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ABSTRACT In this paper, a robust analysis of SO2 concentration measurements taken at the Belisario
air quality monitoring station, Quito, Ecuador is carried out. The analyzed data contain 12 years of
measurements, from January 2008 to December 2019. In addition, this set of measurements was decomposed
into variables that represent each year, month, day of theweek, and hour of the day in groups of two hours. For
the analysis, classic, nonparametric and robust statistical methods were used, and the data were classified
based on criteria established by the Quiteño Air Quality Index, taking confidence intervals into account.
The results showed that the level of air pollution at the Belisario station due to the SO2 concentration is
acceptable. In addition, the trend in the level of SO2 concentration decreased over the years studied, with a
sharp drop from 2008 to 2012, then a small rise in 2013 and another fall until 2019, presenting decreasing
oscillations that tend toward a desirable level of pollution. In this paper, it was shown that the air pollution
at the Belisario station due to the concentration of SO2 in the last 12 years is not harmful to humans, with
the measurement precision provided by robust statistical methods. Therefore, it can be concluded that the
measures that have been taken by the Quito city council over the last few years are yielding good results.

INDEX TERMS Central tendency estimation, L-estimators, M -estimators, nonparametric confidence
interval, robust confidence interval, sulfur dioxide, Wilcoxon rank sum test.

I. INTRODUCTION
Sulfur dioxide (SO2) is an invisible toxic gas that is dangerous
to human health when inhaled [1]. According to [1], sulfate
particles, sulfurous acid and sulfuric acid are harmful com-
pounds created by the reaction of SO2 with other substances.
Additionally, approximately ten minutes is enough time to
feel the effects of being exposed to SO2, and the people most
at risk are those with asthma and other illnesses associated
with breathing difficulties [1].

According to [2], the burning of fossil fuels emits SO2,
and power plants and motor vehicles are among the sources
that produce the SO2 in the air. In addition, volcanic activ-
ity produces SO2. Furthermore, in accordance with the air
quality guidelines of the World Health Organization [3],
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the SO2 concentration should not exceed the following levels:
500µg/m3 over a 10-minute period (short-term exposure)
and 20µg/m3 over a 24-hour period (long-term exposure).
In [4], it is noted that exposure to SO2 for short periods
of time obstructs breathing. Additionally, the United States
Environmental Protection Agency (EPA) [4] says that SO2 in
the air leads to the formation of sulfur oxides that, by react-
ing with other compounds, contribute to the formation of
particles that reduce visibility and cause health problems.
Moreover, SO2 is among the substances responsible for acid
rain [4].

These observations show the need to carry out an anal-
ysis and interpretation of the information obtained from
SO2 measurement systems. Several relevant works have
appeared in the scientific literature.

In [5], an RGB-based oximetry for the retina was proposed,
a measuring system for a rat fundus was built, and SO2 was
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estimated in the rat fundus from the RGB image of the fundus.
Additionally, in [6], the strengths and limitations of a linear
fit SO2 (LFSO2) algorithm were assessed. The LFSO2 algo-
rithm was described, and the operational LFSO2 retrievals
were compared with the principal component analysis (PCA)
retrievals. The measurements were made by the Suomi NPP
Ozone Mapping and Profiler Suite [7], and it was shown that
the LFSO2 algorithm presented in [6] was in good agreement
with the PCA algorithm used by the National Aeronautics
and Space Administration (NASA) of the United States of
America.

In [8], a land-use regression model was developed for SO2
concentrations. To produce valid models, taking into con-
sideration the spatial structure of the ordinary least-squares
regression model error terms, a spatial error model was pre-
sented in [8]. The data used for the analysis performed in [8]
correspond to mobile monitoring data that were collected
from 2005 to 2010 in Hamilton, Ontario, Canada.

In [9], a method of estimating exposure to SO2 was pre-
sented. The Gaussian plume atmospheric transport model
used in [9] was introduced by [10] and [11], and it obtained
the average ground-level concentration of SO2 over long
periods of time. In [9], uncertainty was incorporated into the
abovementioned model by multiplying by a lognormally dis-
tributed factor. Additionally, the geometric bias expressed in
terms of the predicted-to-observed ratio was used to compare
the predicted and observed SO2 concentrations.
In [12], a study of the influence of processing phosphorite

in an industrial sector in the Republic of Kazakhstan was
performed. In [12], the air pollution due to the release of toxic
substances associated with the processing of phosphate rock
was analyzed. To that end, the authors of [12] used correla-
tion and regression methods to obtain linear equations that
described the relationship between the volume of phosphorus
produced and the amount of SO2 and phosphorus pentoxide
(P2O5) emissions in the region under study.

Two stochastic models for air pollution due to SO2 in the
meteorological season of winter in Vienna were presented
in [13]. Specifically, regression was used to both explain the
influence of meteorological factors on the SO2 concentration
in the region under study and give an approximate measure of
the SO2 concentration in the city center, which was the most
polluted area due to industrial sources in the vicinity, that is,
in the southeastern part of the area. The stochastic modeling
performed in [13] was carried out by using autoregressive
models with exogenous inputs [14], [15].

