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ABSTRACT Reverse time migration (RTM) is an algorithm widely used in the oil and gas industry to
process seismic data. It is a computationally intensive task that suits well in parallel computers. Methods
such as RTM can be parallelized in shared memory systems through scheduling iterations of parallel loops to
threads. However, several aspects, such as memory size and hierarchy, number of cores, and input size, make
optimal scheduling very challenging. In this paper, we introduce a run-time strategy to automatically tune
the dynamic scheduling of parallel loops iterations in iterative applications, such as the RTM, in multicore
systems. The proposed method aims to reduce the execution time of such applications. To find the optimal
granularity, we propose a coupled simulated annealing (CSA) based auto-tuning strategy that adjusts the
chunk size of work that OpenMP parallel loops assign dynamically to worker threads during the initialization
of a 3D RTM application. Experiments performed with different computational systems and input sizes
show that the proposed method is consistently better than the default OpenMP schedulers, static, auto,
and guided, causing the application to be up to 33% faster. We show that the possible reason for this
performance is the reduction of cache misses, mainly level L3, and low overhead, inferior to 2%. Having
shown to be robust and scalable for the 3D RTM, the proposed method could also improve the performance
of similar wave-based algorithms, such as full-waveform inversion (FWI) and other iterative applications.

INDEX TERMS Auto-tuning, coupled simulated annealing, reverse time migration, openMP, dynamic
scheduling.

I. INTRODUCTION
Seismic reflection surveying is the best known and used
geophysical method for subsurface imaging. Oil and gas
exploration is its main application [1]. Its main objective is to
generate an image of a subsurface region to identify structures
of interest.

Seismic data can go through several processing steps to
improve the signal-to-noise ratio (SNR) and the seismic
image’s resolution. One of the most important of these steps
is migration, which is responsible for positioning seismic
reflection events in their correct place when imaging the
subsurface. In this context, reverse time migration (RTM) [2],
[3] has been widely used as a migration technique to more
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accurately take into account the wave propagation effects
resulting in subsurface images with higher definition.

Simulating wave propagation comprises the majority of
an RTM and is computationally intensive, especially for the
three-dimensional case. Therefore, the computational cost is
the main factor limiting the application of RTM, as well as for
several other geophysical algorithms [4], [5]. For this reason,
parallel computing techniques have been widely applied to
these methods (e.g., [6]).

Load balancing is one of the main aspects to be considered
in parallel applications. It can be defined as the distribution
of the computational load among the available processing
resources (e.g., cores, computing nodes). A way to perform
load balancing is by dividing the workload in chunks of com-
putation to be distributed among the computational resources
either statically or dynamically. In the context of parallel
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applications, auto-tuning techniques are becoming popular
in the sense of obtaining portable near-optimal performance
(e.g., when scheduling or load balancing tasks) in parallel
programming [7].

Load balancing parallel seismic methods, such as RTM,
is especially challenging with the rising interest for heteroge-
neous machines [8]. Nevertheless, as we show in this work,
even for homogeneous architectures, a static load balancing
may not be optimal.

This paper presents an execution time auto-tuning strategy
to automatically find an optimal chunk size for OpenMP
[9] dynamic scheduling of parallel loops. This method aims
to reduce the run time of iterative applications. For that,
we employ a global optimization method called coupled
simulated annealing (CSA) [10]. This paper also provides
numerical experiments where the proposed auto-tuning is
applied to a 3D RTM algorithm.

The contribution of this paper to RTM and the scheduling
of parallel loops are:

1) the introduction of a novel and robust auto-tuned
scheduling strategy for dynamically scheduling parallel
loops;

2) a methodology to perform the parametrization of the
proposed method applied to the 3D RTM;

3) a comparison of the proposed method against the
default OpenMP schedulers for the 3D RTM showing
that the proposed auto-tuning reduces the number of
cache misses;

4) an overhead analysis showing that the proposed
method’s overhead was inferior to 2% when employed
to the 3D RTM in different computational environ-
ments and input sizes;

5) a consistent reduction in the run-time of the 3D
RTM across five different and non-parametrized
architectures.

The outline of the paper is as follows. We first present
the basics of our target application: the RTM (Section II),
the parallelization strategies made available by OpenMP
(Section III) and the optimization method that comprises the
proposed auto-tuning, the CSA (Section IV). Then, we pro-
vide a detailed description of our RTM implementation
(Section V) as well as of the proposed auto-tuning approach
(Section VI). Section VII displays the results of the proposed
method in comparison with the standard OpenMP schedules.
In Section VIII we present a literature review, highlighting
the main aspects of our contribution. Section IX concludes
this paper.

II. REVERSE TIME MIGRATION FORMULATION
The seismic reflection method consists of three main steps:
acquisition, processing, and interpretation of seismic data.
In the acquisition, seismic shots, reflected by subsurface
interfaces, are recorded at surface level by receivers. The
signal recorded by each detector, from each seismic shot,
is called a seismic trace. A set of seismic traces is called a

seismogram. Seismograms can be converted to depth esti-
mates of interfaces between different subsurface materials
during processing.

After the acquisition step, several techniques can be used
to process seismic data. In general, the purpose of processing
reflection data is to increase the SNR and improve the vertical
resolution of resulting seismic images. Migration is one of
the main steps in the seismic data processing. It aims to
1) properly position seismic reflections at the coordinates of
the reflector in the subsurface; 2) reduce diffraction effects in
the images; 3) improve the spatial resolution.

Modern migration approaches use the seismic wave equa-
tion, a partial differential equation describing wave motion,
generated by a source in a medium. The scalar equation for
3D acoustic waves is defined as

∂2 u(x)

∂x21
+
∂2 u(x)

∂x22
+
∂2 u(x)

∂x23
=

1
c(x)2

∂2 u(x)
∂t2

+ s(t), (1)

where x = (x1, x2, x3) are the spatial dimensions, u(x) is the
acoustic pressure, c(x) is the propagation velocity and s(t) is
the source function at time t .

