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ABSTRACT Randomizing the execution of the sequence of operations in an algorithm is one of the most
frequently considered solutions to improve the security of cryptographic implementations against side-
channel analysis. Such an algorithm for public-key cryptography was introduced by Tunstall at ACISP, 2009.
In his right-to-leftm-ary exponentiation algorithm, the radix-m digits of the exponent are treated in somewhat
random order. This randomized solution will inhibit attacks that allow operations to be distinguished
from one acquisition. In this article, we present a memory-efficient variant of Tunstall’s random-order
exponentiation algorithm, making it applicable to modular exponentiations in (Z/NZ)∗ (for instance, the
RSA cryptosystem). The proposed algorithm requires only (m+1)memory registers instead of (m+r), where
r > m as recommended in Tunstall’s algorithm.Namely, the proposed algorithm saves about half thememory
registers. Our analysis shows that our algorithm can be used as a supplement in order to defeat statistical
side-channel analysis attacks, especially recent collision-correlation power analysis in the horizontal setting.
Last but not least, we present a random order binary implementation, which is the first right-to-left binary
implementation resisting attacks in the horizontal setting.

INDEX TERMS Right-to-left exponentiation, randomized algorithms, power analysis, horizontal
collision-correlation attacks, Big Mac attacks.

I. INTRODUCTION
Side-channel analysis (SCA) attacks, formally introduced by
Kocher et al. [16] and Kocher [17], are nowadays one of the
most serious threats to the security of a given implementa-
tion of a cryptographic algorithm. This kind of attacks uses
leaked side-channel information from cryptographic devices
to determine the secret key. Kocher et al. described two main
attacks: simple power analysis and differential power analy-
sis.While the former uses the power consumption from one or
several measurements directly to determine the secret infor-
mation, the later (also called statistical side-channel analysis)
requires a large number of consumption traces, and statistical
tools to exploit the correlations between the leakage and
processed data to recover the secret information. Regular
algorithms, e.g., square-multiply always [8], or Montgomery
powering ladder [14] could be resistant to simple power
analysis. However, to prevent differential power analysis,
one would use blinding techniques [8], [16], or randomized
techniques [19].

The associate editor coordinating the review of this manuscript and
approving it for publication was Fan Zhang.

Shuffling that was first introduced to symmetric encryp-
tion algorithms in [12], provides additional resistance against
statistical SCA attacks. Basically, shuffling randomizes the
execution of the sequence of operations in an algorithm and
can be applied to any set of independent operations. Nowa-
days, shuffling is one of the main approaches used to thwart
different power analysis attacks for symmetric cryptographic
implementations. Readers are referred to [10], [22] for com-
prehensive studies about this method.

For public-key cryptosystems, Tunstall introduced such a
shuffling technique in [21]. In his randomized right-to-left
m-ary exponentiation algorithm, operations are performed
in somewhat random order. The author observed that in
the right-to-left exponentiation algorithm, the multiplication
operations can be performed independently, and in any order
without influencing the final result. To our knowledge, this is
so far the only random-order countermeasure for public-key
cryptosystems.

One disadvantage of Tunstall’s algorithm is to require
(m + r) memory registers to store group elements, where
r > m is large enough to provide a suitable level of random
ordering. Compared to the usual right-to-left exponentiation,
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his algorithm requires r extra memory registers. This may
not matter in software implementation. However, in hard-
ware implementation, e.g., smart devices with constrained
resources, this algorithm is unlikely to be possible for expo-
nentiation in (Z/NZ)∗.
In this article, we first propose a memory-efficient variant

of Tunstall’s algorithm. The proposed algorithm requires only
(m+ 1) group elements stored in memory instead of (m+ r).
This memory requirement is comparable to the usual m-ary
algorithm.We then analyze the security of the proposed algo-
rithm, as well as existing right-to-left m-ary algorithms in the
presence of the recent advanced differential power analysis
in horizontal setting [6], [7], [11], [23]. Last but not least,
we present an efficient implementation of the random order
algorithm in the binary case. To the best of our knowledge,
it is the first right-to-left binary exponentiation algorithm that
resists to the horizontal collision-correlation attacks.

The rest of the paper is organized as follows. We briefly
recall in Section II power analysis, and the random order m-
ary exponentiation algorithm. Section III describes the pro-
posed algorithm and analyzes its performance. Section IV
describes our random order binary exponentiation and
Section V analyzes the security of the proposed algorithm,
as well as the security of the existing right-to-left m-ary
exponentiation algorithms against the Big Mac attack and its
extensions. We conclude in Section VI.

II. PHYSICAL ATTACKS AND COUNTERMEASURES
A. POWER ANALYSIS
Simple Power Analysis (SPA for short) attacks aim at recov-
ering the secret key by just querying one message to the
embedded devices. From the power consumption trace mea-
sured, an attacker makes use of a distinguisher to deduce a
sequence of squaring and multiplication operations that is
equivalent to the secret exponent in some implementations.
Regular algorithms [8], [14] and atomic algorithms [5] can
be used to thwart SPA attacks.