The temporal and spatial dynamics of SO2 concentration in
the Beijing-Tianjin-Hebei (Jing-Jin-Ji) region of China from
2007 to 2016 were studied in [16]. Additionally, the tempo-
ral and spatial distributions of SO2 were shown along with
annual changes and trends, and a correlation analysis was
used to explain the relationship between the SO2 concentra-
tion and SO2 emissions in the region.

A supervisory control and data acquisition (SCADA) sys-
tem for monitoring SO2, particulate matter (PM2.5), carbon
monoxide (CO), carbon dioxide (CO2), air temperature, and

relative humidity (RH) was presented in [17]. This SCADA
system was based on smart technologies, and the SO2 con-
centration was estimated by using an autoregressive moving
average model [14], [15]. Furthermore, in [17], an Android
mobile application was designed to allow users to obtain the
estimated values of some air pollutants.

Moreover, an estimation of anthropogenic SO2 emissions
from 1850 to 2005 at both the global and country levels is
presented in [18], and to carry out this estimation, an uncer-
tainty analysis was performed considering both random and
systematic uncertainties, with 95% confidence intervals for
both types of uncertainties.

In [19], a geochemical and statistical analysis of SO2,
heavy metal pollutants, and total organic carbon was carried
out. The data for the analysis came from soil samples taken
from major oil refineries, industries, and residential areas
in the Al-Ahmadi governorate, State of Kuwait. In [19],
the minimum, maximum, mean, and standard deviation were
used to describe the data. Additionally, variance analysis
was used to test whether there were significant differences
among representative soil samples taken from three major
oil refineries (the Mina Al-Ahmadi Refinery, Mina Abdullah
Refinery, and Al-Shuaiba Refinery), the metals emitted by
the industry and anthropogenic sources, and the interactions
among them.

In the research presented in this paper, 12 years ofmeasure-
ments of SO2 concentrations taken at the Belisario air-quality
monitoring station (Quito, Ecuador) [20] are analyzed by
using robust statistics techniques [21]–[23]. Belisario sta-
tion is an important part of the metropolitan atmospheric
monitoring network of Quito [24]. The data used in this
paper correspond to a set of measurements carried out from
January 2008 to December 2019. Here, each year was con-
sidered a variable, and the distributions of these variables
were heavy tailed [22], [25]. Additionally, robust estimations
of the central tendency and scale were carried out, and both
nonparametric confidence intervals [26], [27] and robust con-
fidence intervals [21]–[23] were calculated. Some previous
research aiming at using nonparametric and robust tools to
analyze measurements taken by particulate matter (PM2.5)
sensors are described in [28]–[31].

In addition, other works focusing on the statistical analysis
of measurements of air pollution variables that support the
above work and complement the examples given in previous
paragraphs include the following:

In [32], to process high-dimensional data with the aim of
predicting the PM2.5 concentration at 35 air quality monitor-
ing stations in Beijing, China over the subsequent 24 hours,
a LightGBM model [33] was proposed. Additionally, to cap-
ture the trend of the PM2.5 concentration in a time series and
reduce its dimensions, correlation analysis and PCA were
used. In [34], a methodological framework combining a bidi-
rectional long short-term memory network, a deep learning
network, and the inverse distance weighting technique to con-
duct spatiotemporal predictions of air pollutants at different
time granularities was presented. Moreover, forecasting of
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the PM2.5 concentration at Guangdong, China, was carried
out in [34]. Furthermore, in [35] a PM2.5 remote sensing
retrieval method was presented, and to establish the relation-
ship between moderate-resolution imaging spectroradiome-
ter images and ground observations of PM2.5, an ensemble
random forest machine learning method was used.

The present paper has the following objectives: (1) to
obtain groupings of the variables (i.e., years) under study,
comparing the results of SO2 concentration measurements by
years, months, days of the week, and hours of the day; (2) to
find the differences that exist between air pollution categories
due to the SO2 concentration [36]; and (3) to quantify the
abovementioned differences by using confidence intervals.
Here, a study of the trends in the concentration of SO2 at
Belisario station [20] over the last 12 years is exhaustively
developed, and it is concluded that the concentration is down-
ward, measuring this decrease in SO2 concentration with the
precision provided by robust statistical methods, which is part
of the novelty of this research.

Furthermore, in accordance with the aims and scope of this
journal, this paper can be classified as an application-oriented
paper aimed at analyzing and interpreting the information
from a set of SO2 measurements using robust statistical
methods. A description of the characteristics of the data is
given in Section II. The aim of Section III is to perform data
classification by using nonparametric techniques. The robust
estimation of the central tendency of the data and scale is
performed in Section IV. Moreover, Section IV is devoted to
classifying the data by building robust confidence intervals.
Finally, Section V presents the conclusions of the paper.

