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ABSTRACT A fixed interconnection parallel architecture is characterized by a graph, with vertices
corresponding to processing nodes and edges representing communication links. An ordered set R of nodes
in a graph G is said to be a resolving set of G if every node in G is uniquely determined by its vector of
distances to the nodes in R. Each node in R can be thought of as the site for a sonar or loran station, and
each node location must be uniquely determined by its distances to the sites in R. A fault-tolerant resolving
set R for which the failure of any single station at node location v in R leaves us with a set that still is
a resolving set. The metric dimension (resp. fault-tolerant metric dimension) is the minimum cardinality
of a resolving set (resp. fault-tolerant resolving set). In this article, we study the metric and fault-tolerant
dimension of certain families of interconnection networks. In particular, we focus on the fault-tolerant
metric dimension of the butterfly, the Benes and a family of honeycomb derived networks called the silicate
networks. Our main results assert that three aforementioned families of interconnection have an unbounded
fault-tolerant resolvability structures. We achieve that by determining certain maximal and minimal results
on their fault-tolerant metric dimension.

INDEX TERMS Graph theory, metric dimension, fault-tolerant metric dimension, NP-complete problems,
interconnection networks.

I. INTRODUCTION
A. LITERATURE BACKGROUND
The concept of the metric dimension was put forward
independently by Slater [34] and Harary and Melter [12]
in 1975 and 1976 respectively. Since then, this graph param-
eter has found potential applications in many scientific areas
such as chemistry [8], the robot navigation [19], network
discovery and verification [3] and geographical routing pro-
tocols [25], among others.

Note that finding metric dimension of a graph is an
NP-complete problem [11]. Therefore, it is interesting to
study the minimum metric dimension (MMD) problem
for infinite families of graph-theoretic interest. Bailey and
Cameron [1] studied the MMD problem for the Kneser and
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Johnson graphs. Bailey and Meagher [2] determined the met-
ric dimension of Grassmann graphs. Fehr et al. [10] studied
the MMD problem for Cayley digraphs. Cáceres et al. [6]
(resp. Cáceres et al. [5]) studied the problem for Cartesian
product graphs (resp. infinite graphs). It is interesting to
know that the metric dimension of an infinite graph can both
be finite or infinite. The metric dimension of wheel-related
graphs was studied by Siddiqui and Imran [33] and of convex
polytopes by Kratica et al. [20]. The MMD problem of con-
vex polytopes which could be generated from wheel-related
graphs was studied by Imran et al. [17]. Hsieh and Hsiao [15]
studied certain topological properties of the k-degree Caley
networks.

Chartrand and Zhang [7] suggested to use the members of
metric basis as censors. Given that, a faulty censor will lead
to failure in recognizing the thief (intruder, fire etc.) in the
system. The concept of a fault-tolerant resolving set resolves
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this issue by adding the assumption that a faulty censor
will not lead to the system failure as the remaining censors
will still be able to deal with the intruder. This suggest that
applications of fault-tolerant metric dimension are as diverse
as they are for the classical metric dimension. For more
detailed information regarding application and mathematical
properties of the fault-tolerance in resolvability, we refer the
reader to [18], [32].

Fault-tolerant metric dimension has been studied in var-
ious fields. Raza et al. [30] studied applications of the
fault-tolerant metric dimension in certain direct intercon-
nection architectures. Somasundari and Raj [35] studied
the fault-tolerant metric dimension of oxide interconnection
networks. Krishnan and Rajan [21] studied applications of
the fault-tolerant metric dimension in crystalline structures.
Raza et al. [31] studied applications of fault-tolerant met-
ric dimension in convex polytopes. Liu et al. [23] studied
the fault-tolerant metric dimension of wheel related graphs.
Raza et al. [29] studied the extremal structure of graphs
with respect to the fault-tolerant metric dimension. For more
applications, we refer the reader to [37].

In view of this study, it is important to notice that theMMD
problem for interconnection networks was first studied by
Manuel et al. [26]. We continue this study by investigating
the fault-tolerant metric dimension problem for three impor-
tant classes of interconnection networks known as butterfly
networks, Benes networks and silicate networks.

B. MATHEMATICAL PRELIMINARIES
A graphG is an ordered pair (V ,E), where the set V compris-
ing the nodes called the vertex-set and E is the set of the links
between those nodes call the edge-set. The distance between
two vertices say x and y is denoted by d(x, y) and is defined to
be the length of a shortest path between x and y. A node x ∈ G
is said to resolve two nodes u and v, if d(x, u) 6= d(x, v).
We refer the reader to the book by Bondy and Murty [4] for
standard terminologies on graph theory.