Differential Power Analysis (DPA for short) attacks, also
known as statistical side-channel analysis attacks, exploit
the correlations between the leakage and processed data to
defeat countermeasures that are immune from SPA. In con-
trast to SPA attacks, DPA attacks require a large number of
power consumption traces and then make use of statistical
tools to deduce the secret information. Consequently, many
improvements to DPA have been introduced. For example,
Correlation Power Analysis [4] and Collision-Correlation
Analysis [24] require far fewer power traces than the original
DPA. Randomizing techniques [8], [16], [19], [21] can be
used to inhibit DPA attacks.
Big MAC Attack and Its Extensions
All the statistical analysis attacks mentioned above require

numerous traces to be taken to reduce noise to the point
of time where an attack will perform. On the contrary, the
Big Mac attack [23] requires only one power consumption
trace to recover the secret key. This is a horizontal statistical

analysis attack. The original Big Mac attack applies to m-ary
exponentiation and to all similar algorithms which use a table
of pre-computed values. Subsequent works further studied the
Big Mac attack and demonstrated with experimental results.
Instead of using a Euclidean distance, Clavier et al. [7] used
the Pearson correlation to detect collision between two mul-
tiplications. Studies in [6], [11] presented the further refined
attacks that use collision-correlation and applied not only to
RSA but also to elliptic curve cryptosystems.

Randomizing intermediate computations can be used to
thwart the horizontal (collision)-correlation analysis [7]. This
approach requiring randomization of the intermediate long
integer multiplication is generally costly from a performance
viewpoint.

B. RANDOM ORDER EXPONENTIATION ALGORITHM
For an input key, the square-and-multiply algorithm [20]
outputs a unique sequence of squares and multiplications.
This allows an attacker to immediately determine the private
key. On the other hand, given the same input, randomized
algorithms output different sequences of operations. The idea
is to randomize the number and the sequence of operations
executed in the exponentiation algorithm itself.

Let n = (d`−1, . . . , d1, d0)m denote the radix-m repre-
sentation of an exponent n, where ` = dlog2(n)/we and
w = log2(m), that is n =

∑
i dim

i with di ∈ {0, 1, . . . ,m−1}
and d`−1 6= 0. From this expansion, Yao [25] introduced a
right-to-left m-ary exponentiation. Its principle is based on
the following equality:

xn =
∏

0≤i≤`−1

(
xm

i)di
=

∏
0≤i≤`−1
di=1

xm
i
×

∏
0≤i≤`−1
di=2

x2m
i
× · · ·

×

∏
0≤i≤`−1
di=m−1

x(m−1)m
i
=

m−1∏
j=1

( ∏
0≤i≤`−1
di=j

xm
i
)j
.

In Yao’s algorithm (Algorithm 4 in theAppendix), one uses
(m−1) accumulators,R[1], . . . ,R[m−1], each of them initial-
ized the 1G. A loop is processed which applies w successive
squarings in every iteration to compute A = xm

i
from xm

(i−1)
,

and which multiplies the result to some accumulators R[j],
where j = di. Let R[j](i) (resp. A(i)) denote the value of the
accumulator R[j] (resp. A) before entering step i. We have:

R[j](i+1) = R[j](i) · A(i) for j = di
R[j](i+1) = R[j](i) for j 6= di
A(i+1) = (A(i))m

At the end of the loop each accumulator R[j] contains
the product

∏
0≤i≤`−1
di=j

xm
i
. The different accumulators are

finally aggregated as
∏

0≤j≤`−1 R[j]
j
= xn. This algorithm

requires more memory than the binary method but it is faster
since the number of multiplications is roughly reduced to(
1+ m−1

m log2 m

)
log2 n (see [18]).
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Now, suppose that all values of xm
i
(i.e., a set of S[i] =

A(i) = xm
i
, for i ∈ {0, 1, . . . , ` − 1}) are available at the

beginning of computation. The exponentiation can be com-
puted by first choosing at random an S[i], 0 ≤ i ≤ `−1, then
updating R[di] = R[di] · S[i]. This step is repeated until all of
the values S[i] have been considered. The random set having
been chosen is a permutation of the set {0, 1, . . . , ` − 1}.
This can be performed because the final results of R[j] don’t
depend on the order of updated operations, and moreover the
values of R[j] are independent from each other.
This approach certainly costs extra memory to store pre-

computed values S[i], for 0 ≤ i < `. In order to reduce this
required memory space, the idea can be repeatedly applied
with only r < ` precomputed values. Tunstall [21] used
this interesting observation to describe a random order m-ary
exponentiation algorithm (Algorithm 1) as follows1:

Algorithm 1: Random Order Right-to-Left m-Ary Expo-
nentiation Algorithm [21]
Input: x ∈ G, n = (d`−1, . . . , d1, d0)m ∈ N
Output: xn