II. DESCRIPTION OF THE DATA
The air-quality monitoring station used to perform the SO2
concentration analysis is called Belisario, and it is located in
one of the most important parts of Quito [20]; the character-
istics of all the air pollution variables that are currently mea-
sured at Belisario station can be found in [36]. In accordance
with [36], SO2 concentration measurements were carried out
using the Thermo Scientific Model 43i SO2 Analyzer [37].
The sampling time was 10 minutes, and each datum used for
the analysis was the average of the set of samples correspond-
ing to one hour. To cover 75% of the valid records, these
averages were calculated in accordance with international
criteria [36]. Furthermore, the results of the analysis carried
out in this paper focus on studying the data that were collected
over the period of time from January 2008 to December 2019.

In this paper, the variations recorded in the data are ana-
lyzed with the aim of verifying whether they are due to
random variations or whether the samples taken from the
variables under study show that these variables are different
from each other. Here, the characteristics of the variables
under study are established in order to capture the differences
among the variables and analyze how the air pollution at
the Belisario station changed due to the SO2 concentration
during the years of study. This is verified by using robust
and nonparametric statistical techniques to build confidence

intervals that reveal the similarities and differences in the
variables considered.

Regarding the construction of the confidence intervals,
in the rest of the paper, the results obtained for the analysis by
years, months, days of the week, and hours will be discussed
in parallel. The types of these confidence intervals are classic,
nonparametric, bootstrap, and robust.

In this paper, the SO2 concentration is given inµg/m3, and
the variables under study are as follows:

1) Xk , k = 1, . . . , 12, is the SO2 concentration in year
2007+ k .

2) Yk , k = 1, . . . , 12, is the SO2 concentration in each
month of the year.

3) Zk , k = 1, . . . , 7, is the SO2 concentration on each day
of the week.

4) Wk , k = 1, . . . , 12, is the SO2 concentration pooled
for each group of two hours. That is,W1 stands for the
SO2 concentration at 0:00 and 1:00, W2 stands for
the SO2 concentration at 2:00 and 3:00, and so on
until W12, which stands for the SO2 concentration at
22:00 and 23:00.

To summarize the set of measurements of SO2 concentra-
tion and provide a description of the observations, a statistical
summary of the data is shown in Table 1. Table 1 shows that
the mean is greater than the median for all the variables, that
all the values of skewness are greater than 1.9, and that all the
values of kurtosis are greater than 9. Additionally, the value of
kurtosis in 2019 was 533.8117. Furthermore, a large number
of the observations from all years are outliers. Specifically,
between 4.71% and 8.01% of the observations are outliers.
Therefore, these data do not form a Gaussian distribution.
Instead, this indicates that the variables follow a heavy-tailed
distribution [22], [25].

The box plot of the data is shown in Fig. 1 along with
three graphs of moving averages (MAs) [14], [15], where
one graph shows all the years and two other graphs show
only half of the years. In the case under study, the size
that was preferred to perform the MA smoothing was
720 because this is the number of samples collected in a
30-day month.

At this point, it is important to mention that the MA
functions are used to detect and eliminate the trend of a
series. Therefore, the application of the MA functions to the
series values produces a new series with certain character-
istics, which suppresses the non-systematic alterations and
highlights the main aspects of the time series.

The box plot shown in Fig. 1(a) confirms that the variables
follow heavy-tailed distributions. In addition, a discontinuous
straight line was included in the box plot. This line was
drawn to represent the separation between having a desirable
level of air pollution (that is, a concentration of SO2 in the
interval [0, 62.5µg/m3)) and an acceptable level of air pollu-
tion (that is, an SO2 concentration in the range [62.5µg/m3,
125µg/m3)), according to the Quiteño Air Quality Index
(QAQI) [36]. Therefore, according to the QAQI, the level
of air pollution at the Belisario station is, in the worst case,
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TABLE 1. Summary statistics of the SO2 concentration measurements.

FIGURE 1. Box plot diagram and moving averages of all years and of half of the years.

acceptable. Thus, this variable does not represent a health risk
in the surroundings of the monitoring station.

Figure 1(b) indicates that the SO2 concentration at the
Belisario station decreases continuously over time. Likewise,
the MA graphs of the years (see Figs. 1(c) and 1(d)) show
clear oscillations, with increases at the beginning and end of
each year. Furthermore, these graphs indicate that there is a
decrease in the concentration of SO2 in the third quarter of
each year. However, in none of the cases is there an evident
tendency.

The results shown above for the analysis of the SO2 con-
centration by year are also confirmed when the study is
carried out for the months of the year, the days of the week,
and the hours of the day.

In Fig. 2, the box plot diagrams (Fig. 2(a) - 2(c)) indicate
that the variables taken into account follow heavy-tailed dis-
tributions, and the MA graphs (Fig. 2(d) - 2(f)) show a clear
tendency to decrease throughout the years of study.

From the box plot diagram shown in Fig. 2(a), in the central
months of the year, the SO2 concentration is lower than in the
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FIGURE 2. Box plot diagrams and moving averages of all years for months, weeks and every two hours.

rest of the year. On weekends (see Fig. 2(b)), the SO2 concen-
tration also seems to decrease. In addition, observing the box
plot of the hours of the day (see Fig. 2(c)), the concentration
of SO2 increases from dawn until the first hours of the day,
then gradually decreases, rebounds in mid-afternoon and then
decreases until the following dawn.