Spatial and time restrictions should be observedwhen solv-
ing finite differences by a numerical approach [11]. These
restrictions are defined as:

max(1x1,1x2,1x3) ≤
cmin

Wfmax
(2)

and

1t ≤
2min(1x1,1x2,1x3)

πcmax
√
3

, (3)

where 1x1, 1x2 and 1x3 are the spatial sampling of dimen-
sions x1, x2 and x3, 1t is the time sampling; fmax is the
maximum frequency of s(t); cmin and cmax are the minimum
and the maximum values of c(x); andW is the number of grid
points per minimum wavelength. According to [11],W must
be equal or greater than 4 for high order finite differences
schemes. Non-compliance with (2) and (3) would result in
numerical dispersion and instability.

Another important aspect is that the geological model
encoded in c(x) must be restricted to a finite number of points
on a mesh, even though the Earth is heterogeneous and con-
tinuous. In order to represent real boundaries, it is common to
apply artificial edges to the model limits, to absorb the energy
reaching the borders [12].

There are several approaches to migrate seismic data.
We use migration by finite differences (or wave equation
migration), in which the wave equation is approximated by a
finite-difference equation, suitable to be solved by a computer
as explained above. One of the main migration methods
by finite differences is RTM [2], [3]. In RTM, source and
receiver wavefields are propagated forward and backward in
time, respectively. RTM imaging relies on the physical prop-
erty that those pressure waves must correlate at the reflective
interfaces.

The core of an RTM can be divided into three stages. The
first stage is the simulation of the propagation of a wavefield
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resulting from the excitation of a seismic source. The second
stage is the backpropagation of wavefields registered in a
seismogram. Finally, the third stage is the imaging condition,
which is a correlation between the forward and backward
propagated wavefields and produces an image of the subsur-
face. This process is repeated for all the shots of seismic data
available.

The propagation and backpropagation steps use the same
velocity model shown in (1) as c(x). This model specifies the
wave velocity for eachmesh point and represents the different
properties of the materials and boundaries, in the volume
being imaged.

In the imaging condition stage, thewavefields generated by
the propagation of the source and the backpropagation of the
observed data are correlated pointwise, at each time interval,
to generate an image. Mathematically, it is defined as

I (x) =

T∫
t=0

ui(x, t) · ur(x, t)dt, (4)

where I (x) is the resulting image, ui(x, t) is the wavefield
propagatedwith the source excitation, ur(x, t) is thewavefield
of backpropagated data and T is the total simulation time.
Themigration of each seismic shot generates an image. These
images are stacked to build the total migrated volume.

Each cycle of a seismic survey ends with the interpretation
phase. Since both coverage and resolution are better with 3D
data, these surveys lead to improved interpretation compared
with 2D surveys and are standard today [13].

III. PARALLELIZATION STRATEGY
In this work, we used an RTM algorithm implemented with
two degrees of parallelization. The first is the migration of
different common-shot (CS) gathers, i.e., seismic data with
the same shot coordinates, which is implemented with the
message passing interface (MPI) [14], for distributedmemory
environments. The second is the migration of a single CS
gather and is performed in shared memory environments,
with OpenMP [9].

The proposedwork is applied in the second degree of paral-
lelization, where different loops of the RTMoperation of each
CS gather are parallelized among the cores of a multicore
system, with OpenMP. This parallelization is performed by
dividing each loop into loops of smaller sizes, which are
computed in the different cores of the multicore system. The
size of these smaller loops is usually referred to as the chunk
size. Our work’s primary goal is to balance the computation
of the smaller loops by the different cores by choosing the
proper chunk size, which is known as workload balancing.
The proposed load balancing approach is discussed in more
detail in Section VI.

For the parallelization with OpenMP, the parallel
for construction was employed. This construction auto-
matically distributes the workload (Nloop) among all threads
(Nthreads), in the loop where it is applied. The workload
distribution within the threads can be changed by using the

OpenMP clause schedule and variable chunk size. The
different OpenMP workload distributions used in this work
are explained next.

Static: the load is distributed for each thread in fixed data
blocks of roughly Nloop/Nthreads. It is possible to choose the
size of these blocks by changing the chunk size variable.
Dynamic: similar to the static one, with the main dif-

ference that, when a thread finishes to compute the work
allocated to it and becomes idle, the system automatically
assigns more work to this thread, until all the work finishes.

Guided: similar to the dynamic distribution, in the sense
that, when a thread becomes idle, the system also allocates
more load to this thread. The difference is that the size of the
assigned loop subset starts with the value ofNloop/Nthreads and
is decreased by the system until it reaches the chosen chunk
size value. If the chunk size is omitted, the size of the final
loop subset is 1.

Auto: is the automatic distribution provided by OpenMP.
It delegates all the scheduling decisions to the compiler or
run-time system.

IV. COUPLED SIMULATED ANNEALING
Coupled Simulated Annealing (CSA) [10] is a global opti-
mization algorithm, based on the well-known simulated
annealing (SA) algorithm [15]. The SA algorithm, also a
global optimization method, is inspired by the thermody-
namic annealing process, which consists of a heat treatment
that alters a given material’s physical properties. The SA
algorithm is employed in minimization (or maximization)
problems, where the goal is to obtain the minimum (or max-
imum) of a specific cost function, namely the energy of the
annealing process. This work poses a minimization problem.

Briefly, the SA algorithm is divided into the generation of
new solutions and the acceptance of these solutions. Algo-
rithm parameters, known as generation and acceptance tem-
peratures, control both these stages. New possible solutions,
also known as probe solutions, are generated by a generation
temperature function. If a probe solution yields a smaller
value of the cost function, this solution is accepted as the
new one with probability one; otherwise, this solution is only
accepted as the new one with the probability given by a
function of the acceptance temperature.