For anyW ⊂ V (G) if there exist a vertex w ∈ W such that
every pair of vertices v1, v2 ∈ V is resolved by w, then we
say that W is a resolving set of G. For a resolving set W and
w ∈ W , if W \ {w} is still a resolving set we say that W is a
fault-tolerant resolving set. The smallest possible cardinality
of a resolving set (resp. fault-tolerant resolving set) in G is
called the metric dimension β(G) (resp. fault-tolerant metric
dimension β ′(G)). A resolving (resp. fault-tolerant resolving)
set of cardinality β(G) (resp. β ′(G)) is said to be the metric
basis (resp. fault-tolerant metric basis) of G.
Note that the definition of the fault-tolerant metric dimen-

sion naturally suggests the following inequality. For any
graph G,

β(G)+ 1 ≤ β ′(G). (1)

Note that the equality in G holds for cycles.
In order to understand the concept of metric and

fault-tolerant metric dimension better, we provide an example
of a tree T with matric dimension 10 and fault-tolerant metric

FIGURE 1. The tree T with β′(T ) = 14 and β(T ) = 10.

dimension 14. Figure 1 exhibits the tree T . Note that the
vertices 1 to 10 form a metric basis whereas adding y, v, r, s
to these 10 vertices generate a fault-tolerant metric basis
of T .

Javaid et al. proved the following lemma which shows
an alternative way to trace a fault-tolerant resolving set in a
graph.
Lemma 1.1 [18]: A resolving set R of graph G is

fault-tolerant if and only if every pair of nodes of G is resolved
by at least two nodes of R.

In view of the relation between a resolving and
fault-tolerant resolving set, Hernando et al. proved the fol-
lowing relation between the parameters β(G) and β ′(G).
Theorem 1.2 [14]: Fault-tolerant metric dimension is

bounded by a function of the metric dimension (independent
of the graph). In particular, β ′(G) ≤ β(G)

(
1+2.5β(G)−1

)
for

every graph G.
Javaid et al. proved the following interesting result which

shows that the difference between metric dimension and
fault-tolerant metric dimension of a graph can be arbitrary
large.
Theorem 1.3 [18]: For every natural number ν, there exist

a graph such that β ′(G) ≥ β(G)+ ν.
For any set W ⊂ V (G), let γ (W ) be the set of all the

common neighbors of vertices in W . Based on this concept,
Raza et al. [31] determined the following interesting relation
between a resolving and a fault-tolerant resolving set.
Lemma 1.4 [31]: Let W be a resolving set of graph G. Then

W ′ := ∪v∈W
(
N [v]∪γ (N (v))

)
is a fault-tolerant resolving set

of G.

II. A TOPOLOGICAL REPRESENTATION OF BUTTERFLY
AND BENES NETWORKS
In this section, we present a topological representa-
tion of butterfly and Benes and networks introduced by
Manuel et al. [26]. They have called this new representation
and the usual structural drawing, a diamond representation
and a normal representation respectively. The diamond rep-
resentation plays a key role in locating the resolving and
fault-tolerant resolving sets in these networks. Moreover, this
representation is very useful and efficient in studying certain
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cyclic and other geometric properties of these interconnection
networks. Kruskal and Snir [22] studied the structural prop-
erties of interconnection networks and presented a unified
theory for them. They also studied the flow mechanisms of
interconnection networks and its role in certain geometric
properties of these multistage interconnection structures.

In order to visualize the normal and diamond representa-
tions, it is required to properly define these networks. The
representation of an interprocessor communication model as
an undirected graph takes processors as its nodes and links
between processors as the edges. The butterfly networks of
dimension r has the node-set denoted by BF(r) which are
of the form of pairs [s, i], in which i is the dimension/level
of a node which varies from 0 to r and s is an r-bit binary
string which denoted the row of the corresponding node. The
nodes [s, i] and [s′, i′] are connected by an edge if and only
if i′ = i + 1 and either s and s′ are identical, or both s and s′

differ in precisely the ith bit. The number of nodes and edges
in BF(r) are 2r (r + 1) and r2r+1 respectively.

An r-dimensional Benes network denoted by B(r) is
defined in a similar fashion, in fact the number of levels are
2r + 1 while having 2r nodes in each level. The nodes are
of the form [s, i], (0 ≤ i ≤ 2r) and linked to each other by
the same fashion we have in BF(r). Thus, in other words B(r)
is back-to-back butterflies as one can obtain a copy of BF(r)
from level 0 to level r . The number of nodes and edges in
B(r) are 2r (2r + 1) and r2r+2 respectively. It is necessary to
mention that the edges in both BF(r) and B(r) are undirected.
The representation of butterfly and Benes networks, which
we obtain by arranging the nodes level-wise and link them as
defined above, is called their normal representation.