The distinguishing characteristics of theMA graphs shown
in Fig. 2(d) - 2(f) are that the behavior of the months, weeks,
and hours are similar throughout the years. That is, if they rise

or fall in a certain period of a year, a similar pattern occurs in
the rest of the years.

In Fig. 2(d), there is a gradual decrease in the concentration
of SO2 from January to December, but this decrease occurs
with many fluctuations. Additionally, some of these fluctua-
tions have greater amplitudes. Because the first observations
in each series have been removed to apply the moving aver-
ages, the continuity between the last observations in each
series and the first observations in the next cannot be seen.
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TABLE 2. Confidence interval limits for the median of each variable and the confidence interval lengths, with α = 0.05.

In the graph of themoving averages of each day of theweek
(see Fig. 2(e)), the behavior is very similar for all days of
the week. Specifically, the series is in a band approximately
2µg/m3 wide, the trend is clearly descending from Monday
to Sunday, and there are manywide-ranging oscillations com-
pared to the values taken by the variable. This also happens
in Fig. 2(d). Furthermore, in Fig. 2(e), the continuity between
series cannot be perceived due to the observations that are not
considered.

Unlike the graphs in Fig. 2(d) and 2(e), Fig. 2(f)
shows that although the behavior of the SO2 concentra-
tion is parallel, the SO2 concentration is greater between
6:00 and 11:00. In addition, the SO2 concentration behaves
similarly during these hours. Moreover, the tendency for
the SO2 concentration to decrease linearly is more evident
than in the two preceding graphs, although there appears
to be a breakpoint in the slope in the first third of the
observations.

To what has been said previously, it should be added that
in Fig. 2(f), fluctuations are still observed, but in this case,
the fluctuations are not very wide. There are also no abrupt
changes. Moreover, because the first observations in each
series were removed, the continuity between series is not
noted.

In this paper, different variable changes [38] were made
in order to use classical statistical inference methods. Nev-
ertheless, the data could not be fitted to parametric distribu-
tions other than heavy-tailed distributions. The adjustments
achieved, at best, had a p-value [27] of less than 0.005. This
justified the use of nonparametric statistics and robust statis-
tics in this paper. The aforementioned was also attempted
for the months, days of the week and hours of the day, but
at best, heavy-tailed distributions were achieved in very few
variables.

III. DATA CLASSIFICATION BY USING NONPARAMETRIC
STATISTICAL INFERENCE
To check whether the variables come from distributions with
the same median, the Wilcoxon rank sum test [26], [27] was
used. This idea was also used in [28]–[30]. Here, the null
hypothesis was H0 : Median = M0, and the alternative
hypothesis was H0 : Median 6= M0. For stable data, half
of the observations will be less than M0 and the rest of
the observations will be greater than M0 if H0 is true. For
themedian, the confidence intervals must verify (1). Here, the
significance level is α = 0.05 and the confidence level

is (1− α).

P
(
X(k ′α

2
) < Me < X(k α

2
)

)
= 1− α (1)

where Me is the median, X(.) is the vector consisting of
the sample of the specific variable being analyzed with its
elements in ascending order, and k ′α

2
and k α

2
are based on the

binomial distribution. This is justified by the central limit the-
orem [38]. Additionally, k ′α

2
and k α

2
are given by (2) and (3),

respectively.

k ′α
2
=
N
2
+ 0.5− z α

2

√
N
4

(2)

k α
2
=
N
2
+ 0.5+ z α

2

√
N
4

(3)

where N stands for the sample length and z α
2
is the value of

the inverse cumulative distribution function of the standard
normal distribution evaluated at (1− α)/2 [27], [38].

For a confidence level of 95%, Table 2 shows the limits
and lengths of the confidence intervals, and Fig. 3 shows
the graphs of the confidence intervals. Once again, there
is a decreasing tendency in the amount of SO2 across the
years at the Belisario station because as the median decreases,
the interval shifts to lower values. There is a very sharp
decrease from 2008 to 2012, especially notable in 2012, and
then a rebound in 2013. Furthermore, from that year on,
the amount of SO2 is balanced with a slight downward trend.

FIGURE 3. 95% confidence intervals for the median of each variable.
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FIGURE 4. 95% confidence intervals for the median of each month, each week and every two hours.

Likewise, as the median value decreases, the width of the
confidence interval also decreases. Note that all confidence
intervals are at the desirable air quality level and that none
are close to the acceptable level.

In the case under study, as shown in Fig. 3, the groupings
obtained are the following seven categories: 1)
1) X3 and X4,
2) X7 and X9,
3) X5, X8, X10 and X11,
4) X1,
5) X2,
6) X6,
7) X12.
On the other hand, the groupings made with the Wilcoxon

rank sum test [26], [27] coincide with those made using
nonparametric confidence intervals, although with slight dif-
ferences. Specifically, the grouping of variables X5, X8, X10
and X11 is now a set of three groups, with the variables X5 and
X10 grouped together and the variables X8 and X11 separate.