// Initialization
1 for i = 1 to m− 1 do
2 R[i]← 1

3 S[0]← x
4 for i = 1 to r − 1 do
5 S[i]← S[i− 1]m

6 for i = 0 to r − 1 do
7 D[i]← n mod m ; n← bn/mc

8 γ ← r − 1
// Main loop

9 while n > 0 do

10 τ
R
←− (0, r − 1)

11 if D[τ ] 6= 0 then
12 R[D[τ ]]← R[D[τ ]] · S[τ ]

13 S[τ ]← S[γ ]m ; D[τ ]← n mod m
14 n← bn/mc ; γ ← τ

15 for i = r − 1 down to 0 do
16 R[D[i]]← R[D[i]] · S[i]

// Aggregation
17 A← R[m− 1]
18 for i = m− 2 down to 1 do
19 R[i]← R[i] · R[i+ 1]
20 A← A · R[i]

21 return A

Basically, Algorithm 1 makes use of a precomputed table
S to store r values A(i) = xm

i
, 0 ≤ i ≤ `, and a list of r

1Note that, updating of R[D[i]] at line 16 of Algorithm 1 is only able to be
performed if D[i] 6= 0. This was not mentioned in [21].

corresponding digits di of the exponent. For example:

S = {A(3),A(6),A(2)} = {xm
3
, xm

6
, xm

2
} ,

corresponding with the list:

D = {d3, d6, d2} .

Firstly, Algorithm 1 precomputes and stores xm
i
, for i ∈

{0, . . . r − 1}. Then, at each step, the algorithm chooses at
random a stored value S[τ ], updates the corresponding accu-
mulator R[D[τ ]] = R[D[τ ]] · S[τ ] (lines 10–12), computes
the next precomputed value S[γ ]m, and finally overwrites this
value to the register S[τ ] that has been chosen to compute
(line 13). By performing in such a random order, an attacker
can’t guess the value of digit being processed at a specific
point in time for each acquisition in a set of acquisitions.
The randomization of Algorithm 1 is performed within one
exponentiation, and thus it is able to inhibit power analysis
attacks that allow operations to be distinguished from one
acquisition as discussed in Section II-A.
Although Algorithm 1 reduced the required memory com-

pared to the original idea (i.e., r instead of ` group elements),
it still requires a large amount of memory to store precom-
puted values to provide a suitable level of random ordering,
and thus guarantee the security against Big Mac attacks and
its extension. In [21], the author stated that one needs r > m
to add as much randomness as in the exponent n and that
his algorithm is not suitable to implement exponentiations in
(Z/NZ)∗ (see an analysis in [21, Section 6] for more details).

III. THE PROPOSED ALGORITHM
A. OBSERVATIONS
Our improvements are from the following observations. In the
precomputed table of Algorithm 1, there may exist two values
(S[τ ], S[τ ′]) = (A(i),A(i

′)) such that di = di′ . That is, table S
may contain some values A(i) having the same digit values di.
For example, if we have:

S = {S[0], S[1], S[2]} = {A(3),A(6),A(2)} = {xm
3
, xm

6
, xm

2
} ,

and corresponding digits di may be,

D = {d3, d6, d2} = {2, 3, 3} .

The elements S[1], S[2] stores values xm
6
, xm

2
corre-

sponding digits d6, d2, and these two digits have the same
value of 3.

As mentioned in Section II-A, the horizontal collision-
correlation power analysis attacks assume that a collision-
correlation can be detected when the output of an operation
is the input to another operation, i.e., these two operation are
processing the same value of di. In the above example, if S[1]
and S[2] are consecutively processed, an attacker will be able
to detect a collision.

In order to avoid such a potential collision attack, we won’t
allow any repetition in the precomputed table.We store in S[j]
the value of A(i), where di = j. Namely, if di = 0, we store
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A(i) in S[0], if di′ = 1, we store A(i
′) in S[1] and so on till

S[m− 1]. For example, if we have:

S = {A(3),A(6),A(2)} = {xm
3
, xm

6
, xm

2
} ,

then the corresponding digits di must be:

D = {d3, d6, d2} = {0, 1, 2} .

The size of the precomputed table thus could be fixed to m
instead of r as in Algorithm 1.

Even, we can do better by using the sliding window tech-
nique to reduce the number of accumulators required. Since
the digits di are only odd numbers, i.e., di ∈ {1, 3, . . . ,m−1},
our algorithm thus requires only m

2 memory registers for the
precomputed table. For example, m = 8:

S = {A(3),A(6),A(2),A(5)} = {xm
3
, xm

6
, xm

2
, xm

5
} ,

then,

D = {d3, d6, d2, d5} = {1, 3, 5, 7} .

B. ALGORITHM
This section describes our random-order sliding window
algorithm, which offers the following features:

1) it requires less memory registers than Tunstall’s algo-
rithm, that is, (m + 1) instead of (m + r) registers.
It is thus more likely to implement exponentiations in
(Z/NZ)∗;

2) it doesn’t use a fixed base (i.e., m), but varies the base.
Hence, more potential values of digits di are generated
for a fixed exponent n (line 7–10 in Algorithm 2). This
increases the level of randomness compared to Algo-
rithm 1 and thus minimizes the collision-correlation
between operations.