The description of the diamond representation of BF(r) is
explained as follows: Corresponding to any array of level 0
nodes, two butterfly networks of dimension r − 1 generate
reflexive images. Bridging the two BF(r − 1), the nodes on
level 0 are the nodes of chord-less quadrangles in the diamond
representation. So every quadrangle is considered a diamond
in the later representation. Both normal and diamond repre-
sentation of BF(3) i.e. the 3-dimensional butterfly networks
are exhibited in Fig. 2. Given this sceneries, the diamond rep-
resentation Benes network comprises back-to-back butterfly
networks, Fig. 3. This new representation assist in under-
standing the spanning trees and cyclic properties better in
these networks, since this representation has a better structure
visualization.

Although an r-dimensional Benes network comprises
back-to-back butterflies, a considerable topological and
structural difference can be observed between butterfly and
Benes networks. The structural similarity and dissimilarity
can be observed as follows. The deletion of nodes of level 0
generates two disjoint copies of (r − 1)-dimensional butter-
flies, and in the same spirit, the removal of level r of also
leaves two disjoint copies of BF(r − 1). An alternative way
to view this recursive structure is as follows: the deletion of
nodes of levels both 0 and r of an r-dimensional butterfly net-
work generates 4 disjoint copies of of an (r −2)-dimensional

FIGURE 2. (a): Normal representation of BF (3), (b): diamond
representation of BF (3).

butterfly network. Whereas, the removal of level 0 and
2r nodes in B(r) leaves 2 disjoint copies of a B(r−1). In other
words, the butterfly has dual symmetry, which the Benes
does not have. Imran et al. [16] studied certain topological
properties of the Benes and butterfly networks.
Lemma 3.1 [26]: The normal and diamond representations

of butterfly and Benes networks are isomorphic.

III. FAULT-TOLERANT METRIC DIMENSION OF BENES
NETWORKS
We study the fault-tolerant metric dimension problem in
this section. Note that the diamond representation of an
r-dimensional Benes network B(r) is embeddable on 2D
grid. An embedding of this type of B(3) on grid is depicted
in Fig. 4. We call two nodes x and y the horizontal, if they lie
in the same row of the underlying grid. In a similar fashion,
they are called vertical, if they are drawn in the same column
of the grid. For example, the nodes [000, 2] and [110, 2] are
vertical nodes in Fig. 3 whereas, in the same Fig, the nodes
[000, 1] and [000, 5] are horizontal nodes.

There is an important structural observation for Benes
network B(r). By deleting all the nodes of level r , we can par-
titionB(r) into (r−1)-dimensional butterflies, say,BF1(r−1),
BF2(r − 1), BF3(r − 1), and BF4(r − 1). This structural
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FIGURE 3. (a): Normal representation of B(3), (b): diamond
representation of B(3).

FIGURE 4. An embedding of 3-dimensional Benes network on grid.

decomposition of in a 3-dimensional Benes network can be
viewed in Fig. 5. The butterfly network BF1(r − 1) consists
of nodes {[t1t2 . . . tr−10, l] : t1t2 . . . tr−1 is any binary string

FIGURE 5. A structural decomposition of B(4) into BF1(3), BF2(3), BF3(3),
and BF4(3). They are marked with rectangles in different styles.

and 0 ≤ l ≤ (r − 1)} and similarly BF2(r − 1) comprises
nodes {[t1t2 . . . tr−10, l] : t1t2 . . . tr−1 is any binary string
and (r + 1) ≤ l ≤ 2r}. On the other hand, the butter-
fly network BF3(r − 1) contains nodes {[t1t2 . . . tr−11, l] :
t1t2 . . . tr−1 is any binary string and (r + 1) ≤ l ≤ 2r}
and, in the similar fashion, BF4(r − 1) consists of nodes
{[t1t2 . . . tr−11, l] : t1t2 . . . tr−1 is any binary string and 0 ≤
l ≤ (r − 1)}. We will notice in Section IV that the butterfly
networks do not possess this type of structural decomposition.

We need the following lemma before we present our main
theorem of this section.
Lemma 4.1: Let B(r) be an r-dimensional Benes net-

work. If F0 = {[0s2 . . . sr , 0], [0s2 . . . sr , 2r] : s2 . . . sr
is any binary string} and F1 = {[s1s2 . . . sr−10, r] :
s1 . . . sr−1 is any binary string}, then γ

(
N (F0)

)
=

{[1s2 . . . sr , 0], [1s2 . . . sr , 2r] : s2 . . . sr is any binary string}
and γ

(
N (F1)

)
= ∅.

