time that is greater than 3 seconds (e.g., to reveal the activity
characteristics of walking, at least 3 seconds of accumulated
data is needed). Correspondingly, setting a large window size
introduces noise from various other activities interfering with
the targeted mode [45]. For the nine sensors, the maximum,
the minimum, the mean, and the standard deviation have
been calculated for each window size and inserted into three
datasets that represent the features (i.e., columns in the CSV
files). Thus, for each sample (i.e., 5-second window size),
a total of 4 features for each sensor was constructed. More-
over, the missing values were averaged with the values of the
given feature.

Furthermore, since the number of samples measured by the
sensors representing bus activity is much lower than those of
the rest of the activities, as shown in Table 2, all the mea-
surements have been lowered to match the bus measurements
(i.e., to balance the samples belonging to each class). The
sensor measurements construct three benchmark datasets for
evaluation purposes. The number of samples for the dataset is
5,894, representing the activities performed (i.e., the journeys
taken) by the 13 subjects. As shown in Table 3, the first
dataset consists of 12 features in the form of maximum,
minimum, mean, and standard deviation calculations, exem-
plifying the measurements captured by three sensors, namely,
the gyroscope, accelerometer, and sound. The second dataset
contains 32 features representing the measurements captured
by the rest of the sensors, with the exception of speed (i.e.,
the gyroscope, uncalibrated gyroscope, game rotation vector,
rotation vector, linear acceleration, orientation, accelerom-
eter, and sound). The last dataset consists of 36 features
representing all the sensor measurement data, including those
captured by the speed sensor.

V. PARAMETER OPTIMIZATION
To improve the performance of the proposed method in terms
of the four evaluation measures while maintaining decent
time complexity, the parameters of the base estimators were
optimized. To reduce the complexity of the ensemblemethods
such as RFs, GB, and bagging that rely on DT to build

their models, the default values such as 2 minimum number
of samples split, 1 minimum number of sample leafs, and
Gini criterion function (i.e., responsible for measuring the
split’s quality) were utilized. The important hyperparame-
ters of the other base estimators were chosen based on grid
search. Among (10, 20, 30, 40, 50, 60, 70, 80, 90, and 100)
trees in RFs, GB, and bagging, 10, 100, and 10 were selected,
respectively.

In the second phase of the proposed method, grid search
utility was utilized to select the most valuable KNNs algo-
rithm options to determine the mode of transportation from
three hyperparameters, namely, metrics of similarity, number
of neighbors, and the weight function. From three metrics
of similarity, namely, Euclidean, Manhattan, and Minkowski,
the latest was chosen. Five neighbors were investigated (3, 5,
7, 9, and 11) to optimize this parameter, in which 3 was the
best fit for the data. The weight function was the last explored
parameter with two options, namely, uniform or distance,
in which uniform was the chosen function. The purpose of
the uniform function is to equalize the weight for the data
points in each neighborhood, while the distance function
gives closer neighbors of the query data point more influence
than the rest of the data points.

In the last phase of the proposed method, four MLP hyper-
parameters were considered, namely, the number of hidden
layers, the number of neurons in each hidden layer, the activa-
tion function, and the optimizer. In addition to one input layer
and one output layer, two hidden layers were used to mini-
mize the time complexity. The first layer consists of 80 neu-
rons, while the second layer consists of 10 neurons. For
the hidden layers, identity, logistic, hyperbolic tangent (i.e.,
tanh), and ReLU activation functions were tested, in which
hyperbolic tangent performed better than the other three func-
tions. From the two tested weight optimizers (Adam and
stochastic gradient descent), Adam was chosen because it
works very well with datasets that have a sufficient number of
samples (i.e., thousands of samples) such as the TMD dataset.

VI. RESULTS
This section presents the results of the proposedmethod along
with the results of the different machine learning algorithms
that have been tested in the experiments. The performance
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TABLE 4. Evaluation measures of all algorithms on the three datasets using two different data splits sorted by accuracy in descending order.

of the tested methods along with the proposed technique
were evaluated using four measures: precision, recall, f1-
score, and accuracy. The precision is calculated as TP

FP+ TP ,
the recall is calculated as TP

TP+ FN , the f1-score is calculated
as 2 · precision · recall

precision+ recall , and the accuracy is calculated as
TP+ TN

TP+ TN+ FP+ FN .

