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ABSTRACT Face normalization refers to a family of approaches that rotate a non-frontal face to the frontal
pose for better handling of face recognition. While a great majority of face normalization methods focus on
frontal pose only, we proposed a framework for dual-view normalization that generates a frontal pose and an
additional yaw-45◦ pose to an input face of an arbitrary pose. The proposedDual-ViewNormalization (DVN)
framework is designed to learn the transformation from a source set to two normal sets. The source set
contains faces collected in the wild and covers a wide scope of variables. One normal set contains face
images taken under controlled conditions and all faces are in frontal pose and balanced in illumination. The
other normal set contains faces also taken under controlled conditions and balanced in illumination, but in
45◦ pose. The DVN framework is composed of one face encoder, two layers of generators, and two sets
of discriminators. The encoder is made of a state-of-the-art face recognition network, which is not updated
during training, and it acts as a facial feature extractor. The Layer-1 generators are trained on both the source
and normal sets, aiming at learning the transformation from the source set to both normal sets. The trained
generators can transform an arbitrary face into a pair of normalized faces, one in frontal pose and the other
in 45◦ pose. The Layer-2 generators are trained to enhance the identity preservation of the faces made by
the Layer-1 generators by minimizing the cross-pose identity loss. The discriminators are trained to ensure
the photo-realistic quality of the dual-view normalized face images generated by the generators. The loss
functions employed in the generators and the discriminators are designed to achieve satisfactory dual-view
normalization outcomes and identity preservation. We verify the DVN framework on benchmark databases
and compare with other state-of-the-art approaches for tackling face recognition.

INDEX TERMS Face recognition, face normalization, face synthesis.

I. INTRODUCTION
Face normalization aims to normalize a non-frontal face
by rotating it back to the frontal pose for achieving bet-
ter recognition performance. While a great majority of face
normalization methods focus on frontal pose only, we pro-
pose a framework for dual-view normalization that generates
a frontal pose and an additional yaw-45◦ pose to a face
of an arbitrary pose. The proposed Dual-View Normaliza-
tion (DVN) framework is designed to learn the transformation
from a source set to two normal sets. The source set contains
faces with a wide range of variation across illumination, pose,
expression and other variables. One normal set contains face
images taken under controlled conditions and all faces are in
frontal pose and balanced in illumination. The other normal
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set contains faces also taken under controlled conditions and
balanced in illumination, but in 45◦ pose. The application
scope of the proposed approach is not limited to face recog-
nition, it can be applied for face synthesis, e.g., making a
required ID photo from a daily-life photo.

The proposed DVN, shown in Figure. 1, is composed of
a face encoder, two pairs of generators, and two sets of dis-
criminators. The face encoder is built on the feature embed-
ding layers of a state-of-the-art face recognition network,
the ArcFace [1], and serves as a facial feature extractor that
can offer consistent features regardless of illumination, pose,
expression and other variables. The Layer-1 generators are
trained on the source set and normal sets, aiming at learning
the transformation from the source domain to the normal
domain and preserving facial identities. After the learning on
the dual-view data, it can transform an arbitrary face into a
pair normalized faces, one in frontal-view pose and the other
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FIGURE 1. The configuration of the proposed Dual-View Normalization (DVN) framework. It is composed of one face encoder En, two layers of
generators [G1

f ,G1
s ] and [G2

f ,G2
s ] and two sets of discriminators [D1

f ,k ,D1
s,k ]k=1,2 and [D2

f ,k ,D2
s,k ]k=1,2. It is trained on the source set,

composed of faces collected in the wild, and two normal sets, composed of frontal- and 45◦ side-view faces.

in 45◦ side-view pose. The Layer-2 generators are trained on
the source set, the normal sets, and the generated data from
Layer-1 generators, aiming to enhance the identity preserva-
tion of the faces made by Layer-1 generators by minimizing
the cross-pose identity loss. The discriminators are trained to
ensure the normalized views and the photo-realistic quality of
the generated face images. The loss functions employed in the
generators and the discriminators are appropriately designed
for achieving better normalization outcomes and recognition
performance.