Likewise, we denote R[j](i) (resp. A(i)) for the value of the
accumulator R[j] (resp. A) before entering iteration i. Like the
left-to-right sliding window method, Algorithm 2 is treating
w binary digits d = (ni+w−1, . . . , ni)2 in the case ni = 1 as
follows:
(i) Algorithm 2 randomly chooses e ∈ {1, 3, . . . ,m − 1},

then update the accumulator R[e] = R[e] × S[e], and
S[e] = 1.

(ii) If the register S[di] is available (that is, S[di] = 1),
Algorithm 2 stores S[di] in the precomputed table,
S[di] = A, and updates n (lines 16–18).

(iii) Otherwise, if the register S[di] is not available (i.e.,
S[di] 6= 1), we reduce the size of the current win-
dow to find another digit that has not yet been delayed
(lines 14–15). If there is no available register found, the
algorithm repeats Step (i), perfoms one multiplication
and releases one register S[e].

The explicit description of the proposed algorithm is given
in Algorithm 2. Instead of decomposing the exponent in k
fixed windows of w(= logm) bits, the proposed algorithm
treats bit-by-bit from the least significant bit to the most
significant bit. The algorithm performs a square of A (line 7)

Algorithm 2: Random Order Sliding Window Exponen-
tiation
Input: x ∈ G, w = log2 m, and an k-bit integer

n = (nk−1, . . . , n1, n0)2 ∈ N
Output: xn

1 for j = 1 to m/2 do
2 R[2 j− 1]← 1
3 S[2 j− 1]← 1

4 i← 0 ; A← x
// Main loop

5 while i < k do
6 if (ni = 0) then
7 A← A× A
8 i = i+ 1

9 else

10 e
R
←− {1, 3, . . .m− 1}

11 R[e]← R[e]× S[e]
12 S[e]← 1
13 d ← (ni+w−1, . . . , ni+1, ni)2
14 while (S[d] 6= 1) and (d > 0) do
15 lshift(d, 1) // left shift d by one

bit

16 if d > 0 then
17 S[d]← A
18 n← n− 2id

19 for j = 1 to m/2 do
20 R[2 j− 1]← R[2 j− 1]× S[2 j− 1]

21 A←
∏

d∈{1,3,5,...,m−1} R[d]
d

22 return A

if ni = 0, however, this may not be the actual bit value as n is
further processed at the line 18. To inhibit the simple power
analysis attack, the proposed algorithm requires squaring and
multiplication operations to be performed in the same routine,
i.e., using atomic principle (see [5]).

C. EXAMPLE
We demonstrate the correctness of the proposed algorithm
by the following example. Let us compute xn, where n =
7871 = (1 1110 1011 1111)2. The digits will be read three
bits per time, that is, w = 3 and m = 8. Algorithm 2
hence needs 9 (i.e., m + 1) memory registers to store group
elements, that include 4 accumulators R[j], and 4 registers
S[j] for j ∈ {1, 3, 5, 7}. Initially, all these registers are set
to 1 (lines 2–3).
• Step 1: Algorithm 2 chooses e at random from the
set {1, 3, 5, 7} (line 12). Without loss of generality,
we assume e = 3, Algorithm 2 updates R[3]← R[3]×
S[3] (= 1 × 1) (line 11). It then takes first 3 bits from
right, i.e., d = (111)2 (line 13). Since the stored table
is empty, the proposed algorithm assigns S[7] = x
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(line 17), and computes n = n − 7 (line 18), i.e., n =
7864 = (1 1110 1011 1000)2.
Algorithm 2 then performs 3 consecutivemultiplications
A← A × A. After these operations, i = 2, A = x8 and
the array (S[1], S[3], S[5], S[7]) = (1, 1, 1, x).

• Step 2: Algorithm 2 chooses a random e. Assuming
e = 1, it then updates R[1] ← R[1] × S[1] = 1 × 1.
Since the next 3 bits have the same value with the digit
that has just been stored, i.e., d = (111)2, Algorithm 2
seeks another digit (lines 14–15) and finds d = (11)2.
It assigns S[3] = A = x8 (line 17), and computes
n = n− 23 × 3, i.e., n = 7840 = (1 1110 1010 0000)2.
Then, it performs two consecutive multiplications A←
A × A (line 7). At the end of this step, i = 4, A = x32

and the array (S[1], S[3], S[5], S[7]) = (1, x8, 1, x).
• Step 3: Algorithm 2 chooses a random e from the set
{1, 3, 5, 7}, e.g., e = 7, computes R[7] ← R[7] ×
S[7] (= 1 × x), and updates S[7] = 1 (lines 11–12).
It takes next 3 bits, i.e., d = (101)2, updates S[5] = x32

and n = n−25 ·5, i.e., n = 7680 = (1 1110 0000 0000)2
(lines 17-18). Algorithm 2 then performs 4 consecutive
multiplications A ← A × A (line 7). After that, i =
8, A = x512 and the array (S[1], S[3], S[5], S[7]) =
(1, x8, x32, 1).