In the first set of experiments, each of the three datasets
was split into 90% training and 10% testing. The proposed
method was evaluated and compared with the other machine
algorithms using four evaluation metrics, namely, accuracy,
precision, recall, and F1-score, as shown in Table 4. The
proposed method outperformed the rest of the methods when
tested on the first dataset; its accuracy is 89%, which is better
than the second-best method (i.e., RFs) by approximately 3%.
It is also better than the other methods when tested on the sec-
ond dataset; its accuracy is 93.2%, which is better than the
second-best method by 2.4%. Finally, the performance of the
proposed method is similar to that of the second-best method
on the third dataset; it is better than the second-best method
by only 0.5%. In the second set of experiments, each of the
three datasets was split into 70% training and 30% testing.
As shown in Table 4, the proposed method outperformed the
rest of the methods on the three datasets. The accuracy of

the proposed method was better than the second-best method
(i.e., GB) by approximately 3%, 2%, and 2% on the first,
second, and third datasets, respectively.

The details of each correctly classified class of samples and
misclassified samples are shown in Table 5 in the form of a
confusion matrix. In the first set of experiments (when the
first dataset was split into 90% training and 10% testing),
the still class samples were correctly classified 96% of the
time, the bus class samples were correctly classified approxi-
mately 91% of the time, the car class samples were correctly
classified approximately 78% of the time, the train class
samples were correctly classified approximately 90% of the
time, and the walking class samples were correctly classified
91.5% of the time. In the second dataset (using the same data
split, i.e., 90% training and 10% testing), the still and bus
class samples were correctly classified approximately 97%
of the time, the car class samples were correctly classified
approximately 90% of the time, the train class instances were
correctly classified 91% of the time, and the walking class
samples were correctly classified 92% of the time. In the third
dataset, the still class samples were correctly classified 98%
of the time, the bus class samples were correctly classified
approximately 97% of the time, the car class samples were
correctly classified approximately 93% of the time, the train
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TABLE 5. Confusion matrices for the stacked proposed method.

class samples were correctly classified approximately 95%
of the time, and the walking class samples were correctly
classified 95% of the time.

In the second set of experiments (when the first dataset
was split into 70% training and 30% testing), the still class
samples were correctly classified 94% of the time, the bus
class samples were correctly classified approximately 88%
of the time, the car class samples were correctly classified
approximately 78% of the time, the train class samples were
correctly classified approximately 82% of the time, and the
walking class samples were correctly classified 93% of the
time. In the second dataset (using the same data split, i.e., 70%
training and 30% testing), the still class samples were cor-
rectly classified approximately 94% of the time, the bus class
samples were correctly classified approximately 97% of the
time, the car class samples were correctly classified approxi-
mately 87% of the time, the train class samples were correctly
classified 90% of the time, and walking class samples were
correctly classified 93% of the time. In the third dataset,
the still class samples were correctly classified 97% of the
time, the bus and train class samples have been correctly clas-
sified approximately 96% of the time, the car class samples
were correctly classified approximately 90% of the time, and
the walking class samples were correctly classified 95% of
the time.

The training and testing times are shown in Table 6. The
training time of the proposed method was adequate com-
pared to the other methods, while the testing time was lower
compared to the rest of the methods. In the first set of
experiments where the dataset was split into 90% training
and 10% testing, the training time of the proposed method
using the first dataset was approximately 4.4 s, approximately
4.5 s for the second dataset, and approximately 4.4 s for the
third dataset. The testing time of the proposed method was
1 ms when applied to the first dataset, 2 ms when applied to
the second dataset, and 2mswhen applied to the third dataset.
In the second set of experiments where the dataset was split
into 70% training and 30% testing, the training times of the
proposed method were 3.2 s, 3.3 s, and 3.5 s on the first,

second, and third datasets, respectively. The testing times of
the proposed method using the three datasets were 4 ms for
the three datasets.

VII. DISCUSSION
The accuracy of our method outperformed the other methods
on the three datasets using two data splits (i.e., 70% training–
30% testing data split and 90% training–10% testing data
split). The second-best method in terms of accuracy on the
first dataset was RFs. The second-best method on the second
dataset was GB. The effect of the data split and sensors
involved in gathering sensor measurements from smartphone
devices equipped with sensors carried by the subjects in
experiments is shown in Fig. 2.

FIGURE 2. Two data splits were used to measure the performance of the
algorithms. Moreover, the effect of the sensors involved in the three
datasets was investigated.