Proof: Let x be a node of r-dimensional Benes net-
work B(r) such that x ∈ F0. Then x is either of the
form [0s2 . . . sr , 0] or [0s2 . . . sr , 2r]. If x is a node of
the form [0s2 . . . sr , 0], then N (x) = {[s1s2 . . . sr , 1] :
s1s2 . . . sr is any binary string}. Note that, in this
case, the only common neighbors of [0s2 . . . sr , 1] and
[1s2 . . . sr , 1] are [1s2 . . . sr , 0] where s2 . . . sr is any binary
string. A similar kind of argument holds for x to be
the other possible case. Thus we obtain γ

(
N (F0)

)
=

{[1s2 . . . sr , 0], [1s2 . . . sr , 2r] : s2 . . . sr is any binary
string}. Now assume x to be of the form [s1s2 . . . sr−10, r],
then N (x) = {[s1s2 . . . sr−10, r − 1], [s1s2 . . . sr−11, r −
1], [s1s2 . . . sr−10, r+1], [s1s2 . . . sr−11, r+1] : s1s2 . . . sr−1
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is any binary string}. By the definition of Benes network,
there can not be any common neighbor of the nodes of these
four types. Thus in this case we obtain γ

(
N (F1)

)
= ∅.

Now we present our main result of this section. Claims 1
& 2 were essentially shown by Manuel et al. [26].
Theorem 4.2: Let B(r) be the r-dimensional Benes network

with r > 2. Let F0 = {[s1s2 . . . sr , `] : s1 . . . sr is any
binary string and ` = 0, 1, r − 1, r + 1, 2r − 1, 2r} and
F1 = {[s1s2 . . . sr−10, r] : s1 . . . sr−1 is any binary string}.
Then F0 ∪ F1 is a fault-tolerant resolving set of B(r).

Proof: Let G be r-dimensional Benes network. Let
c1, c2, c3, c4, c5 and c6 are the nodes of types [0t2 . . . tk , 0],
[1t2 . . . tk , 0], [0t2 . . . tk , 2r], [1t2 . . . tk , 2r], [t1t2 . . . tk−10, r]
and [t1t2 . . . tk−11, r] respectively.
Claim 1: Any resolving set R of G comprises either c1 or

c2, either c3 or c4, and either c5 or c6.
Note that the nodes [0t2 . . . tk , 0], [0t2 . . . tk , 1],

[1t2 . . . tk , 0], and [1t2 . . . tk , 1] lie on a cycle of length
4, say, C in G. Furthermore, the nodes [0t2 . . . tk , 0]
and [1t2 . . . tk , 0] are having degree 2 in C . Let u be
a node of G. If a geodesic between u and [0t2 . . . tk , 0]
traverses [0t2 . . . tk , 1], then a geodesic between u and
[1t2 . . . tk , 0] also traverses the same node [0t2 . . . tk , 1]. Thus
dG(u, [0t2 . . . tk , 0]) = dG(u, [1t2 . . . tk , 0]) for any node u of
G. Thus we deduce that any resolving set R of G consists of
either c1 or c2. A similar argument also works for other two
possible cases. Thus the claim follows.

Let S0 = {[0s2 . . . sr , 0], [0s2 . . . sr , 2r] : s2 . . . sr is any
binary string} and S1 = {[s1s2 . . . sr−10, r] : s1 . . . sr−1 is
any binary string}.
Claim 2: S0 ∪ S1 is a resolving set of G.
Let R = S0 ∪ S1, and let x and y be the arbitrary nodes

of V \ R of G. Assume that x = [x1x2 . . . xr , j] and y =
[y1y2 . . . yr , k]. Note that it is possible to locate a node u ∈ R
such that d(x, u) 6= d(y, u), if one of x and y lies at level 2r ,
level r , or level 0. Thus it is enough to assume that the nodes
x and y are not at level 2r , level r , and level 0. In that case,
we are left with three possible cases for the nodes x and y.

As case 1, we assume that both x and y are vertical. Note
that any two nodes lie at same level, whenever they are
vertical. Thus k = j in the nodes x and y. By considering
a subcase where both x and y are the nodes of BF1(r − 1),
we obtain that j < r and xr = yr = 0. Recall that
a landmark is an element of a resolving set in a graph.
Now we consider the landmark u = [x1x2 . . . xr−10, r].
We may assume without loss of generality that x1x2 . . . xr <
y1y2 . . . yr . Let p be the smallest index such that x1x2 . . . xp =
y1y2 . . . yp and xp+1 6= yp+1. Also note that a geodesic
between y = [y1y2 . . . yr , j] and u = [x1x2 . . . xr−10, r] is
[y1y2 . . . ypyp+1 . . . yr , j], [y1y2 . . . ypyp+1 . . . yr , j − 1], . . . ,
[y1y2 . . . ypyp+1 . . . yr , p], [y1y2 . . . ypyp+1 . . . yr , p+ 1], . . . ,
[y1y2 . . . ypxp+1 . . . xr , j], [y1y2 . . . ypxp+1 . . . xr , j + 1], . . . ,
[y1y2 . . . ypxp+1 . . . xr , r]. By assumption x1x2 . . . xp =

y1y2 . . . yp and xr = 0. Thus it follows that [y1y2 . . . ypxp+1 . . .
xr , r] = [x1x2 . . . xr−10, r]. We conclude that this geodesic

between y and u traverses x. And thus d(y, u) 6= d(x, u). The
remaining subcases are of similar argument.