• Step 4: Algorithm 2 randomly chooses e from the set
{1, 3, 5, 7}. Assuming e = 1, it updates R[1] = R[1] ×
S[1] (= 1 × 1), S[1] = 1 (lines 11–12). It then takes
next 3 bits, i.e., d = (111)2. Since S[7] = 1, it assigns
S[7] = x512, and compute n = n − 29 × 7, i.e.,
n = 4096 = (1 0000 0000 0000)2. Then, it performs
three consecutive multiplications A ← A × A (line 7).
At the end of this step, i = 11, A = x4096 and the array
(S[1], S[3], S[5], S[7]) = (1, x8, x32, x512).

• Step 5: Algorithm 2 chooses a random e, for example
e = 5; then updates R[5] ← R[5] × S[5] (= 1 × x32),
and S[5] = 1. It takes the last bit, i.e., d = 1, updates
S[1] = x4096, and n = n− 212 · 1 = 0. It also performs
one multiplication A ← A × A. After that, i = 12,
A = x8192 and the array (S[1], S[3], S[5], S[7]) =
(x4096, x8, 1, x512).

• Step 6: Algorithm 2 does a final update for accumulators
R[j] (lines 19–20). That is, R[1] = R[1] × S[1] = 1 ×
x4096, R[3] = R[3] × S[3] = 1 × x8, R[5] = R[5] ×
S[5] = x32 × 1 and R[7] = R[7] × S[7] = x × x512 =
x513.

• Step 7: Finally, line 21 of Algorithm 2 computes the
result of the product

∏
j∈{1,3,5,7} R[j]

j
= x4096× (x8)3×

(x32)5 × (x513)7 = x7871.

D. PERFORMANCE CONSIDERATION
From thememory point-of-view, themain advantage of Algo-
rithm 2 is the number of memory registers required to be
only m + 1 instead of m + r as in the original algorithm.
It is also worth to note that, unlike Tunstall’s algorithm,
the proposed algorithm doesn’t require an array D of r ele-
ments (see Algorithm 1) to store the values of the digits.

TABLE 1. Performance and security comparison between right-to-left
m-ary algorithms.

As suggested in [21], r should be greater than m. Thus,
the proposed algorithm approximately requires a half of the
number of registers required in Tunstall’s algorithm. It also
is worth to note that the number of registers required in the
proposed algorithm is competitive with that in Yao’s m-ary
algorithm (Algorithm 4) that is insecure against the Big Mac
attack (as analyzed in Section V). Since the size of window
will reduce in some cases (lines 11–12), Algorithm 2 may
require slightly more multiplications than the m-ary window
method. A summary of comparison is given in Table 1.

IV. A BINARY IMPLEMENTATION
A. ALGORITHM
This section presents a variant of the proposed algorithm in
the binary case, i.e., m = 2. The explicit description of the
proposed solution is given in Algorithm 3.

In this description, A[j] (resp. D[j]), for j ∈ {0, 1}, denote
the delayed value of A(i) at a previous round i (resp. the value
of bit that was delayed, i.e., D[j] = ni ∈ {0, 1}). When the
value of D[j] is set to ∅, it means that there is no delayed
operation associated to the register A[j]. We also define a
function lookup(e,D), looking for the first element in the
arrayDwhose value is equal to e. If found, it returns the index
j of that element, that is, e = D[j]. If not, it returns ∅. Finally,
as the right-to-left square-and-multiply always, the accumu-
lator R[1] (resp., R[0]) accumulates and outputs the values xn

(resp., x2
k
−n−1), where k is the bit-length of the exponent n.

The algorithm works as follows. At each step, depending
on the randomly chosen value b (line 5), Algorithm 3 will
perform a multiplication related to R[ni] (line 7 or line 18)
or to R[¬ni] if there is previously a delayed multiplication
related to R[¬ni](line 11). In the case there is no delayed
multiplication related to R[¬ni] in the queue, Algorithm 3
searches if there is an available register (eitherA[0] orA[1]) to
store the current A (i.e., try to delay the current multiplication
involved to R[ni]) (line 14–16). If there is no such a register
(i.e., both registers A[0] and A[1] are occupied by delayed
multiplications involved to R[ni]), Algorithm 3 updates R[ni]
with one of the previous stored values, A[ni] (line 18), then
saves the current A to A[ni] (line 19).

B. EXAMPLE
We demonstrate the correctness of the above algorithm by
the following example. Let us compute xn, where n = 135 =
(1000 0111)2.