The nonparametric confidence intervals for the months,
weeks, and groups of every two hours of the day are shown
in Fig. 4. For the months, five categories are established using
the nonparametric intervals, which coincide with the results
of theWilcoxon rank sum test. The level of SO2 concentration
according to the months seems to vary periodically through-
out the years. Low levels of SO2 concentration occur at the
end of summer, and the highest value is reached in November;
in the second half of the year, there is a rebound in the values.
The amplitudes of these intervals are smaller, in general,
than in the analysis by year, suggesting less variability by
month than by year. Similar to the analysis carried out for
the years, the larger the median is, the greater the width of
the nonparametric confidence intervals.

Fig. 4(b) shows that in the analysis of the weeks, the
SO2 concentration decreases very noticeably on the week-
ends and remains on the working days, except on Monday,
because the drop achieved on the weekend is still main-
tained. For this variable, the same results are obtained by the
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nonparametric intervals as by the Wilcoxon rank sum test.
Additionally, the behavior seems to be similar for the weeks
in all the years, and the amplitudes of the intervals are smaller
the lower the median.

Finally, Fig. 4(c) indicates that the SO2 concentration in the
study of the variables every two hours reaches its maximum
between 10:00 and 11:00. In the other hours of the day, there
are abrupt drops to concentrations below 3µg/m3, although
there is a rebound between 20:00 and 23:00. In this case,
the number of categories is greater because there are transit
variables between a state with a high SO2 concentration and
one with a low SO2 concentration.

IV. DATA CLASSIFICATION BY USING ROBUST
STATISTICS
In this paper, robust statistics [21]–[23] are used to obtain
measurements of the central tendency and scale that are as
immune as possible to the effect on the analysis of data
that show unusual observations [30], [31]. These statistics
are characterized by the influence curve [39], which is a
continuous, bounded curve for robust estimators that prevents
the estimators from being affected by observations that stray
from the data set.

Here, for the analysis, the sample order statistics [27] will
be used. That is, given X1, . . . ,Xn, the ordered sample is
given by X(1) ≤ X(2) ≤ . . . ≤ X(n), where X(1) is the
observation with the lowest value and X(n) is the observation
with the highest value.

A. CENTRAL TENDENCY AND SCALE ESTIMATORS
The statistics used in this section of the paper can be found
in [21]–[23]. The L-location estimators used for the analysis
were the following:

1) Trimean [21], [40]:

TM =
Q1 + 2Q2 + Q3

4
(4)

where Qi stands for the i-th quartile [30].
2) α-trimmed mean [21]–[23]:

T (α) =
1

n− 2[nα]

n−[nα]∑
i=[nα]+1

X(i) (5)

where 0 ≤ α ≤ 0.5, n is the sample length, [·] is the
integer part, and the i-th order statistic of the sample is
given by X(i).

3) α-winsorized mean, W (α), with 0 ≤ α ≤ 0.5 [23].
To find this estimator, the first step was to build a
new vector by replacing the sample values that were
above the (1− α) percentile with X(1−α) and replacing
the sample values that were below the α percentile
with X(α). Then, the mean value of this new vector was
found.

Furthermore, theM -location estimators [21]–[23] used for
the analysis were the following:

1) Andrew’s wave [21], [23]:

Twa = Me + (cMAD) arctan

( ∑
|ui|<1 sin(πui)

π
∑
|ui|<1 cos(πui)

)
(6)

where c = 2.4π , Me stands for the median of the
sample,

ui =
xi −Me

cMAD
(7)

where xi is the i-th observed value, for i = 1, . . . , n,
and MAD is the median absolute deviation [21]–[23],

MAD = Median{|x1 −Me|, . . . , |xn −Me|}. (8)

2) Biweight [21], [22]:

Tbi = Me +

∑
|ui|<1(xi −Me)(1− u2i )

2∑
|ui|<1(1− u

2
i )

2
(9)

where ui is given by (7) with c = 9.
Table 3 shows the estimates of the abovementioned

statistics for the 0.2-trimmed mean, 0.3-trimmed mean,
0.2-winsorized mean, and 0.3-winsorized mean.

Additionally, scale estimators [21], [22], [39], [41] were
used to analyze the variability of the data. The scale estima-
tors were as follows:

1) Sample standard deviation:

sx =

(
1

n− 1

n∑
i=1

(Xi − X̄ )2
) 1

2

(10)

where X̄ is the sample mean, the i-th element of the
sample is given by Xi, and n is the sample length.

2) Mean absolute deviation:

MADmean =
1
n

n∑
i=1

|Xi − X̄ | (11)

3) Median absolute deviation (MAD), given by (8).
4) Half of the interquartile range [21], [42]:

SRH =
1
2
(H2 − H1) (12)

where H1 = X(h1), h1 =


[
n+1
2

]
+ 1

2

, H2 = X(h2),

and h2 = n+ 1− h1.
5) Least median squares (LMS):

LMS =
1
2

min
i=1,...,[n/2]

(|X(i+[n/2]) − X(i)|) (13)

6) Winsorized standard error of order α [23], 0 ≤ α ≤

0.5:

sW (α) =

√√√√ 1
n− 1

n∑
i=1

(
Wi −W

)2
(14)
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TABLE 3. Point estimates of the location.