Now we consider as a case 2, that both x and y are hor-
izontal. Note that this case is similar to the case 1. How-
ever, the corresponding element of R is [0x2 . . . xr , 0] or
[0x2 . . . xr , 2r].

Finally we assume the case when x and y are neither
horizontal nor vertical. Let us assume that x = [x1x2 . . . xr , j]
and y = [y1y2 . . . yr , k]. Among possible subcases, first we
consider the subcase when both x and y belong to BF1(r−1).
This implies that j < r , k < r , and ur = vr = 0. We first
consider the case when j 6= k as the case j = k is essentially
similar. Let us assume that j > k . Consider an element of
u ∈ R such that u = [x1x2 . . . xr−10, r]. It can possibly
be verified that d(u, x) = r − j. It is important to notice
that all the nodes of level p in B(r) form a co-clique (i.e.
an independent set) for every value of p. This implies that,
a geodesic from u at level r to y at level k passes through
some node at level l, where k ≤ l ≤ r . Thus d(u, y) ≥ r − k .
Since j > k , we have r − k > r − j and thus d(y, u) 6=
d(x, u). The other possible subcases are similar, so we skip
them.
Claim 3: F0 ∪ F1 is a fault-tolerant resolving set of G.
By Claim 1, any resolving set of G comprises at least

3(2r−1) nodes. Thus the resolving set S := S0 ∪ S1 is a
metric basis of G. Even though S is a metric basis of G,
Lemma 1.1 does not assure us to generate a corresponding
fault-tolerantmetric basis ofG. In fact wewill obtain an upper
bound by using the Lemma 1.1. Note that by Lemma 1.1,
∪0≤i≤1

(
N [Si] ∪ γ (N (Si))

)
is a fault-tolerant resolving set of

G. By definition of Benes networks, we obtain that N [S0] =
S0 ∪ A such that A = {[s1s2 . . . sr , 1], [s1s2 . . . sr , 2r −
1] : s1s2 . . . sr is any binary string}. In a similar manner,
we obtain that N [S1] = S1 ∪ B where B = {[s1s2 . . . sr , r −
1], [s1s2 . . . sr , r + 1] : s1s2 . . . sr is any binary string}.
By simultaneously using these facts, Lemma 4.1 and the
Lemma 1.1 we obtain that F0∪F1 is a fault-tolerant resolving
set of G. This completes the proof.

As a corollary to Theorem 4.2, we present the following
result.
Corollary 4.3: Let G be an r-dimensional Benes network,

then β ′(G) ≤ 13(2r−1).
Proof: By Theorem 4.2, there exists a fault-tolerant

resolving set of order |F0 ∪ F1| = 13(2r−1) in G. Thus
the fault-tolerant metric dimension β ′(G) can be at most
13(2r−1).

As the difference between the metric dimension and the
fault-tolerant metric dimension can be arbitrary large, it is
not surprising that we obtain the upper bound of β ′(B(r)) is
comparatively larger than β(B(r)). Note that, in the proof of
Theorem 4.2, S0∪S1 is a metric basis of B(r). Thus we record
our calculations by proposing the following conjecture.
Conjecture 4.4: Let G be an r-dimensional Benes net-

work with r > 2. Then β ′(G) ≥ 13(2r−1) and thus
β ′(G) = 13(2r−1).
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FIGURE 6. BF (3) on grid.

Proposition 4.5: Let G be an r-dimensional Benes network
with r > 2. Then G is a family of interconnection networks
with an unbounded fault-tolerant resolvability structures.

IV. FAULT-TOLERANT METRIC DIMENSION OF
BUTTERFLY NETWORKS
In this section we study the fault-tolerant metric dimension
of butterfly networks. As we have noticed in Section II that
a Benes network is a back-to-back butterflies. This recursive
structural property of Benes network leads us to the fact that
it shares some topological properties with butterfly networks.
This suggests a considerable similarity in the proof of our
main result in this section. Even though we will skip the sim-
ilar parts of the proof, we will properly state the assumption
and results. In a similar spirit to the embedding of Benes
network on grid, the butterfly network can be embedded to
the grid as well. Fig. 6 shows an embedding of BF(3) on
grid.

As we described in Section III that the removal of level r
nodes in B(r) yields four disjoint copies of BF(r − 1). In the
similar manner, the removal of nodes either of level 0 or of
level r in BF(r) leaves two disjoint copies of BF(r − 1). Let
us denote these two copies of (r − 1)-dimensional butterfly
networks by BF1(r − 1) and BF2(r − 1), respectively. This
phenomenon for BF(4) can be observed in Fig. 7. As we have
observed already in the proof of Theorem 4.2 that this sort
of structural decomposition of Benes network is important.
In case of butterfly networks, we will skip those part of
proof of main theorem in this section which have structural
resemblance with those corresponding parts of Theorem 4.2.