• Step 1: Algorithm 3 processes the first bit, n0 = 1.
At first, it randomly chooses b ← {0, 1} (line 5).
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Algorithm 3: Random Order Binary Exponentiation
Input: x ∈ G, n = (nk−1, . . . , n1, n0)2 ∈ N
Output: xn

1 for i = 0 to 1 do
2 R[i]← 1; A[i]← 1; D[i]← ∅ ;

3 A← x
4 for i = 0 to k − 1 do

5 b
R
←− {0, 1};

6 if b = 1 then
7 R[ni]← R[ni]× A ;
8 else
9 j← lookup(¬ni,D) ;
10 if (j 6= ∅) then // Exist a delayed

multiplication related to R[¬ni];
update R[¬ni] and delay the
multiplication for R[ni]

11 R[¬ni]← R[¬ni]× A[j] ;
12 A[j]← A ; D[j] = ni ;
13 else
14 j← lookup(∅,D) ;
15 if j 6= ∅ then // have a free space
16 A[j]← A ; D[j] = ni ;
17 else // A[0],A[1] occupied by

delayed multiplications
involved R[ni]

18 R[ni]← R[ni]× A[ni] ;
19 A[ni]← A ;

20 A← A× A;

21 for i = 0 to 1 do
22 R[D[j]]← R[D[j]]× A[j] ;

23 return R[1]

Assuming b = 0, Algorithm 3 executes line 9, looking
for a delayed operation. As there is no such an operation,
it goes to line 13 to look for an available accumulator to
delay the operation (line 14). As found (D[0] = D[1] =
∅), Algorithm 3 executes line 16, assigns A[0] = x,
D[0] = 1. Line 20 updates A = x2. After this, R[0] =
R[1] = 1, A[0] = x,A[1] = 1, D[0] = 1,D[1] = ∅.

• Step 2: Algorithm 3 processes the 2nd bit, n1 = 1 by first
choosing a random b. Assuming b = 1, it then updates
R[1] ← R[1] × A = x2 (line 7) and A = A × A = x4

(line 20).
• Step 3: Algorithm 3 processes the 3rd bit, n2 = 1.
It randomly chooses b. Assuming b = 0, Algorithm 3
executes line 9, looking for a delayed multiplication
involved to the bit value 0. As there is not such an
operation, it goes to line 13 to look for an available
accumulator to delay the operation (line 14). Since A[1]
is free (D[1] = ∅), Algorithm 3 executes line 16, assigns
A[1] = x4, D[1] = 1. Line 20 updates A = x8. At the
end of this step, R[0] = 1,R[1] = x2, A[0] = x,A[1] =
x4, D[0] = 1,D[1] = 1.

• Step 4: Algorithm 2 processes the 4th bit, n3 = 0 by
randomly choosing b. Assuming b = 1, it then updates
R[0] ← R[0] × A = x8 (line 7) and A = A × A = x16

(line 20). At the end of this step, R[0] = x8,R[1] = x2,
A[0] = x,A[1] = x4, D[0] = 1,D[1] = 1.

• Step 5: Algorithm 3 processes the 5th bit, n4 = 0.
Assuming a random b = 0 was chosen, Algorithm 3
executes line 9, looking for a delayed multiplication
involved to the bit value 1. Because D[0] = D[1] = 1,
it executes lines 11–12, assigns R[1] = R[1] × A[0](=
x2 × x = x3), A[0] = x16, D[0] = 0. Line 20 updates
A = x32. At the end of this step, R[0] = x8,R[1] = x3,
A[0] = x16,A[1] = x4, D[0] = 0,D[1] = 1.

• Step 6: Algorithm 3 processes the 6th bit, n5 = 0.
Assuming a random b = 0 was chosen, Algorithm 3
executes line 9, looking for a delayed operation involved
to the bit value 1. Because D[0] = 0, and D[1] =
1, Algorithm 3 executes lines 11–12, assigns R[1] =
R[1] × A[1](= x3 × x4 = x7), A[1] = x32, D[1] = 0.
Line 20 updates A = x64. At the end of this step,
R[0] = x8,R[1] = x7, A[0] = x16,A[1] = x32,
D[0] = 0,D[1] = 0.

• Step 7: Algorithm 3 processes the 7th bit, n6 = 0. It ran-
domly chooses b. Again, assuming b = 0, Algorithm 3
executes line 9, looking for a delayed operation involved
to the bit value 1. Since both D[0] and D[1] are equal
to 0, Algorithm 3 goes to line 13, searches if there is
any available memory, but it does not happen, it goes to
line 17, then lines 18–19 update R[0] = R[0] × A[0](=
x8 × x16 = x24), and A[0] = x64. Line 20 updates
A = x128. At the end of this step, R[0] = x24,R[1] = x7,
A[0] = x64,A[1] = x32, D[0] = 0,D[1] = 0.

• Step 8: Algorithm 3 processes the 8th bit, n7 = 1. It
randomly chooses b. Assuming b = 0, Algorithm 3 exe-
cutes line 9, looking for a delayedmultiplcation involved
to the bit value 0. As there exist such an operation
(D[0] = D[1] = 0), it executes lines 11–12, assigns
R[0] = R[0] × A[0](= x24 × x64 = x88), A[0] = x128,
and D[0] = 1. Line 20 updates A = x256. At the end of
this step, R[0] = x88,R[1] = x7, A[0] = x128,A[1] =
x32, D[0] = 1,D[1] = 0.