Most face normalization approaches consider the frontal
pose as the only target when transforming a non-frontal
face. The Two-Pathway Generative Adversarial Network
(TP-GAN) [2] adopts a two-pathway architecture along with
various loss functions to synthesize the frontal view of an
arbitrary input face. The Pose Invariant Model (PIM) [3]
proposes an end-to-end unified architecture and a ‘‘learning
to learn’’ strategy for identity-preserving frontal-view synthe-
sis. The High Fidelity Pose Invariant Model (HF-PIM) [4]
imposes texture warping and leverages a dense correspon-
dence field to bind the 2D and 3D surface spaces. Exper-
iments show that the HF-PIM can improve high-resolution
frontalized appearances. The Face Normalization Model
(FNM) [5] employs a face expert network to be part of the
generator for retaining face identity. With five local-region
based discriminators, the FNM can transform an arbitrary
face to the frontal pose with identity preserved. The face
encoder in the proposed DVN is similar to the face expert

in the FNM, which explores a pretrained face recognition
network for face encoding. As face encoding is an important
part of the framework, both theDVNand FNMdo not build an
additional face encoding module, and instead employ the lat-
est face recognition networks. This step substantially reduces
the complexity of the framework, making the computation
highly efficient.

The primary novelty of the proposed DVN is the dual-view
normalization, which considers the yaw-45◦ side-view pose
as another normal view in addition to the common frontal-
view. Similar to the forensic facial records, both frontal and
profile face images are kept for better visual perception of the
subject. The additional ‘‘normal’’ 45◦ side view is verified,
through our experiments, to be able to better represent a given
face and yield better cross-pose recognition. Two reasons
are given below for selecting the 45◦ side-view pose as the
additional normal view instead of the 90◦ profile pose:
• The face encoder in the DVN framework knows better of
the faces within 45◦ as the majority of the training data
are within this pose range;

• The facial region of interest, i.e., the region with most
facial traits, reduces to some minimal level at profile
pose which will degrade the recognition performance.
This is verified in our experiments. As the DVN allows
the specification of the normal view, we compare the
performance of using the side view as the normal view
and that by using the profile view. The former leads to a
better performance on a benchmark database.
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The contributions of this work can be summarized as:
• Different from the existing face normalization approa-
ches which consider the frontal pose as the only nor-
malized view, the proposed DVN framework defines
normalization in dual views, one in frontal view and the
other in yaw-45◦ side view. The additional side-view
normalization can better represent a face, leading to a
better recognition performance.

• The proposed DVN integrates identity preservation, face
normalization and pose transformation so that it can
transform a face of an arbitrary pose to specific normal-
ized poses with identity well retained.

• The proposed DVN is verified highly competitive to
state-of-the-art methods for face recognition.

The code is available at https://github.com/HaoRecog/
Dual-view-Normalization-for-Face-Recognition. In the fol-
lowing, we first give a review to the state-of-the-art
approaches for face normalization in Sec. II. The proposed
Dual-View Normalization (DVN) framework is presented in
Sec. III, followed by the experiments for qualitative and
quantitative evaluations reported in Sec. IV. A conclusion to
this work is given in Sec. V.

II. RELATED WORK
Many recent studies [2]–[5] demonstrate the advantages of
using face normalization to tackle face recognition, as a
face of an arbitrary pose can be normalized to the frontal
pose for better feature extraction. The TP-GAN, proposed
by Huang et al. [2], adopts a two-pathway architecture to
achieve frontal-view synthesis. The adversarial loss, sym-
metry loss and identity preserving loss are combined to
guide an identity-preserving inference of the frontal views
from the profile views. The Face Frontalization Generative
Adversarial Network (FF-GAN), proposed by Yin et al. [6],
incorporates the 3DMM [7] into the GAN framework, which
exploits the prior knowledge in shape and appearance. The
3DMM-conditioned GAN can generate an image that main-
tains both the global pose accuracy and local character-
istics for improved frontalization. Based on the TP-GAN,
Zhao et al. [3] proposed the Pose Invariant Model (PIM) to
perform face normalization and extract pose invariant fea-
tures jointly, and make the two tasks benefit to each other.
The PIM incorporates an unsupervised cross-domain adver-
sarial training and a ‘‘learning to learn’’ strategy for identity
preservation.