The following lemma gives us the necessary information
to prove our main theorem of this section.
Lemma 5.1: Let BF(r) be an r-dimensional butterfly net-

work. If F0 = {[0s2 . . . sr , 0] : s2 . . . sr is any binary
string} and F1 = {[s1s2 . . . sr−10, r] : s1 . . . sr−1 is any
binary string}, then γ

(
N (F0)

)
= {[1s2 . . . sr , 0] : s2 . . . sr

is any binary string} and γ
(
N (F1)

)
= {[s1s2 . . . sr−11, r] :

s1 . . . sr−1 is any binary string}.

FIGURE 7. A structural decomposition of BF (4) in to BF1(3) and BF2(3).
They are marked with rectangles in different styles.

Proof: Let x ∈ F0. Then x = [s1s2 . . . sr−10, r] and
N (x) = {[s1s2 . . . sr , 1] : s1s2 . . . sr is any binary string}.
The common neighbors of [0s2 . . . sr , 1] and [1s2 . . . sr , 1]
are [1s2 . . . sr , 0] where s2 . . . sr is any binary string. Then
we obtain γ

(
N (F0)

)
= {[1s2 . . . sr , 0] : s2 . . . sr is any binary

string}. The other case is similar.
The following result gives us a fault-tolerant resolving set

of BF(r) for r > 2. Claims 1 & 2 were essentially shown by
Manual et al. [26].
Theorem 5.2: Let BF(r) be the r-dimensional butterfly

network with r > 2. Then F = {[s1s2 . . . sr , `] : s1 . . . sr
is any binary string and ` = 0, 1, r − 1, r} is a fault-tolerant
resolving set of BF(r).

Proof: LetG be an r-dimensional butterfly network. Let
c1, c2, c3, and c4 be the nodes of the types [0t2 . . . tk , 0],
[1t2 . . . tk , 0], [t1t2 . . . tk−10, r] and [t1t2 . . . tk−11, r], respec-
tively.
Claim 1: Any resolving set R of G consists of either c1 or

c2 and either c3 or c4.
The proof of Claim 1 is similar to the proof of Claim 1 in

Theorem 4.2. Thus, we skip it. Let S0 = {[0s2 . . . sr , 0] :
s2 . . . sr is any binary string} and S1 = {[s1s2 . . . sr−10, r] :
s1 . . . sr−1 is any binary string}.
Claim 2: S0 ∪ S1 is a resolving set of G.
We skip the proof of Claim 2 due to similarity with the

proof of Claim 2 in Theorem 4.2. Note that the vertical and
horizontal nodes of G are the nodes in the same column and
same row in the grid, see also Fig. 6. On the other hand,
the butterflies BF1(r − 1) and BF2(r − 2) correspond to the
(r − 1)-dimensional butterflies in the Fig. 7.
Claim 3: F is a fault-tolerant resolving set of G.
Note that N (S0) = {[s1s2 . . . sr , 1] : s1s2 . . . sr is any

binary string} and N (S1) = {[s1s2 . . . sr , r − 1] : s1s2 . . . sr
is any binary string}. Now we use the Lemma 1.1 and
Lemma 5.1 simultaneously to deduce that F is a fault-tolerant
resolving set of G. This finishes the proof.
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FIGURE 8. The tetrahedron. It acts as the unit for silicate sheets and
networks.

As a corollary to Theorem 5.2, we present the following
result.
Corollary 5.3: Let G be an r-dimensional butterfly net-

work, then β ′(G) ≤ 4(2r ).
Proof: By Theorem 5.2, there exists a fault-tolerant

resolving set of order |F | = 4(2r ) inG. Thus the fault-tolerant
metric dimension β ′(G) can be at most 4(2r ).

Note that, in the proof of Theorem 5.2, S0 ∪ S1 is a metric
basis of BF(r). Thus we propose the following conjecture.
Conjecture 5.4: Let G be an r-dimensional butterfly

network with r > 2. Then β ′(G) ≥ 4(2r ) and thus
β ′(G) = 4(2r ).
Proposition 5.5: Let G be an r-dimensional buterfly

network with r > 2. Then G is a family of interconnec-
tion networks with an unbounded fault-tolerant resolvability
structures.

V. FAULT-TOLERANT METRIC DIMENSION OF
HONEYCOMB DERIVED NETWORKS
Fusion process in metallic carbonates or oxides with sand
generate silicates. The key unit is the SiO4 tetrahedron
which exists in essentially-all silicates. From chemical per-
spectives, the central node of the tetrahedron symbolizes
the silicon ion, whereas, the boundary atoms represent the
oxygen ions. By following a similar graph-theoretic termi-
nology, the corner/boundary vertices are called the oxygen
nodes and the central vertex is called the silicon node. See
Figure 8.