• Step 9: Lines 21–22 of Algorithm 3 compute the final
results R[1] = R[1] × A[0] = (x7 × x128 = x135), and
R[0] = R[0] × A[1] = (x88 × x32 = x120). Finally,
Algorithm 3 returns R[1] as its output, that is x135.

C. DISCUSSION
As the right-to-left square-and-multiply always algorithm,
the proposed binary algorithm performs two group opera-
tions, one multiplication and one squaring, per bit. From
the security viewpoint, at the round i, an attacker couldn’t
determine the value of bit ni. That is because at that round the
proposed algorithm would perform a multiplication related
to R[ni] or to R[¬ni] with the probability 1/2 if the value
of bits has a uniform distribution. The proposed algorithm
is thus resistant to the Big Mac attack and its extensions.
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TABLE 2. Performance and security Comparison between right-to-left
binary algorithms.

To the best of our knowledge, it is the first right-to-left
binary exponentiation algorithm that resists to such attacks,
and remains the same performance, i.e., it requires 2 group
operations per bit. On the other hand, Algorithm 3 requires 5
instead of 3 registers in comparison to the right-to-left square-
and-multiply always algorithm.
Secure Against Fault Analysis
The outputs of R[0] and R[1] of Algorithm 3 can be used to

prevent the fault attacks as suggested by Boscher et al. in [3]
due to this relation: x × R[0] × R[1] = A. As it can be seen
in the above example, we have x × x120 × x135 = x256.
Both Algorithm 2 and Algorithm 3 are resistant to com-

bined attack [2] and safe-error attacks [26] because at the i-th
loop, the digit processed may not be ni (counting from right
to left) with high probability, and hence the attacker learns
nothing about the value of ni. In addition, Algorithms 2–3 are
both secure against safe-error attacks because they don’t have
dummy operations. A security comparison between right-to-
left binary algorithms is shown in Table 2.

V. SECURITY ANALYSIS
A. SIMPLE POWER ANALYSIS
Using the atomic principle [5], Algorithm 2 requires that the
multiplication and squaring operations are implemented by
using identical code and, therefore, cannot be distinguished
easily. In the case the attacker can distinguish a multiplication
from a squaring by using statistical methods (e.g., [1]),
she/he may learn about the number of bits ‘0’ in the secret
exponent but it is unclear whether she/he would determine
the real value of the current bit because at each iteration the
proposed algorithm performs a squaring without considering
the current bit is ‘0’ or ‘1’.

B. DIFFERENTIAL POWER ANALYSIS
To thwart DPA attacks, classical blinding techniques (e.g.,
message, exponent blinding) with a big enough random-
ness (e.g., 48-bits) can be applied. However, as discussed in
Section II-A, the BigMac attack may defeat all these blinding
techniques.

In the following section, we focus on analyzing the secu-
rity of the proposed algorithm in the presence of the Big
Mac attack and its extensions, that is statistical side-channel
analysis attacks in the horizontal setting. We start with an
extension of the Big Mac collision-correlation attack to ana-
lyze the security of the right-to-left m-ary exponentiation
and the security of the random order right-to-left m-ary

exponentiation algorithm. Then, we analyze the security of
the proposed algorithm.

C. HORIZONTAL COLLISION-CORRELATION ANALYSIS
1) ON RIGHT-TO-LEFT m-ARY EXPONENTIATION
For implementations of the right-to-left binary algorithms,
Hanley et al. [11] presented horizontal collision correlation
analysis on Joye’s add-only exponentiation algorithm [13],
and then Feix et al. [9] presented a similar attack in the right-
to-left square-and-multiply always [13]. While, the former
uses the fact that the register R0 (resp. R1) remains the same
when the value of bit being processed nj = 0 (resp. nj = 1),
the later uses the fact that if the two consecutive bits have
the same value then the output of the multiplication in the
previous loop will be the input of the multiplication in the
next loop.

In the case of the right-to-left m-ary exponentiation with
m > 2, we assume that m is a power of 2 so that raising
to the m-th power is a sequence of log2m squarings. For
convenience, we also assume that the mth power can be
detected by recognizing squares frommultiplications. Similar
to [9], the attack uses the fact that the adversary can detect
a collision-correlation when the output of an operation is
the input to another operation (i.e., operations processing
the same value of di). As Big Mac attack, the attacker must
then partition the multiplications (line 7 in Algorithm 4) into
disjoint sets for which the digits di have the same values. Once
the partitioning has been performed, there are (m−1)!ways of
associating specific different digit values with the m− 1 sets
of multiplications. One of these choices will yield the sought
key. Because the value of m shouldn’t be too big, this attack
computationally can be performed.