In its turn, the CSA algorithm consists of a set of parallel
SA algorithms, known as SA optimizers. Each SA optimizer
generates and evaluates a probing solution, updating its cur-
rent state. The generation and acceptance temperatures are
equal for all the different SA instances. The main differences
between CSA and SA are that 1) for accepting solutions with
higher cost function values, the CSA considers all current
solutions, and 2) the acceptance criterion is based on the cur-
rent solutions and a coupling term between these solutions.
The coupling approach has shown to be capable of reducing
the algorithm’s sensitivity to initialization parameters and
providing information that might steer the overall optimiza-
tion process toward the global optimum.
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The CSA algorithm employed in this work is the one
described by Gonçalves-e-Silva et al. [16], which is imple-
mented as follows. Let ai ∈ 2 and bi ∈ � be, respectively,
the current and probe solutions of the i-th SA optimizer;
with 2 and � being the set of current and probe solutions,
respectively, and i = 1, . . . , m, where m is the number of
elements in both 2 and �. At the k-th iteration of the CSA
algorithm, the probe solutions are given by

bi = ai + εiT
gen
k , (5)

where T gen
k is the generation temperature and εi is a random

variable sampled from the Cauchy distribution

g(ε, T ) =
T

(ε2 + T 2)(D+1)/2
, (6)

where T = T gen
k and D is the dimension of the problem. The

rule for updating T gen
k is also a free choice of the specific

CSA implementation. We followed the guidelines from [16]
and used as update T gen

k+1 = 0.99999T gen
k , with T gen

k being
updated to 99.999% of its previous value.

Each solution, ai and bi, has an associated energy (or cost)
value, E(ai) and E(bi). The acceptance probability function
is defined as:

A2 =
exp

(
E(ai)−max(E(ai))ai∈2

T ac
k

)
γ

, (7)

where T ac
k is the acceptance temperature and γ is the coupling

term, given by:

γ =
∑
∀a∈2

exp
(
E(a)−max(E(ai))ai∈2

T ac
k

)
. (8)

If E(bi) > E(ai), ai assumes the value of bi only if
A2 < r , where r is a random variable sampled from
an uniform distribution in the interval [0, 1]. Otherwise,
if E(bi) < E(ai), ai assumes the value of bi with probability
one.

As shown by Xavier-de-Souza et al. [10], the CSA perfor-
mance is improved if the variance of A2 is kept close to its
maximum value. This variance might be written as

σ 2
=

1
m

∑
∀a∈2

A22 −
1
m2 (9)

and lays in the interval

0 ≤ σ 2
≤
m− 1
m2 . (10)

The controlling of this variance value can be accom-
plished by using the following rule to update the acceptance
temperature:

T ac
k+1 =

{
T ac
k (1− α), if σ 2 < σ 2

D

T ac
k (1+ α), if σ 2

≥ σ 2
D,

(11)

where σ 2
D is the desired variance, which should be kept as

close as possible to m−1
m2 , and α is the acceptance temperature

modification rate, usually a value within the interval (0, 0.1].

The CSA algorithm is parameterized by setting the ini-
tial temperature values T gen

0 and T ac
0 ; the total number of

iterations, N ; and the number of optimizers, m. Setting the
number of CSA optimizers, m, is heavily discussed in [16],
where it is shown that, for minimizing several functions,
good choices for the number of optimizers lie in the range
between m = 4 and m = 10. In this work, we chose
to use m = 4 to minimize the auto-tuning overhead with-
out compromising the CSA quality performance. Moreover,
as shown in [10], the CSA algorithm is very robust to the
initial values of the acceptance temperature, T ac

0 , presenting
satisfactory results for a large range of T ac

0 values. Regard-
ing the initialization of the generation temperature, T gen

0 ,
and the number of iterations, N , section VII-A provides a
guideline for setting these parameters when auto-tuning RTM
applications.

In the proposed auto-tuning approach, the CSA is
employed to minimize the execution time of different loops in
the RTM algorithm, parallelized with OpenMP, by properly
choosing the optimal chunk size for OpenMP parallel loops.
Therefore, the cost function E(ai) is related to the execution
time of an OpenMP parallel for construction and the
variable ai is related to the chunk size, in the dynamic
OpenMP distribution.

V. IMPLEMENTATION ASPECTS OF RTM
The RTMprogram developed to test the proposed auto-tuning
is introduced by Assis et al. [17]. It is implemented in C,
using a hybrid parallel approach.MPI distributes shots among
the nodes of a distributed memory system while OpenMP
schedules chunks of the 3D mesh representing the spatial
domain to cores of a shared memory system.

The wave propagator of our RTM implementation solves
the wave equation by the finite difference method (FDM),
using an eighth order in space and second order in time sten-
cil. We used non-reflecting boundary condition to absorb the
energy at the boundaries as described in [12]. The absorbing
boundary coefficients are computed by

φ(i) =

π fpeak1t
(
wi

wb

)2

, on the borders,

0, otherwise,
(12)

φ(x) = φ(x1)+ φ(x2)+ φ(x3), (13)

φ1(x) =
1

1+ φ(x)
, (14)

φ2(x) = 1− φ(x), (15)

where fpeak is the peak frequency of the source, wb is the
thickness of the absorbing boundary, in number of grid points,
and wi ranges from 0 to wb, indicating the shortest distance
from a point (x1, x2, x3) to the border’s interior edge. Note
that, away from the borders, φ1(x) = φ2(x) = 1 and we
recover the usual FDM solution.
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Using a finite difference second order scheme in time and
applying the coefficients of (14) and (15) to (1) leads to

u(x, t +1t)

= φ1(x) ·
{
2u(x, t)− φ2(x) · u(x, t −1t)

+ (c(x)1t)2 ·

[
∂2 u(x)

∂x21
+
∂2 u(x)

∂x22
+
∂2 u(x)

∂x23
−s(t)

]}
,

(16)

where the source s(t) is modeled as a Ricker wavelet [18].
Our RTM code implements the optimal checkpointing

strategy, described in [19], [20], to avoid the use of secondary
storage and memory. Details of our RTM implementation
are shown in Algorithm 1, which is further discussed in
Section VI.