TABLE 4. Point estimates of the scale.

whereWi is the i-th element of the α-winsorized sample
and W is the unbiased estimate of the α-winsorized
mean.

7) Andrew’s wave:

swa = (cMAD)

√
n
∑
|ui|<1 sin

2(πui)

π

∣∣∣∑|ui|<1 cos(πui)∣∣∣ (15)

where c = 2.4π , MAD is given by (8), and ui is given
by (7).

8) Biweight:

sbi =

√
n
∑
|ui|<1(xi −Me)2(1− u2i )

4∣∣∣∑|ui|<1(1− u2i )(1− 5u2i )
∣∣∣ (16)

where c = 9 and ui is given by (7).
9) Cαn , for 0 < α < 0.5, given by [41]:

Cαn =
subrange

8−1(0.75)−8−1(0.75− α)
(17)

where

subrange =
∣∣X(i+[αn]+1) − X(i)∣∣([ n2 ]−[αn])

and 8−1 stands for the inverse standard normal distri-
bution cumulative distribution function [38].

Table 4 shows the point estimates of the scale found in
this paper. Additionally, Fig. 5 shows the location and scale

estimates by year for all variables under study. With the
location estimates (see Fig. 5(a)), a pronounced decrease is
verified again from 2008 to 2012. After a rebound, between
2013 and 2019, there is a stabilizationwith a slight decrease in
all the estimates found. Note that, in general, all measures of
centralization for each variable fluctuate between the median
and the mean.

On the other hand, the scale estimate graph (Fig. 5(b))
shows that the standard deviation is an estimator that is well
above all other estimates. In addition, the rest of the estimates
are bounded lower by the LMS point estimator and higher
by the MAD mean. However, in this case, there are several
estimates that are similar. Additionally, it should be noted that
there is a parallel between the scale estimates and the location
estimates with respect to the fact that growth and decrease
occur in the same years. This indicates that the increase in
SO2 concentration produces an increase in its variability.
In this paper, the abovementioned location and scale esti-

mators were also used to analyze the variables that collect the
SO2 concentrations by month, day of the week, and every two
hours. The estimates are shown in Fig. 6.
From Fig. 6, the variables for months, weeks and hours

seem to follow the same pattern within each type of variable;
that is, they increase and decrease at the same time. The
summer months have a lower concentration of SO2, and
after September, there is a rebound that reaches its maximum
in late November and then balances until summer. As with
the descriptive analysis for weekdays (see Section II), the
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FIGURE 5. Location and scale estimates by year.

SO2 concentration drops sharply on weekends and remains
high on weekdays. In the first days of the week, the SO2
concentration is lower because the drop over the weekend has
to be compensated for. In addition, for the hours of the day,
there is a rise in the concentration of SO2 in the early hours of
the morning, which drops abruptly for the rest of the hours of
the day. Additionally, a small but relevant rise is seen at the
end of the day. Again, for all the variables, the centralization
measures are between the mean and the median.

Finally, from Fig. 6, all the scale estimates are bounded
from below by the LMS point estimator. Additionally, there
is a concordance between the location and scale estimates,
according to which an increase in the SO2 concentration leads
to an increase in its variability.

B. CONFIDENCE INTERVALS: CLASSIC, BOOTSTRAP AND
ROBUST
In this research, confidence intervals were built follow-
ing the recommendations of [43], [44] and the suggestions
of [21], [22]. In what follows, tν,q stands for the q-th quantile
of the Student’s t distribution with ν degrees of freedom
(DOFs) [38]. The confidence intervals are as follows:

1)
(
X̄ ± tn−1,α/2

sx
√
n

)
for (X , sx), where X is the mean

and sx is given by (10).

2)
(
Me±tn−2,α/2

MAD
√
n

)
for (Me, MAD), whereMe is the

median andMAD is given by (8).

3)
(
Me ±

tn−1,α/2
1.075

IQR
√
n

)
for (Me, IQR), where IQR =

Q3 − Q1 is the interquartile range, with Q1 being the
first quartile andQ3 being the third quartile. In the case
under study, the IQR is considered to be similar to SRH
(see (12)).

4)
(
T (α)±tn−2[nα]−1,α/2

sW (α)
(1− 2α)

√
n

)
for (T (α), sW (α)),

where T (α) is given by (5) and sW (α) is given by (14).
5)

(
Twa ± t[0.7·(n−1)],α/2

swa
√
n

)
for (Twa, swa), where Twa

is given by (6) and swa is given by (15).
6)

(
Tbi ± t[0.7·(n−1)],α/2

sbi
√
n

)
for (Tbi, sbi), where Tbi is

given by (9) and sbi is given by (16).
7) Bootstrap confidence interval [23]:

(Me − t∗1−α/2ŝ
∗, Me + t∗α/2ŝ

∗)

where ŝ∗ is the standard deviation unbiased estimator
of the median of each bootstrap sampleM∗e and t∗1−α/2
and t∗α/2 are the percentiles of the statistic M̂

∗
b given by

M̂∗b =
M∗e −Me

ŝ∗
.