It is obvious from the figure that as the training data
increased (increasing the training from 70% to 90%),
the accuracy of all the algorithms increased as well. More-
over, the number of sensors integrated with smartphones
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TABLE 6. Training and testing times of all algorithms on the three datasets using two different data splits.

affects the performance. As shown in the figure, the first
dataset contains measurements captured by three sensors:
sound, accelerometer, and gyroscope. Due to the limited
sensors involved in the dataset, the performance of all the
algorithms did not exceed 90% (the most accurate algo-
rithm was the proposed method with 90% accuracy when
applied to a 10% testing data split). As the number of sensors
increased, the results of all the algorithms increased as can be
seen when the second dataset was used, which consisted of
measurements captured by an accelerometer, game rotation
vector, gyroscope, gyroscope uncalibrated, linear accelera-
tion, orientation, rotation vector, and sound. The most accu-
rate technique was the proposed method (its accuracy was
93.2%when applied to a 10% testing data split). Additionally,
the accuracy of all the algorithms increased when the remain-
ing sensor measurements (i.e., speed sensor) were involved
in the third dataset. The best method remained the proposed
method with an accuracy of 95.6%.

Since RFs is the second-most accurate method in the first
set of experiments (after the proposed method) and the third-
most accurate method in the second set of experiments,
the feature importance capability provided by it was utilized
to conceive the features that are considered most important in
distinguishing the mode of transportation. The second set of
experiments was used to screen the most important features,
where the data were split into 70% training and 30% testing.
Because the third dataset contains all the features (i.e., a total
of 36 features), it was used. The tenmost important features in
distinguishing the mode of transportation applied to the third
dataset on the second set of experiments are shown in Table 7.

The training time and testing time of all the algorithms
were decent. Although the training time of our algorithm was
not the best compared to the other algorithms, the training
time was not as important as the testing time because the
training was performed only once. The testing time of the
proposed method was short. The number of measurements
was 5,894, and the testing time for 10% (i.e., approximately
589 measurements) of the data was 4 ms when the proposed
method was applied to the third dataset, so the prediction

TABLE 7. The ten most important features sorted by importance in
descending order.

time for onemeasurementwas approximately 7microseconds
(i.e., the result of the division of the testing time and the
number of measurements in the test set).

Obviously, the accuracy of transportation mode detection
increases as themeasurements ofmore sensors are involved in
the detection process. However, increasing the number of sen-
sors might increase the complexity of the detection method
(i.e., the time required to detect the transportation mode) and
raise some privacy concerns. Although the proposed method
achieved superior results compared to the tested machine
learning methods and can detect the mode of transportation
in a reasonable time, there is room for improvement, which
could be investigated further in future work. A variety of
lower sampling rates, such as 1 Hz, could be utilized in future
work, as suggested by some GPS-based techniques [51] to
improve the detection rate of transpiration mode. In addition,
the geographic zones taken by participants while performing
the transportation mode should be recorded and included in
future work to clarify the route taken by participants. More-
over, various window sizes should be studied in future work
(e.g., a window size of 1 minute has been suggested by some
GPS-based approaches [?], [52]).

VIII. CONCLUSION
Context-aware computing is a significant area that has been
accomplished in the last two decades with the help of
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smartphone devices equipped with sensors. A variety of
services ranging from smart parking to vehicular traffic mon-
itoring can be achieved utilizing the awareness of user mobil-
ity. Detecting the mode of transportation with the help of
machine learning has gained researchers’ attention due to the
various services that can help accomplish this. In this article,
a stacked learning technique was proposed to detect the mode
of transportation, such as riding a train, driving a car, stand-
ing, walking, and riding a bus, utilizing three datasets that
were constructed to measure the activity performed by differ-
ent subjects using smartphones equipped with various sen-
sors. Extensive sets of experiments that involve 12 machine
learning algorithms were conducted to validate the proposed
method. The proposed method outperformed the rest of the
methods in terms of accuracy on the three datasets with two
different data splits. The prediction time of eachmeasurement
was so low that it is an ideal option to detect the mode of
transportation in real time. In the first set of experiments
where the dataset was split into 10% testing and 90% training,
the proposed method yielded accuracies of 89%, 93%, and
95% on the first, second, and third datasets, respectively.
In the second set of experiments where the dataset was split
into 30% testing and 70% training, the proposed technique
achieved accuracies of approximately 87%, 92%, and 95%
on the first, second, and third datasets, respectively. The high
accuracy achieved by the proposed method indicates that the
size of the dataset used to evaluate the proposed method is
sufficient.
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