VI. CSA-BASED AUTO-TUNING
Katagiri et al. [21] defines three types of auto-tuning: i)
install time, when the estimation procedure is affected by
machine environments, ii) before execution invocation, when
the estimation procedure is affected by user’s knowledge,
input parameters or the number of processors, for example,
and iii) run time, when the estimation is affected by other
parameters generated in run time. In this paper, we propose
a run-time auto-tuning for adequately determining the size of
parallel loops subsets to be dynamically distributed among
OpenMP threads.

The modeling of parallel applications is not trivial, espe-
cially if this application runs in different architectures. Varia-
tions of aspects such asmemory size and hierarchy, number of
cores, and input size may have very diverse effects in parallel
software performance [22]. Since the relation between the
chunk size of the parallel loops and the total execution time
of a program is unknown, using a stochastic optimization
method to find an optimal chunk size is an alternative. Esti-
mating this relation is particularly challenging for the FDM
because of thememory access pattern generated by the stencil
computations. Using a multidimensional stencil means that
the access to memory is non-linear at each wave propagation
time step, making it more complex to avoid cache misses. For
this reason, the proposed auto-tuning employs CSA to find
the chunk size that minimizes the execution time.

For all the tests performed in this work, we adopted the
following parameterization rules. For the initial acceptance
temperature, we adopted one of the values suggested in [10],
T ac
0 = 0.9. The number of iterations, N , and the number of

SA optimizers, m, influence the convergence and exploration
of the solution variables space. Large values ofN andmmight
result in chunk size estimates closer to the global optimum,
with the drawback of greater execution times. For setting
the number of optimizers, we chose one of the values tested
in [16], m = 4. The parameters σ 2

D and α do not need to
be configured, they can be kept fixed, in all simulations,
according to [10], with σ 2

D = 0.99
(
m−1
m2

)
and α = 0.005.

Algorithm 1 Reverse Time Migration With Auto-Tuning. ns
Is the Number of Time Steps. ti Is the i-th Time Step in the
RTM Algorithm
1: begin time measurement
2: distribute shots among nodes using MPI
3: read RTM parameters
4: initialize checkpointing variables
5: compute absorbing boundaries coefficients
6: initialize auto-tuning parameters
7: #OpenMP parallel section begin
8: for all shots location do
9: read shot seismogram

10: if it is the first shot then
11: autotuning() (See Algorithm 2)
12: end if
13: for (ti = 0 to ns− 1) do
14: #OpenMP parallel loop using the auto-tuned chunk

size in a dynamic distribution
15: for all grid points do
16: compute the wavefield
17: end for
18: add the source wavelet
19: if (ti is a checkpoint) then
20: save Checkpoint
21: end if
22: end for
23: for (ti = ns− 1 to 0) do
24: #OpenMP parallel loop using the auto-tuned chunk

size in a dynamic distribution
25: for all grid points do
26: compute the wavefield
27: end for
28: #OpenMP parallel loop using static distribution
29: for all receivers location do
30: inject observed data samples at time ti
31: end for
32: get forward wavefield at ti from the checkpoints

using the auto-tuned chunk size in a dynamic dis-
tribution

33: #OpenMP parallel loop using static distribution
34: for all main grid points do
35: perform image condition
36: end for
37: end for
38: end for
39: #OpenMP parallel section end
40: reduce all nodes migrated sections
41: finish time measurement

For the CSA-based auto-tuning algorithm, the only
parameters that needed to be configured were the gener-
ation temperature, T gen

0 , and the number of iterations, N .
In section VII-A we provide insights on how to config-
ure these parameters. For all the tests that we performed, with
different data sets, problem sizes, and machines, the CSA
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algorithm has shown to be quite robust to the initialization
of the parameters. We were able to achieve consistent results
by using the same parameter values in all the tests.

Algorithm 1 presents the pseudo-code of the proposed
implementation of the RTM. Regarding the application of
CSA for auto-tuning the RTM, four parallel loops of the
RTM have been enabled to use the dynamic scheduler with a
chunk size that could be defined by the proposed auto-tuning
method: i) the forward propagation of the source (Line 15);
ii) the backward propagation of the observed data (Line 25);
iii) the insertion of the receivers data (Line 29); and iv) the
image condition (Line 34). The optimal checkpointing strat-
egy (Line 32) recomputes some of the forward propagation
time steps and can also have its chunk size defined by an
auto-tuning method.

Since the propagation loops are essentially the same,
we only apply the proposed auto-tuning for the forward
propagation. The chunk size obtained is then used to the
forward propagation, the backward propagation, and the
checkpointing. On the other hand, the receivers’ insertion
and image condition loops are not auto-tuned. These loops
have a significantly smaller dimension in comparison with
the propagation loops. In our tests, these loops together spent
less than 2% of the total execution time. Furthermore, they
mostly perform linear access to memory, which is ideal for a
static distribution. Its overhead may overcome the benefit of
auto-tuning the receivers’ data insertion and image condition
loops. As shown in Algorithm 1 (Line 10), the proposed
auto-tuning is performed only for the first shot. All the fol-
lowing shots use the same chunk size computed for the first
shot.

Algorithm 2 details the implementation of the proposed
auto-tuning. The initial set of solutions (chunk sizes) is
randomly chosen in the interval [50,Nloop/Nthreads]. We
disregarded small chunk sizes because of the high over-
head to schedule them dynamically. Chunk sizes greater
than the chunk size of the standard static distribution
(Nloop/Nthreads) are also not taken into consideration because
they would lead to the number of blocks to be less or equal
than the number of threads and thus, the distribution would
be forced to be static.