The HF-PIM, proposed by Cao et al. [4], introduces the
dense correspondence field to bind the 2D and 3D surface
spaces. The method decomposes the warping procedure into
dense correspondence field estimation and facial texture map
recovering, improving the high-resolution frontalization and
pose-invariant face recognition. Qian et al. [5] proposed the
Face Normalization Model (FNM), which employs a face
expert network in the generator to monitor identity preserva-
tion while exploiting the pixel-wise loss to stabilize optimiza-
tion process. To refine the texture, a series of local attention
discriminators with fixed areas are explored for synthesizing

regional details. The CAPG-GAN [8] extracts the head pose
information from the facial landmark heatmaps for not only
forming a mask to guide the generator in making images, but
also providing a flexible controllable condition for improving
the image quality. The Disentangled Representation-learning
GAN (DR-GAN) [9], [10] considers face normalization as
disentangled representation learning, and proposed a frame-
work to learn the disentangled facial representation on top
of the face image generation. An et al. [11] proposed the
Adaptive Pose Alignment (APA) method to learn multiple
pose-specific templates for face alignment, and a feature
normalization technique to generate discriminative facial rep-
resentation combined with the APA.

To preserve the facial identity across normalization, many
of the above referred works consider the identity latent codes
extracted from face images. Most of them train an encoder
to transform an input face into an identity latent code, which
is usually processed by minimizing the identity loss and then
decoded into a frontalized face [2]–[4], [9], [10]. However,
the proposed DVN explores the encoder made of the feature
embedding layers of the ArcFace network [1], which does not
require any training and provides the reliable pose-invariant
facial representation needed for identity preservation.

As the proposed approach deals with the normalization of
faces of arbitrary poses, the head pose estimation may also
be considered as part of related work. A recent approach
proposed byBarra et al. [12] first detects the facial landmarks,
and applies the web-shapedmodel to associate each landmark
to a specific face sector. The obtained information is used to
build a feature vector to infer the head pose. Yuan et al. [13]
propose a geometry-based method to estimate the head pose
from a 2D face image. The head pose is obtained by min-
imizing the Euclidean distance between the normalized 2D
feature points obtained from the non-coplanar feature points
on a predefined 3D face model and the 2D re-projections of
themorphed 3D feature points from the spherical coordinates.
A multitask CNN is proposed by Elharrouss et al. [14] for
handling the pose estimation and face recognition in a unified
framework. Due to the pose classification enabled by the
pose estimation, the faces in a particular pose class can be
better recognized in a pose-oriented way. However, the above
reviewed methods and most pose estimation approaches aim
at precisely estimating the 3D pose of a 2D face image instead
of normalizing non-frontal poses. The latter is the focus of
this article.

III. PROPOSED APPROACH
The configuration of the proposed Dual-View Normaliza-
tion (DVN) framework is illustrated in Figure 1. It is com-
posed of a face encoder En, two layers of generators [G1

f ,G
1
s ]

[G2
f ,G

2
s ], and two sets of discriminators [D1

f ,k ,D
1
s,k ]k=1,2

and [D2
f ,k ,D

2
s,k ]k=1,2, and is trained on a source set and two

normal sets. The source set contains faces collected in the
wild, and covers a wide range of variation across illumination,
pose, expression, resolution, occlusion and other variables.
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One normal set contains face images taken under controlled
conditions, and all faces are in frontal pose and balanced in
illumination. The other normal set contains faces also taken
under controlled conditions and balanced in illumination, but
in 45◦ pose. The face encoder En is made of the feature
embedding layers of the ArcFace [1], which is a state-of-
the-art CNN for face recognition. En is not updated during
training and kept as the original from the trained ArcFace.
The encoder En can transform an input image x to a feature
representation c (7×7×512-dims) and a latent vector ` (1×
512-dims), as shown in Figure 1. The feature representation
c will be decoded to a pair of dual-view normalized faces
(x̃f , x̃s), where x̃f is the frontal-view normalized face and x̃s is
the 45◦ side-view normalized face, by the Layer-1 generators
G1
f and G

1
s , respectively (f stands for frontal view and s for

side view). The latent vector ` will be exploited to compute
the identity loss and guarantee the identity preservation (e.g.,
xf and its corresponding synthetic faces x̃f ,f and x̃f ,s). G1

f
and G1

s are trained to make the dual-view face pair (x̃f , x̃s)
maintain the same identity as of x and appear in the required
frontal and side-view poses. The Layer-2 generators G2

f and
G2
s are trained to rotate the dual-view face pair (x̃f , x̃s) to

another dual-view face pair (x̂f , x̂s) for enhancing the identity
preservation across the pose transformation. The two sets
of discriminators [D1

f ,k ,D
1
Gs,k ]k=1,2 and [D

2
f ,k ,D

2
s,k ]k=1,2 are

trained to force the generated images at the Layer-1 and
Layer-2, respectively, to appear in the specified dual poses
with photo-realistic details. In the above notations, the super-
script 1 (2) denotes the components at Layer-1 (2).