In this paper, taking into account the previous informa-
tion, eight confidence intervals were constructed for each
of the twelve years under study. Specifically, these intervals
were of the following types: five robust intervals, one non-
parametric interval, one bootstrap interval, and one classic
interval. In Fig. 7, these intervals are shown for the years
2008, 2014 and 2019. Showing more figures with confidence
intervals would not provide relevant information here.

Despite the fact that only three of the twelve variables
have been included in Fig. 7, it can be affirmed that they
all have the same characteristics. First, the classic confi-
dence intervals are the most displaced toward high values,
while the median-based intervals are those with the lowest
values. Furthermore, among these median-based intervals,
the nonparametric and the bootstrap intervals are very similar.
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FIGURE 6. Location and scale estimates by month, day and every two hours.

Additionally, the narrowest intervals are those based on the
pair (Me, MAD) because the MAD scale estimator is the one
with the lowest values among those chosen to construct the
confidence intervals. Second, the intervals based onAndrew’s
wave and the biweight are analogous in all variables. Finally,
the intervals based on the α-trimmed mean location estima-
tors are those that are closest to the classic intervals.

In accordance with what has been said in the previous
paragraphs, the twelve variables under study are compared
using the following pairs of estimators: (T (α), sW (α)) and
(Tbi, sbi). This decision was made because the classic inter-
vals assumed that the underlying distribution is approxi-
mately normal, which is not true for the case under study.
Additionally, the point estimators (Me, MAD) and (Me, IQR)
and the bootstrap estimators yield results that are analogous to
the results obtained in Section III by using the nonparametric

estimators. However, the use of the pair (Me, MAD) will
produce more differences in the grouping of variables, elim-
inating the possibility of grouping similar behavior between
the concentration of SO2 by year. Moreover, the results for
the estimators based on Andrew’s wave and on the biweight
are similar, so either of these two estimators can be chosen.

With a confidence level of 95%, both the confidence inter-
vals and their lengths are shown in Table 5 for (T (α), sW (α))
and (Tbi(c), sbi(c)), with α = 0.2 and c = 9.

Figure 8 shows a graphical representation of the above-
mentioned confidence intervals. Furthermore, to classify the
variables, lines have been included. This classification is
analogous to that carried out in Section III by using the
Wilcoxon rank sum test for the medians. With the estimators
(T (0.2), sW (0.2)) and (Tbi(9), sbi(9)), the classification of
the variables is equivalent to that obtained by using nonpara-
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FIGURE 7. 95% confidence intervals (CI95): classic, nonparametric, bootstrap, and robust
confidence intervals.

metric estimators. However, the difference is that X10 can
form a category by itself in the groupings given by the pair of
estimators (T (0.2), sW (0.2)).

Analogous to the nonparametric analysis, from Fig. 8,
it can be observed that between 2008 and 2012, there
is a trend of abrupt decrease in the SO2 concentration
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TABLE 5. Limits and lengths of the 95% confidence intervals for (T (0.2), sW (0.2)) and (Tbi (9), sbi (9)).

FIGURE 8. 95% confidence intervals based on (T (0.2), sW (0.2)) and (Tbi (9), sbi (9)).

and that, after a rise in 2013, there are fluctuations until
2019 with a slight downward trend. Regarding the ampli-
tude, it can be concluded that the confidence intervals found
with (Tbi(9), sbi(9)) are less narrow than those found with
(T (0.2), sW (0.2)). The amplitudes of these intervals evolve
in parallel with the values of the medians.

For the study of the confidence intervals with the vari-
ables grouped by month, day of the week and every two
hours, the graphs shown in Fig. 9 are included. The graphs
in Fig. 9(a) and 9(d) show that the lowest values per month
are reached at the end of the summer, with SO2 concentration
values greater than 3µg/m3, after a pronounced decline that
begins in early summer. After September, there is a growth
that reaches its maximum in November, and in December,
there is a decrease of approximately 20%, which tends to
continue until February, although a small jump from Decem-
ber to January can be observed. Between winter and spring,
there is a growth of 10%, and in June, the decline begins until
the minimum of each year is reached. The results are similar
to those shown in Fig. 4(a). Furthermore, with respect to the
widths of the confidence intervals, these appear, in general,
to be narrower than for the analysis of the years. However,

the effect can also be oberved here that the greater the value
of the median is, the greater the value of the width of the
confidence intervals.

Regarding the analysis for the days of the week (see
Fig. 9(b) and 9(e)), it is analogous to that obtained with
the nonparametric estimators (see Section III and Fig. 4(b)).
Specifically, on weekends, the minimum SO2 concentration
is obtained; that is, values 33% less than the values obtained
on weekdays are obtained. In addition, there are four cate-
gories: one for each of the weekend days, one for Monday,
and one that groups the other days of the week. The category
of Monday, like that of Saturday, is between weekends and
the rest of the working days because it is in transit between
two states: working days and Sunday.