For each CSA iteration, each optimizer only measures the
execution time of the first time step in the forward propaga-
tion, using its current chunk size (Lines 6 and 13). As shown
in [23], the run time of the first time step can accurately
represent the total propagation execution time. This first-time
step is performed twice (Line 4) and only the elapsed time of
the second repetition is registered (Lines 5 and 12) in order
to avoid cache population effects. The CSA then uses those
time measures as the cost function values and generates the
next set of solutions (Line 17).
The overhead in the proposed auto-tuning algorithm is

related to the number of iterations used in the CSA global
optimization method, which repeats the first time step of
the forward wave propagation for each optimization iter-
ation. For instance, in a wave propagation of 1000 time

Algorithm 2 Proposed Auto-Tuning Method, Function
autotuning() of Algorithm 1. ti Is the i-th Time Step in
the RTM Algorithm
1: ti = 0
2: for all (auto-tuning iterations) do
3: for all optimizers do
4: for (i = 1 to 2) do
5: if (i == 2) then
6: time measure begin
7: end if
8: #OpenMP parallel loop using the current chunk

size in a dynamic distribution
9: for all grid points do
10: compute the wavefield
11: end for
12: if (i == 2) then
13: time measure end
14: end if
15: end for
16: end for
17: CSA generates a new solution for each optimizer from

the time measures
18: end for
19: return the solution with the lowest cost function

steps of both forward and backward wave equations and
the use of checkpoints with a forward propagation recom-
puting rate of 2 to evaluate the image condition (4000
times steps in total), with 100 CSA iterations, the over-
head would be 2.5% for one shot. Since the auto-tuning
is performed only in the forward wave propagation of the
first shot, for more shots, the overhead is shared among
the time steps of all shots, being significantly reduced in
these cases. We tested only instances of a small number of
shots, but it is known that 3D seismic acquisitions performed
in complex regions can present hundreds of thousands of
shots.

VII. NUMERICAL EXPERIMENTS
Our experiments were conducted in five different computa-
tional environments, namely:
• Leuven: Single compute node hosting four sixteen-core
AMD Opteron(TM) Processor 6376 at 2.3 GHz and
256 GB RAM. This equipment is located at the Univer-
sidade Federal do Rio Grande do Norte (UFRN).

• NPAD: 68 compute nodes. Each compute node hosts two
CPUs Intel Xeon Sixteen-Core E5-2698v3 at 2.3 GHz
and 128 GB RAM DDR4 2133. It is equipped with a
60 TBLustre parallel distributed file system. This equip-
ment is located at the High-Performance Computing
Center at UFRN (NPAD/UFRN).

• Yemoja: 856 compute nodes. Each compute node hosts
two 10-core Intel Xeon E5-2690 Ivy Bridge v2 at 3 GHz.
200 nodes with 256 GB of RAM and 656 nodes with
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128 GB RAM. It is equipped with an 850 TB Lustre
parallel distributed file system. This equipment is
located at the Manufacturing and Technology Integrated
Campus of the National Service of Industrial Training
(SENAI CIMATEC).

• Ogun: 48 compute nodes. Each compute node hosts two
Intel Xeon Gold 6148 at 2.40 GHz and 192 GB RAM
DDR4. It is equipped with a 340 TB Lustre parallel
distributed file system. This equipment is also located
at SENAI CIMATEC.

• SDumont: 504 compute nodes. Each compute node
hosts two Intel Xeon E5-2695v2 Ivy Bridge at 2.40 GHz
and 64 GB RAM DDR4. It is equipped with a 640 TB
Lustre parallel distributed file system. This equipment
is located at the National Laboratory of Scientific
Computing (LNCC).

The compiler used was gcc, using its default run-time
system (libgomp) and the optimization flag -O3. We used the
most recent version of gcc available for eachmachine, namely
8.1 for Leuven, 7.3 for NPAD, 8.2 for Yemoja, 7.3 for Ogun
and 8.3 for SDumont. No controls were used to bind threads
to processors. Neither the OpenMP [24] nor the libgomp [25]
specifications present how the auto distribution maps the
iterations of the parallel loops to the threads. However, it is
possible to notice from libgomp’s source code [26] that auto
distribution maps to the static distribution with a chunk
size of roughly Nloop/Nthreads.
In order to validate the 3D acoustic wave propagator used

in our RTM program, we compared a seismic trace computed
by our program with the 3D acoustic analytical solution,
computed based on [27], in a homogeneous velocity model.
The source was a Ricker wavelet with a peak frequency
of 20 Hz. The distance between source and receiver was
200 m. The medium had a constant velocity of 2000 m/s.
In this experiment, our propagator provided a very accurate
approximation to the 3D waveform analytical solution with a
mean squared error of 6× 10−14.

For all the following tests, fpeak = 20 Hz, the time sam-
pling is 1 ms, the number of time steps is 3501, the spatial
resolutions are 1x1 = 1x2 = 1x3 = 10 m and the
absorbing border thickness is 50 points in all directions of the
3Dmesh.We built c(x) by using a two layers model with a flat
interface positioned at the center of the vertical dimension,
where the top and bottom layers have velocities of 1400 m/s
and 2000 m/s, respectively. The number of buffers (nb) and
checkpoints (nc) depends on the size of the input, as shown
in Table 1. The numbers of buffers were chosen in order to use
up to 128 GB of RAM. We chose the number of checkpoints
optimally according to [20].

The execution time measures were taken by using
MPI_Wtime() function. The initial time is measured at the
beginning of the algorithm just after launching the processes
throughMPI (Algorithm 1 Line 1). The final time ismeasured
at the end of the algorithm just before finalizing the processes
(Algorithm 1 Line 41).

TABLE 1. Number of buffers and checkpoints used in the experiments as
function of the input size. The input size does not include the absorbing
border. n1, n2 and n3 are the number of samples for the spatial
dimensions x1, x2 and x3, being the latter the vertical dimension.
n2 = n3 = 401.

A. CSA AUTO-TUNING PARAMETERIZATION
In this subsection, we explain the methodology employed in
CSA parameterization for the auto-tuning of RTM. We pro-
vide insights for configuring the CSA parameters in the
RTM application. As previously discussed in sections IV
and VI, for the proposed CSA-based auto-tuning of the RTM
application, the input parameters that we chose to set were
only the generation temperature, T gen

0 , and number of itera-
tions, N . We fixed the acceptance temperature in T ac

0 = 0.9
and the number of optimizers in m = 4, as suggested in
[10] and [16].