By recursively fusing oxygen nodes from two tetrahedra
of distinct silicates, certain minerals are obtained. Different
tetrahedra arrangements generate different silicate structures
are obtained. These different arrangements include linked &
unlinked distinctive entities, 1D chains, 2D sheets and 3D
framework/structures. Some of these silicates are exhibited
in Figure 9. Based on the tetrahedra arrangements in these
silicates, they are named as ortho-, pyro-, chain and cyclic
silicates.

Note that simple structures of orthosilicates comprises dis-
crete SiO4 tetrahedron as their units. Pyrosilicate are formed
by joining an oxygen node of two tetrahedra. On the other
way, a linear arrangement of tetrahedra gives rise to the
chain silicates. Some sheet and cyclic silicates are shown
in Figure 10.

A honeycomb network HC(n) is constructed by attaching
n − 1 layers of hexagons on a central hexagons called its

FIGURE 9. Types of linear silicates.

FIGURE 10. Some types of cyclic and sheet silicates.

core. A silicate network of dimension n symbolized as SL(n),
where n is the number of hexagons between the center and
boundary of SL(n). Addressing, routing and broadcasting in
honeycomb networks is discuss in [9]. A construction of
SL(2) from HC(3) is given in Figure 11. By deleting all the
central nodes, which are called the silicon nodes, from the
silicate network we obtain the Oxide network. We symbolize
the oxide network of dimension n byOX (n). It is important to
notice that SL(n) has bothOX (n) andHC(n) as its subgraphs.
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FIGURE 11. Silicate network construction and boundary nodes.

However, OX (n) plays an important role in studying the
structural and metric properties of SL(n). First observation
in this regard is that both SL(n) and OX (n) has the same
diameter [27]. Some topological properties of the silicate and
other related networks are derived in [13], [24].

Now we consider the aforementioned family of silicate
networks as a multistage interconnection network. This is
achieved by suggesting a coordinate system to this network
and the first step in doing that is to allot an id to the nodes
of the oxide network. And in the next step, the proposed
coordinate system is extended [27] to the family of silicate
networks. Note that a similar coordinate system has been
proposed by Nocetti et al. [28] (resp. Stojmenovic [36])
for the hexagonal (resp. honeycomb) networks. Parallel to
the three edge orientations, three coordinate axis namely α,
β and γ having a mutual angle of 120 between any two
of them, are proposed. The corresponding coordinate axes
for β, α and γ axes are β = 0, α = 0 and γ = 0
respectively. The lines parallel to each coordinate axis are
called α-, β- and γ -lines. On the other hand, α = −k and
α = h are the lines lie on on the two sides of α-axis. Any
arbitrary node in an n-dimensional oxide network OX (n) is
assigned a triplet (a, b, c) and a, b and c are the coordinate
position for the intersection of lines α = a, β = b, and
γ = c. Since each silicon node is the central node in the
tetrahedron. One may assign ids to a silicon node by apply-
ing the formula of centroid of an equilateral triangle. See
Figure 12.
Theorem 6.1: Let SL(n) be the n-dimensional silicate net-

work with n > 2. Then β(SL(n)) ≥ 6n.
Proof: Let c be a boundary node and x be a central/silion

node adjacent to c. Then note that any other node of the
silicate network, say y, has the distance property d(c, y) =
d(x, y) holds. This shows that neither c nor x resolve the
vertex y. This simply suggest to include either c or x in any
metric basis of the silicate network. Note that the number

of boundary nodes are exactly 6n. This suggests that
β(SL(n)) ≥ 6n.
Theorem 6.2 [26]: Let SL(n) be the n-dimensional silicate

network with n > 2. Then β(SL(n)) = 6n.
Proof: We claim that the set of boundary nodes is a

metric basis. In view of symmetry of the network α-lines is
the starting point of our discussion. The odd/even property
of the parameter k determines the line α = k to be odd or
even. α-channel is the region between two consecutive or
alternative α-lines. One of the structural property suggests
that all the boundary nodes of SL(n) lie only on the α-lines.
Figure 12 depicts this fact.

The dotted lines in Figure 12 are even axes and black lines
are odd axes. For any oxygen node (a, b, c), α = a, β = b,
and γ = c are the axis lines passing through (a, b, c). Among
these three axis lines, two are odd and one is even. For the
oxygen node X in Figure 12, α and γ lines are odd axis lines
and γ line is an even axis line. Similarly for node N , γ and
β are odd axis lines and α is an even axis line. Further if we
call an edge joining two oxygen nodes as an oxide edge then
each such oxide edge is on some odd axis line.