2) ON THE RANDOM ORDER m-ARY EXPONENTIATION
We revise the security of Tunstall’s algorithm against the
Big Mac collision-correlation analysis attack and show that
under this attack, we don’t need to set r > m to get more
randomness than r = m. Likewise, we use the fact that the
attacker would detect a collision-correlation when the out-
put of a multiplication is the input to another multiplication
(i.e., the multiplication involving in the accumulators R[j]).
If an attacker attempts a collision-correlation analysis attack,
it would be assumed that the digit treated at the t-th loop has
the same value with the (t + r − 1)-th digit of the exponent,
dt+r−1 (counting from right) that has just been included the
set of digit from which the algorithm will randomly choose.
As long as such a digit chosen, the attacker can detect a
collision-correlation because the accumulator R[dt+r−1] will
be the first operand of the multiplication in line 13, Algo-
rithm 1. This is different from the security analysis in [21,
Section 6.2], where the partial correlation is detected due
to the second operand of the multiplication, that is there
is correlation when the digit treated must be one that has
been included. Let us assume that the values of digits have
a uniform distribution. So, it doesn’t matter what size r is
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of (for r > m), the probability a digit chosen having the
same value with dk+r−1 is 1/m. In this setting of attacks,
to balance the memory performance and the security, the best
value of r should be m. On the other hand, since the digit
treated is randomly chosen at the t-th loop, this digit wouldn’t
have the same value of dt+r−1 with the probability (m−1)

m .
This randomization is performed within one execution of the
exponentiation, Tunstall’s algorithm is hence secure against
the horizontal collision-correlation power attacks.

3) SECURITY OF THE PROPOSED ALGORITHM
The proposed exponentiation algorithm (Algorithm 2) ran-
domly performs multiplications from the set of delayed mul-
tiplications. Similar with Tunstall’s algorithm, assume that a
side-channel attacker learns the value of digit e (line 13, Algo-
rithm 2) being processed at the loop t , however she/he may
not learn about the real position of this e. Thus, the proposed
is secure against the Big Mac attack and its extensions that
deduce the secret information from a single power trace.

Unlike Tunstall’s algorithm, Algorithm 2 doesn’t use a
fixed base m, but varies it by using the sliding-window
technique. In each iteration, the proposed algorithm tries
to find a good digit to execute, it therefore minimizes the
possibility that the digit treated has the same value of the digit
that has been included. Moreover, this allows the proposed
algorithm to generate plural unpredictable values of digits
{d0, d1, . . . , d`−1} for a fixed exponent n. If the attacker
collects different power traces, she/he would deduce different
combinations of digits di.
As analyzed in [21], the random-order exponentiation

algorithms can be used as a supplement, rather than as a
replacement, to the blinding countermeasures. By combining
the random order algorithm with a blinding countermeasure,
exponentiation implementations should be resistant to sta-
tistical side-channel analysis in both vertical and horizontal
setting.

VI. CONCLUSION
In this article, we revisited Tunstall’s random order m-ary
exponentiation algorithm. We considered its security against
the Big Mac collision-correlation analysis attack and then
present a memory-efficient variant. The proposed algorithm
requires only (m + 1) group elements in memory instead
of (m + r). Finally, we presented an efficient implementa-
tion in the binary case. To the best of our knowledge, it is
the first right-to-left binary exponentiation algorithm that
resists to side-channel attacks only using a single consump-
tion trace such as the combined attacks or the horizontal
collision-correlation attacks.

APPENDIX. EXPONENTIATION ALGORITHMS
A right-to-leftm-ary version of Algorithm 4was described by
Yao in [25] and hence it is often referred as Yao’s algorithm.

For example, one needs to compute xn, where n = 871.
The binary representation of n is (1101100111)2. If one use
Algorithm 4 with m = 4 (i.e., n = (31213)4), the register A

Algorithm 4: Right-to-Leftm-Ary Exponentiation Algo-
rithm
Input: x ∈ G, n = (nk−1, . . . , n1, n0)m ∈ N
Output: xn

1 for j = 1 to m− 1 do
2 R[j]← 1G
3 for i = 0 to k − 1 do
4 if ni 6= 0 then
5 R[ni]← R[ni] · A

6 A← Am

7 A← R[m− 1]
8 for i = m− 2 down to 1 do
9 R[i]← R[i] · R[i+ 1]
10 A← A · R[i]

11 return A

will be initialized to x, and then raise to the power of 4 at each
iteration, i.e., x → x4 → x16 → x64 → x256. The order
updating accumulators will be R[3] → R[1] → R[2] →

R[1]→ R[3]. That is, R[3](1)
R[3](0)×x
−−−−−→ x,R[1](2)

R[1](1)×x4
−−−−−−→

x4,R[2](3)
R[2](2)×x16
−−−−−−→ x16,R[1](4)

R[1](3)×x64
−−−−−−→ x4 · x64 =

x68,R[1](5)
R[1](4)×x256
−−−−−−−→ x · x256 = x257.

R[1] = 1 · x4 · x64

R[2] = 1 · x16

R[3] = 1 · x · x256

Finally, xn = R[1] · R[2]2 · R[3]3 = x68(x16)2(x257)3 =
x871.
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