In the following experiment, we show that the config-
uration of the proposed auto-tuning method is robust to
the chosen parameter values and computational architecture,
by setting the values of T gen

0 andN . In contrast, section VII-B
shows that the chunk size configuration is quite sensitive to
its value and likely to change according to the architecture. In
that sense, our experiments lead to the conclusion that it may
be advantageous to set the auto-tuning parameters once, in a
single architecture, instead of performing trial-and-error tests
when moving across architectures.

To provide a methodology for choosing the auto-tuning
parameters, we propose a parameterization experiment in a
specific computational environment. The assumption here is
that the parameters obtained in this particular architecture
would provide consistent results for other architectures. This
parameterization experiment yields the values of T gen

0 and N
used in all the experiments of auto-tuning the RTM applica-
tion. Note that a possible extension of the parameterization
algorithm experiment is quite straightforward, for the use
of the proposed auto-tuning in different applications. The
parameterization experiment also shows that the auto-tuning
algorithm is reasonably robust to the choice of T gen

0 and N
values.

The computational system chosen for the parameteriza-
tion experiment is composed of two additional compute
nodes located in NPAD supercomputer, with the following
characteristics:

• One CPU 7250 Intel Xeon Phi with 68 cores 1.4GHz
and 128GB DDR4 (8× 16GB).

In this test, the velocity model characteristics were as
described in the previous section and its dimensions were
201 × 401 × 401. We tested combinations of N =

40, 80, and 160 and T gen
0 = 1, 10, 100, and 1000. For each
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test, we executed 10 repetitions of the RTM of one seismic
shot. We measured the execution time of the entire seismic
shot, including the auto-tuning algorithm.

Fig. 1 shows the obtained results. Most of the shorter exe-
cution times occur for the smaller numbers of iterations (N =
40, and 80). This fact is most likely because the overhead
of the CSA-based auto-tuning is smaller in these cases. It is
also possible to observe that in the cases of N = 40, and 80
the variance of the executions was quite significant, with
the minimum sometimes overlapping among the tests with
different parameter combinations. We chose to use N = 40
as the initial value for the number of iterations since it has a
shorter run time. Moreover, for this case, the average run time
was quite close for both T gen

0 = 1, 10, and 100. We chose to
use T gen

0 = 100 since it presented the shorter run time among
all the executions.

FIGURE 1. One-shot RTM run time using the proposed auto-tuning
varying the number of CSA iterations (N = 40, 80, and 160), and the initial
generation temperature (T gen

0 = 1, 10, 100 and 1000). The marks on
x-axis follows the XiGY format meaning N = X and T gen

0 = Y . The size of
the velocity model was (n1 × n2 × n3) = 201× 401× 401. These
measurements were taken at a CPU 7250 Intel Xeon Phi machine with 68
cores at 1.4 GHz.

Note that our parametrization study ran 120 instances
of the RTM, i. e., we have tested 12 different parameter
sets 10 times each. Also, the number of sets of param-
eters tested would be the same for different input sizes.
Putting it into perspective, the number of RTM execu-
tions needed in an exhaustive search for the optimal chunk
size depends on the size of the velocity model. For the
model size and number of threads used in our experi-
ments, 201 × 401 × 401, and 32, respectively, an exhaus-
tive search would run approximately one million RTM
instances.

The CSA configuration parameters used in the
remaining experiments are summarized in Table 2.
We show in Section VII-B that the proposed auto-tuning
using these parameters was able to outperform the
default OpenMP schedulers despite running in differ-
ent computational architectures and for different input
sizes.

TABLE 2. CSA parameters used in the numerical experiments.

B. PERFORMANCE ANALYSIS
In this subsection, we present three different types of perfor-
mance experiments. The first type presents the speedup of
the 3D RTM when using the proposed method in comparison
with OpenMP schedulers auto, static, and guided for
different computational architectures and sizes of the velocity
model. The second type shows the absolute number of cache
misses of the 3D RTM when using the proposed method
and the OpenMP schedulers auto, static, and guided.
Finally, the third type displays the proposed method’s over-
head measurements in the 3D RTM for different computa-
tional architectures and sizes of the velocity model.

1) SPEEDUP ANALYSIS
Following, we present two sets of experiments regarding the
speedups of the proposed auto-tuning method.

The objective of the following set of experiments is to mea-
sure the performance of the proposed method in comparison
with the OpenMP schedulers, auto, static, and guided,
with their default chunk size, i. e., when the chunk size is
not explicitly specified. All the following measured run times
include the overhead of the proposed method.

The results presented in Table 3 display the performance
of the proposed auto-tuning in comparison with the default
OpenMP schedulers in the set of five computational archi-
tectures described in Section VII. For all the experiments,
the dimension of the velocity model was (n1 × n2 × n3) =
401× 401× 401. The proposed method presented a superior
performance in all 75 tested scenarios but two, namely, when
running the one-shot and the two-shots RTM at Yemoja using
the OpenMP guided scheduler. Even in these cases, the per-
formance loss was inferior to 2%. As Yemoja has the small-
est number of cores per node among the machines tested,
the maximum chunk size (Nloop/Nthreads) is the largest of all
scenarios, making the search domain wider for the proposed
auto-tuning. On the other hand, the overhead of the OpenMP
guided scheduler may be reduced as it manages a smaller
number of processing units. The proposed method outper-
formed the default OpenMP static and auto schedulers
in all tested scenarios.

Fig. 2 details the results shown in Table 3 for a 16-shot
RTM. The proposed method outperforms the three OpenMP
schedulers tested regardless of whichmachine was employed.

The following set of experiments, presented at Table 4,
displays the performance of the proposed auto-tuning in
comparison with the default OpenMP schedulers, static,
auto, and guided, when varying the size of the problem
both in means of the dimension of the velocity model and
the number of shots. This set of tests was performed at Ogun.
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TABLE 3. RTM speedup when using the proposed auto-tuning, compared with the OpenMP schedulers auto, static, and guided in five machines
(Leuven, Yemoja, SDumont, NPAD, and Ogun), for 1, 2, 4, 8 and 16 seismic shots. For the OpenMP schedulers, the chunk size was not explicitly specified.
For these experiments, the size of the velocity model was (n1 × n2 × n3) = 401× 401× 401. Each point is a median of at least five executions.