A. IDENTITY PRESERVING GENERATORS
The Layer-1 generators G1

f and G1
s are trained to generate

the dual-view normalized faces x̃f and x̃s that keep the same
identity as of the input x and appear in the defined specific
poses, i.e., x̃f in frontal pose and x̃s in 45◦ pose. The training
set has three subsets, the source set Sm and the pair of normal
sets (Sn,f , Sn,s). Sm contains faces collected in the wild and
exhibit a wide scope of variables. Sn,f consists of frontal-view
normal faces and Sn,s consists of a 45◦ side-view normal
faces. The normal faces refer to the face images collected in
a controlled condition with balanced illumination and natural
facial expression. For the conciseness of notation, the 45◦

side-view face will be referred as ‘‘side-view face’’ in the rest
of the paper.

During training, given a face xf from the frontal-view nor-
mal set Sn,f , the generator G1

f is trained to generate a frontal
normalized face, i.e. x̃f ,f = G1

f (En(xf )), and G
1
s is trained to

generate a side-view normalized face, i.e., x̃f ,s = G1
s (En(xf )).

The identity loss considers the minimization of the 2-norm
between the latent vectors of the input xf and of the generated
x̃f ,f , x̃f ,s, and the latent vectors are obtained by passing the
image xf and x̃f ,f , x̃f ,s thru the encoder En. Thus the identity
loss is formulated as: (other losses are also considered in the
training, and will be discussed in Sec. III-C. In this section,

we focus on the identity loss first)

||En(xf )− En(x̃f ,f )||2 + ||En(xf )− En(x̃f ,s)||2 (1)

Similarly considering a side-view face xs from the side-view
normal set Sn,s, the training considers the minimization of the
following loss:

||En(xs)− En(x̃s,f )||2 + ||En(xs)− En(x̃s,s)||2 (2)

When considering a face y from the source set Sm, the training
also performs a similar loss as follows:

||En(y)− En(ỹf )||2 + ||En(y)− En(ỹs)||2 (3)

In summary, when considering the identity loss, the train-
ing ofG1

f andG
1
s is performed by the same form of minimiza-

tion, as shown in (1), (2) and (3), no matter where the training
data come from.
Similar identity loss can be derived for the Layer-2 gen-

erators, but with more pose transformations included. The
training set consists of 1) all the synthetic faces [x̃], [ỹ] made
by G1

f and G1
s , 2) the normal sets Sn,f and Sn,s and 3) the

source set Sm.
The Layer-2 generators G2

f ,G
2
s are trained to fulfill two

purposes. One is the enforcement of the identity preserva-
tion by taking the synthetic faces, generated by the G1

f ,G
1
s ,

as input and make the generated output faces identity-
preserving. The other is the transformation between the two
normalized poses as the frontal-view faces [x̃f ,f , x̃s,f , ỹf ] will
be transformed to the side-view faces byG2

s and the side-view
faces [x̃s,s, x̃f ,s, ỹs] will be transformed to the frontal-view
faces by G2

f . The main difference from G1
f ,G

1
s is that the

G2
f ,G

2
s need to consider the synthetic faces generated by

G1
f ,G

1
s as part of input, and generate the output faces to

preserve the identity as of the original input to G1
f ,G

1
s .

When the training data xf ∈ Sn,f enters G1
f ,G

1
s , and then

G2
f ,G

2
s , the generated data are x̂f ,f ,f , x̂f ,f ,s, x̂f ,s,f and x̂f ,s,s,

and the ID-loss can be written as follows:

||En(xf )− En(x̂f ,f ,f )||2 + ||En(xf )− En(x̂f ,f ,s)||2
+ ||En(xf )− En(x̂f ,s,f )||2 + ||En(xf )− En(x̂f ,s,s)||2 (4)

where x̂f ,f ,f and x̂f ,s,f denote the frontal-view normalized
faces made by G2

f with x̃f ,f and x̃f ,s as the input respectively;
x̂f ,f ,s and x̂f ,s,s denote the side-view normalized faces made
by G2

s with same input as above. Similarly, considering the
training data xs ∈ Sn,s entering the Layer-1 and Layer-2
generators, the identity loss can be written as:

||En(xs)− En(x̂s,f ,f )||2 + ||En(xs)− En(x̂s,s,f )||2
+ ||En(xs)− En(x̂s,f ,s)||2 + ||En(xs)− En(x̂s,s,s)||2 (5)