Now consider any two oxygen nodes A and B. Let AXBY
be the parallelogram with nodes A and B as corner vertices.
Let P(A,B) be a shortest path between A and B. Since every
shortest path between A and B lies inside the parallelogram
AXBY , the path P(A,B) also lies inside parallelogram AXBY .
Let P(A,B) be an (A,L)-path followed by an (L,N )-path
followed by an (N ,B)-path. Let e be the last edge of P(A,B)
which is incident on node B. This edge e lies on one of the
three odd axis lines. In Figure 14, e lies on an odd β-line.
The node B divides this β-line into two segments one of
which does not contain e. Let C denote the boundary node on
this segment. Now consider the parallelogram AXCZ . Define
a path P(A,C) as (A,L)-path followed by an (L,N )-path
followed by an (N ,C)-path which is a shortest path between
A and C passing through B. Thus d(A,C) 6= d(B,C).
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FIGURE 12. Coordinate system in oxide networks.

FIGURE 13. Channels in silicate networks.

Let A and B be two silicon nodes of SL(n) lying in some
α-channel. In this case d(A,C) 6= d(B,C) where C is a
boundary node of SL(n) belonging to the odd α-line bounding
the channel containing A and B.

If A and B are two silicon nodes not lying in the same
channel, choose the odd axis line at distance one from one

FIGURE 14. Proof cases in Theorem 6.2.

of A or B such that A and B lie on the same side of the axis
line. A boundary node C belonging to this axis line is such
that d(A,C) 6= d(B,C).
The case when A is an oxygen node and B a silicon node

can be treated similarly.
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Next we locate a fault-tolerant resolving set in the silicate
networks SL(n).
Lemma 6.3: Let c be a boundary vertex in the silicate

network SL(n) with n > 2. Then γ (N (c)) = {c}.
Proof: Note that the boundary vertex c is the only vertex

which is the common neighbor of all the three vertices in the
open-neighborhood N (c).

The next proposition locates a fault-tolerant resolving set
in SL(n).
Proposition 6.4: Let SL(n) be the n-dimensional silicate

network with n > 2. Then 6n+ 1 ≤ β ′(SL(n)) ≤ 21n.
Proof: By Theorem 6.1 and 6.2, we know that the 6n

boundary vertices in SL(n) provides a metric basis. By using
Lemma 1.1, we know that R′ = ∪v∈R

(
N [v] ∪ γ (N (v))

)
is

a fault-tolerant resolving set corresponding to any resolving
set R. Let R be the set of boundary vertices in SL(n). Then by
Lemma 6.3, for any vertex c ∈ R γ (N (c)) ⊆ N [c]. Moreover,
there are 15n vertices in the neighborhood of the 6n boundary
vertices. by combining these facts with 1, we obtain the
result.
Proposition 6.4 gives rise the following immediate

corollary.
Corollary 6.5: The family of silicate networks is a family

of interconnection networks with an unbounded fault-tolerant
metric dimension.

VI. COMPUTATIONAL AND ALGORITHMIC COMPLEXITY
It is proved in [11], [19] that the metric dimension
problem in NP-complete for general graphs. It was fur-
ther shown by Manuel et al. [26] that the problem of
find metric dimension of an arbitrary bipartite graph is
NP-complete. The computational complexity of fault-tolerant
metric dimension is not explicitly studied so far, and it
is believed that the complexity status of this problem is
NP-complexity as well due to the fact that, to develop an
algorithm for fault-tolerant metric dimension problem one
will have to go through the metric dimension problem. Even
though the fault-tolerant metric dimension problem might
be polynomially solvable for Benes, butterfly and mesh net-
works, we believe that is NP-complete for bipartite graphs.
Thus our study fills up the gap between NP-complete and
P-type structure for fault-tolerant metric dimension problem
for bipartite graphs. We record our computational work here
by proposing the following conjecture.
Conjecture 7.1: The problem of finding the fault-tolerant

metric dimension is polynomially solvable for Benes and
butterfly networks.

VII. CONCLUSION AND FUTURE WORK
We have studied the fault-tolerant metric dimension prob-
lem for three infinite families of bipartite interconnection
networks. Although our results in this article produce upper
bounds on this problem for those families of networks,
we firmly believe that the lower bounds for fault-tolerant
metric dimension for Benes and butterfly network are also
the same and thus these two families have a bounded

fault-tolerant metric dimension. On the other hand, mesh
network share a constant fault-tolerant metric dimension for
any values of defining parameters m and n.

The study of problems of finding the metric dimension
and the fault-tolerant metric dimension of interconnection
networks is at its early stage. It is open to investigate these
problems for various interconnection networks such as hyper-
cube, shuffle exchange, star, pancake, De Bruijn, banyan,
delta, omega, bidelta, baseline and torus architectures. More-
over, the NP-complete problems such as achromatic number
problem and minimum crossing number problem [11] are
open for Benes and butterfly networks.
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