Finally, the results of the analysis for the hours (see
Fig. 9(c) and 9(f)) are also very similar to those found
with the nonparametric estimation (see Fig. 4(c)). Moreover,
the results obtained with the estimators (Tbi(9), sbi(9)) are
the same as those obtained with the nonparametric esti-
mation. However, differences appear in the estimates of
(T (0.2), sW (0.2)) because in the early hours of the day,
the estimates appear to be somewhat the same as for late
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FIGURE 9. 95% confidence intervals based on (T (0.2), sW (0.2)) and (Tbi (9), sbi (9)) by month (Yk ), day of the week (Zk ),
and every two hours (Wk ).

afternoon hours. In any case, the general conclusions are the
same: the maximum is reached at approximately 10:00 - 11:
00, and the SO2 concentration decreases to more than 40%
by 16:00 - 17:00. Then, the SO2 concentration grows by 25%
in the late afternoon. Later, the SO2 concentration decreases
again at night and in the early morning, although it does not
decrease as much as in the afternoon.

V. CONCLUSION
The objective of this paper was to analyze the general
behavior of the SO2 concentration at the air quality mon-
itoring station of Belisario, Quito, Ecuador over the last
twelve years (i.e., from January 2008 to December 2019).
To this end, four types of variables were considered: the year,
month of the year, day of the week, and hour of the day.
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After verifying that no separate sets of variables came
from the same distribution, the aim was to determine the
differences between the parameters that characterize these
variables.

With an initial statistical summary, it was observed that all
the SO2 concentration values at the Belisario station were
values that were found to be at the acceptable level of air
quality pollution according to the Quiteño Air Quality Index.
However, it was also observed that the SO2 concentration
values that exceed the value of desirable quality, according to
the Quiteño Air Quality Index, were always extreme obser-
vations, although they were not the only ones. Furthermore,
it should be noted that in the study carried out in this paper,
the only extreme observations were from the right, never from
the left. Additionally, all the variables of each time period
presented characteristics that were compatible with the possi-
bility that these variables followed heavy-tailed distributions.

Another important result of the research presented herewas
that after smoothing the data for all years, and for each of the
years in particular, a tendency toward decreasing SO2 con-
centration values was observed across the years. In addition,
this feature also occurred across months, days of the week,
and hours of the day.

Then, due to the impossibility of using classical inference,
the variables under study were characterized by hypothesis
testing and both nonparametric and robust confidence inter-
vals. Additionally, different robust location and scale statis-
tics were found, and some of them were used to determine
the robust confidence intervals. During the analysis, it was
observed that all the location estimates were between the
mean and the median, that the amount of SO2 concentration
at the Belisario station decreased markedly between 2008 and
2012 and increased in 2013 and that from then on, oscillations
occurred with a slight continued drop.

Regarding the analysis using the scale estimators, all these
estimations were found to be in a band where the standard
deviation was well above all of them, and the other estima-
tionswere bounded from below by the leastmedian of squares
estimator.

These observations highlight the fact that there is a parallel
between the location estimates and scale estimates, in the
sense that an increase or decrease in the value of the point
estimates also produces an increase or decrease, respectively,
in the value of the scale estimates. This result leads to the con-
clusion that the extreme observations, i.e., outliers, in quantity
and valuewere the ones that determined the location and scale
estimates in this research.

For reasons explained in the paper, the confidence intervals
that were chosen to compare the variables were, on the one
hand, the confidence intervals based on the α-trimmed mean
and winsorized standard deviation and, on the other hand,
the confidence intervals based on the biweight estimators.
Here, the existence of a downward trend in the SO2 con-
centration between 2008 and 2012 could be seen again; the
concentration rises in 2013, and after that year, there are
fluctuations that show a slight tendency to decrease.

In both the variables that represent the months and those
that represent the days of the week and hours of the day,
there was a certain periodicity. In the analysis by month,
notable decreases were observed in summer, and there was
an increase at the end of the year and some stability in the
first quarter of each year. Additionally, in the analysis by
day of the week, there was a clear difference in the SO2
concentration between working days and weekends. Finally,
the hourly analysis also showed minimum values in the early
afternoon, maximum values in the early hours of the morning
and night, and stable concentration values at night and in the
early morning.

With the analysis carried out in this paper, it was possible
to group the variables under study by comparing the results of
the data by year, month, day of the week, and hour of the day.
In addition, it was possible to find the differences between
the categories that were established, and these differences
were quantified by using confidence intervals. All of the
above was exhaustively developed to robustly estimate the
SO2 concentration measurements at the Belisario station over
the last twelve years.

The final conclusion of this paper is that the trend of the
SO2 concentration at Belisario station is downward, and this
wasmeasuredwith the precision provided by robust statistical
methods. Therefore, it can be said that the measures that have
been taken by the Quito city council over the last few years
are yielding good results.
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