TABLE 4. RTM speedup when using the proposed auto-tuning, compared with the OpenMP schedulers auto, static, and guided for three input sizes,
(n1 × n2 × n3) equal to 201× 401× 401, 401× 401× 401, and 801× 401× 401, and for 1, 2, 4, 8 and 16 seismic shots. For the OpenMP schedulers,
the chunk size was not explicitly specified. These tests were performed at Ogun. Each point is a median of at least five executions.

FIGURE 2. Execution time of a 16-shot RTM in a single node using the
proposed auto-tuning (AT) and the OpenMP schedulers auto, static,
and guided, in five machines (Leuven, Yemoja, SDumont, NPAD, and
Ogun). For the OpenMP schedulers, the chunk size was not explicitly
specified. For these experiments, the size of the velocity model was
(n1 × n2 × n3) = 401× 401× 401. Each measurement presented is a
median of at least five executions.

The proposed method presents its best performance for larger
sizes of the velocity model. Also, for the one-shot RTM, our
method’s speedup increases with the size of the model.

The larger the input size, the bigger the chunks of the
static scheduler and the initial chunk of the guided
scheduler. For instance, when running over Ogun, the chunk
sizes of the static distribution were approximately 1.9,
3.1, and 5.7 millions of loop iterations for the input
sizes of 201 × 401 × 401, 401 × 401 × 401, and
801×401×401 respectively. By working with larger chunks,

FIGURE 3. 16-shot RTM run time for the proposed auto-tuning, compared
with the auto and the static scheduling types, for three input sizes,
(n1 × n2 × n3) equal to 201× 401× 401, 401× 401× 401, and
801× 401× 401. These tests were performed at Ogun. Each point is a
median of at least five executions.

the data locality of the static distribution decreases, which
explains its performance decrease for larger input sizes.
On the other hand, the median of the chunk sizes chosen by
the proposed auto-tuning method was 30.3, 122, and 232.5
thousands of loop iterations for the same input sizes, respec-
tively. By processing suitably smaller chunks and distributing
them dynamically, the likelihood that all threads work in a
contiguous memory range increases, and so does the data
locality in the proposed method. This temporal data locality
increases the reuse of the data in cache memory.

Fig. 3 details the results shown in Table 4 for a 16-shot
RTM. The proposed method outperformed the three OpenMP
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schedulers tested regardless of the dimension of the velocity
model. Moreover, the employment of the proposed method
leads to higher performance increase as the dimension of the
velocity model increases.

Regarding the number of shots, for most of the cases
in Tables 3 and 4, the performance of the proposed method
decreases as the number of shots increases. That indicates that
the optimized chunk size for the first shot may not be optimal
for the next ones and, thus, the proposed auto-tuning method
could be applied to each shot in order to increase its effi-
ciency. However, this topic is amatter of further investigation.

2) CACHE MISSES ANALYSIS
The following set of performance analysis experiments aimed
to answer why optimizing the chunk size through the pro-
posed method increases the parallel efficiency of a single shot
RTM. For that, we employed the HPCToolkit performance
tools [28] to measure the amount of cache misses for the three
levels of cache available in NPAD, namely, L1, L2, and L3.

FIGURE 4. Absolute number of cache misses measured by HPCToolkit for
the execution of a single shot RTM using the proposed auto-tuning (AT)
and the OpenMP schedulers, namely, auto, static, dynamic, and
guided. For the OpenMP schedulers, the chunk size was not explicitly
specified. The size of the velocity model was
(n1 × n2 × n3) = 401× 401× 401. These measurements were taken at
NPAD.

Fig. 4 shows that using the OpenMP dynamic scheduler
without specifying the chunk size leads to a significantly
higher number of cache misses when compared to the other
schedulers. This result, as well as the experiments presented
by [23], [29], [30], shows that using the OpenMP dynamic
scheduler with the default unitary chunk size and other very
small chunk sizes for the RTM leads to loss of performance.
The reasons for that are the high number of cache misses due
to false sharing, and the overhead to manage the distribution
of tasks. Given that, we decided to restrict the chunk size
search domain of our method to start at 50, as mentioned
before. Also, for the same reason, we omitted the results of
the dynamic scheduler with the default chunk size from the
other tests.

The number of cache misses for the auto, static, and
guided OpenMP schedulers with the default chunk size
were nearly the same for the experiment shown in Fig. 4

considering cache levels L1 and L2. For cache level L3,
the guided scheduler has 7.46% and 8.15% less cache
misses compared to auto and static schedulers respec-
tively. The proposed method has 1%, 7%, and 43% less cache
misses compared to the guided scheduler for cache levels
L1, L2, and L3 respectively.

3) OVERHEAD ANALYSIS
The following set of performance analysis experiments aimed
to measure the overhead of the proposed auto-tuning in an
RTM. For that, we employed the MPI function MPI_Wtime
before and after Line 11 of Algorithm 1. In these experiments,
we verified how the proposed method’s overhead behaves
when varying the size of the problem. For an RTM, the size
of the problem can vary by either changing the size of the
velocity model or the number of shots.

Table 5 presents the overhead of the proposed method
when varying the size of the velocity model in two computer
environments, namely, NPAD and Ogun. For all experiments
of this set, the overhead was inferior to 2%. Table 5 shows
that, for this experiment, the overhead does not change signif-
icantly when the size of the velocity model changes. As the
proposed method performs its iterations using the same size
of the model used by the RTM iterations, the size of the model
should not affect the technique’s overhead.

TABLE 5. Proposed auto-tuning overhead running over a single shot of
the RTM in two different computer environments (NPAD, and Ogun), and
three input sizes, (n1 ×n2 ×n3) equal to 201×401×401, 401×401×401,
and 801× 401× 401. Each value is the median of at least five executions.

Table 6 shows the overhead of the proposed method
when varying the number of shots in five computer envi-
ronments, namely, Leuven, Yemoja, SDumont, NPAD, and
Ogun. Again, for all experiments of this set, the overhead was
inferior to 2%. The proposed method’s overhead decreases
as the number of shots increases because the auto-tuning is
executed only for each node’s first shot. The optimized chunk
size is employed for all shots processed in the same node.

VIII. RELATED WORK
Several works have introduced auto-tuning techniques on
multicore systems. Katagiri et al. [31], [32] presented
ppOpen-AT, a framework for code optimization guided by
directives. Sena et al. [33] proposed a method to determine a
near-optimal workload chunk size by testing a set of possible
values in a few time steps of an RTM and choosing the one
with the shortest execution time. Andreolli et al. [34], [35]
introduced an approach to tune seismic applications auto-
matically by compiling and running each set of parameters
chosen by a genetic algorithm, including chunk size and
compilation flags. Kamil et al. [36] presented a framework to
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TABLE 6. Proposed auto-tuning overhead running over an RTM for five
amounts of shots (1, 2, 4, 8, and 16) and five computer environments
(Leuven, Yemoja, SDumont, NPAD, and Ogun). The size of the velocity
model employed was (n1 × n2 × n3) = (401× 401× 401). Each cell is the
median of at least five executions.

generate auto-tuned C, Fortran, and CUDA codes for stencil
applications specified in sequential Fortran 95. In common,
these works [31]–[36] perform the auto-tuning before the
execution time. By doing so, thesemethodsmay find a system
status different from the tuning time as aspects such as mem-
ory availability may change over time. Conversely, the pro-
posed method performs auto-tuning at run time, enabling it
to capture more realistic parameters.

Many authors have proposed run-time auto-tuning
approaches. Padoin et al. [37], [38] employed load balancing
techniques along with processors frequency control tools
to improve the energy efficiency of imbalanced parallel
applications in multicore systems. Both works use processors
frequency scaling techniques to slow down less loaded cores
to save energy. Tchiboukdjian et al. [39] introduced a sched-
uler for applications with linear access to shared memory.
They aim to improve locality by guaranteeing that all data
in the cache are used before being replaced. Olivier et al.
[40], [41] proposed an OpenMP hierarchical task scheduler
for multicore systems using a work-stealing strategy [42].
Different from [37]–[41], the proposed method focuses on
tuning the scheduling of the OpenMP directive for parallel
loops automatically. According to Diaz et al. [43], OpenMP
is a predominant approach in shared memory architectures
both in industry and academia, which enforces the relevance
of our work.

Some works also introduced auto-tuning techniques which
can schedule parallel loops using OpenMP. Kale and
Gropp [44] employed a strategy combining static and
dynamic scheduling to tune implementations of regular
meshes applications in clusters of symmetric multiprocess-
ing (SMP) machines and by Donfack et al. [45] to tune
highly-optimized dense matrix factorization methods. Kale
et al. [46] proposed improving a combined static and dynamic
scheduling on SMP machines by enforcing spatial locality.
Bak et al. [47] introduce a load-balancing method based on
the integration of Charm++ and OpenMP to dynamically
distribute user-created tasks. Differently, we employ CSA to
automatically determine the size of the chunks of parallel
loop iterations. The relation between chunk size and total
execution time in geophysical methods is unknown but has

been shown to have many local optima [23], [30]. By using a
global optimization strategy, our method aims to increase the
probability of finding the global optimum.

Tiwari and Hollingsworth [48] proposed an online
auto-tuning method to tune programmer-defined parameters.
For that, a set of nodes of a distributed system generate, com-
pile, and run code versions using different sets of parameters.
The optimization of the sets of parameters is defined via sim-
plex. Differently from our work, Tiwari and Hollingsworth’s
method relies on a distributed system. Although it can be
performed in a single node, the results presented by Tiwari
and Hollingsworth show that the simplex did not converge
and increased the time of execution when employing a sin-
gle node. Also, the overhead of Tiwari and Hollingsworth’s
method increases as the size of the problem decreases while
our results show that our method’s overhead is not correlated
to the size of the problem.

We have shown before that CSA [10] is a promising
method to obtain a near-optimal load balance for a 3D FDM.
Experiments in [23], [30] showed that the optimal load bal-
ancing for shared memory environments depends on the
hardware and software employed. In this paper, we use the
auto-tuningmethod proposed in our previous works [23], [30]
to the RTM and provide overhead, parallel performance, and
CSA parameters analysis.

IX. CONCLUSION
We have proposed a CSA-based auto-tuning strategy for
seeking the optimal chunk size of OpenMP’s dynamic loop
scheduler to reduce the execution time of a 3D reverse time
migration algorithm. The proposed approach is designed to
work wherever the code is executed, being robust for changes
in computational environment parameters, such as the num-
ber of threads, processors, memory hierarchy, and compiler.

We showed that the proposed auto-tuning reduces the
number of cache misses compared to the default OpenMP
schedulers. Also, for all experiments performed in this paper,
the overhead of the proposed method was inferior to 2%.

Experiments running an RTM showed that, in most cases,
the proposed auto-tuning method outperforms the OpenMP
static, auto, and guided schedulers in different com-
putational resources for different amounts of seismic shots.
For this set of experiments, the proposed auto-tuning method
reached speedups up to 23.1%.

Another set of tests with RTM presented the proposed
method’s performance in comparison with the OpenMP
static, auto, and guided schedulers for a varying
input size and a different number of seismic shots. For this
set of experiments, the proposed auto-tuning outperformed
the OpenMP schedulers, reaching up to 33% speedup. The
proposed method performed better for larger inputs, which
improves the parallel scalability of 3D RTM.

In summary, the proposed method has shown to be
robust and scalable for the 3D RTM. As future work,
we are interested in testing the proposed method’s ability to
improve the performance of similar wave-based algorithms,
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such as full-waveform inversion (FWI) and other iterative
applications.
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