When considering the training data y entering the Layer-1 and
Layer-2 generators, the identity loss can be written as:

||En(y)− En(ŷf ,f )||2 + ||En(y)− En(ŷf ,s)||2
+ ||En(y)− En(ŷs,f )||2 + ||En(y)− En(ŷs,s)||2 (6)
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Note that the losses in (4), (5), and (6) are for the training data
entering the network from Layer 1. When the training data in
Sn,f , Sn,s and Sm directly enters theG2

f ,G
2
s , the identity losses

considered are in the same forms as those in (1), (2), and (3)
but modified for G2

f ,G
2
s .

In summary, if we denote the overall identity loss for train-
ing the Layer-1 generators G1

f ,G
1
s as L

1
id and that for training

Layer-2 generatorsG2
f ,G

2
s as L

2
id , L

1
id is the summation of (1),

(2), (3) and L2id is the summation of (4), (5), (6), but (1), (2),
and (3) modified for G2

f ,G
2
s .

TABLE 1. The network settings of the generators and discriminators in
the DVN. Same settings for all generators, Dk=1 and Dk=2 refer to the
global region and local region discriminators. The images that enter Dk=1
are sized 224× 224× 3, and the local-region ones that enter Dk=2 are
sized 150× 156× 3.

The network settings of the generators are given in the left
part of Table 1. The Layer-1 and the Layer-2 generators
have the same architecture, however, they are completely
independent of the weight value. Each generator is made
of 2 1× 1 convolution filters, 5 fractionally-strided convolu-
tion (FConv) filters and 9 residual blocks which can output
a 224 × 224×3 (RGB) image. The stacked layers in each
residual block consist of two convolutional layers where the
output matrix is the same dimension as the input matrix.
Each convolutional layer in the generator is followed by a
batch normalization [15] and a ReLU activation except for
the output layer, which uses a scaled tanh to make the output
in the range [-1, 1] instead.

B. DISCRIMINATOR
The two sets of discriminators [D1

f ,k ,D
1
s,k ]k=1,2 and

[D2
f ,k ,D

2
s,k ]k=1,2 are trained to enhance the quality of the

normalized faces, where k refers to the global region and the
local region. Similar discriminators have been seen in a few
previous work on face frontalization [2], [5], [16]. As shown
in Figure 1, the global region, enclosed by the red bounding
box, covers the whole face region, including the hair, ear and
some background. The local region, enclosed by the cyan
bounding box, covers the face only without the background.
Both global and local regions are defined for frontal- and
side-view normal sets by using the facial landmarks detected
by the Face Alignment Network [17].

The conventional way to discriminate the real data distribu-
tion from the generated one considers the cross-entropy loss
with the Jensen-Shannon (JS) divergence [9], [18]. However,
it is a common observation that the discriminator built upon
minimizing the JS divergence is often hard to train and may
wind up to the mode collapse, where the generator can only
make limited types of data [19]. We, therefore, adopt the
WassersteinGANwith gradient penalty (WGAN-GP) loss for
the discriminators [19], and it can be formulated as:

L1f ,a = D1
f ,k (ỹf )+D

1
f ,k (x̃f ,f )+D

1
f ,k (x̃s,f )−D

1
f ,k (xf )

+ λpen(||∇x̌f D
1
f ,k (x̌f )− 1||2)2, k ∈ [1, 2] (7)

where L1f ,a denotes the frontal-view adversarial loss at
Layer 1. [D1

f ,k ]k=1,2 denotes the pair of the frontal-view
discriminators, where k = 1 is for the global region and
k = 2 is for the local region. λpen denotes the penalty
coefficient. The last term ||∇x̌f D

1
f ,k (x̌f )−1||2 is the penalty on

the gradient norm computed at a random sample x̌, which is
implicitly defined as the distribution of the uniform samples
from the straight lines between the pairs of the frontal-view
real and generated data. For more details and settings about
the penalty function and WGAN-GP, please refer to [19].
Similarly, L1s,a, the side-view adversarial loss at Layer 1, can
be expressed as follows:

L1s,a = D1
s,k (ỹs)+D

1
s,k (x̃f ,s)+D

1
s,k (x̃s,s)−D

1
s,k (xs)

+ λpen(||∇x̌sD
1
s,k (x̌s)− 1||2)2, k ∈ [1, 2] (8)

The adversarial loss also needs to be defined for Layer-2
generators. The Layer-2 frontal-view adversarial loss L2f ,a can
be calculated as follows:

L2f ,a = D2
f ,k (ŷf )+D

2
f ,k (x̂f ,f )+D

2
f ,k (x̂s,f )

+D2
f ,k (x̂f ,f ,f )+D

2
f ,k (x̂f ,s,f )+D

2
f ,k (x̂s,f ,f )

+D2
f ,k (x̂s,s,f )−D

2
f ,k (ŷf ,f )+D

2
f ,k (ŷs,f )−D

2
f ,k (xf )

+ λpen(||∇x̌f D
2
f ,k (x̌f )− 1||2)2, k ∈ [1, 2] (9)

where ŷf , x̂f ,f and x̂s,f denote the synthesized faces for the
data from Sm, Sn,f and Sn,s, respectively. The side-view adver-
sarial loss L2s,a at Layer-2 can be similarly defined as:

L2s,a = D2
s,k (ŷs)+D

2
s,k (x̂f ,s)+D

2
s,k (x̂s,s)

+D2
s,k (x̂f ,f ,s)+D

2
s,k (x̂f ,s,s)+D

2
s,k (x̂s,f ,s)

+D2
s,k (x̂s,s,s)−D

2
s,k (ŷf ,s)+D

2
s,k (ŷs,s)−D

2
s,k (xs)

+ λpen(||∇x̌sD
2
s,k (x̌s)− 1||2)2, k ∈ [1, 2] (10)

The network settings of the discriminators are shown in the
right part of Table 1. The discriminators Dk=1 and Dk=2 are
made of 5 and 4 convolution layers, respectively, followed
by a fully connected layer to produce a single output. The
images that enterDk=1 are sized 224×224×3, and the images
with local regions that enter Dk=2 are sized 150 × 156 × 3.
The output shows the probability of the input image being
real that is measured by the Wasserstein distance. Follow the
WGAN-GP [19], we use layer normalization [20] instead of
batch normalization.
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C. OBJECTIVE FUNCTIONS
We also consider the following loss functions when training
the generators:

• Symmetry Loss: Although most human faces are not
perfectly symmetric, symmetry is an explicit character-
istic of a frontal face for the most part. We exploit this
common observation as a prior and impose a symmetry
loss on the generation of frontal-view faces to alleviate
the self-occlusion issues cased by large poses. The sym-
metry loss L1sym for the Layer-1 frontal-view generator
G1
f is calculated as follows:

L1sym = |ỹf − ỹ
′
f | + |x̃s,f − x̃

′
s,f | + |x̃f ,f − x̃

′
f ,f | (11)

where x̃ ′f ,f , x̃
′
s,f and ỹ′f denote the flip version of the

frontal-view normalized faces x̃f ,f , x̃s,f and ỹf , respec-
tively. Another symmetry loss can be defined for the
Layer-2 frontal-view generator G2

f as follows:

L2sym = |ỹf − ỹ
′
f | + |x̃s,f − x̃

′
s,f | + |x̃f ,f − x̃

′
f ,f |

+ |ỹf ,f − ỹ′f ,f | + |ỹs,f − ỹ
′
s,f |

+ |x̃f ,s,f − x̃ ′f ,s,f | + |x̃s,f ,f − x̃
′
s,f ,f |

+ |x̃s,s,f − x̃ ′s,s,f | + |x̃f ,f ,f − x̃
′
f ,f ,f | (12)

• Reconstruction Loss: The reconstruction loss can be
used to better preserve the perceptual pattern of the
input. We consider the pixel-based L1 loss between the
input and output when training on the normal sets. When
training G1

f and G
1
s , we adopt the following reconstruc-

tion loss:

L1rec = |xf −x̃f ,f |+|xf −x̃s,f |+|xs−x̃f ,s|+|xs−x̃s,s|

(13)

As the training of G2
f and G

2
s includes the Layer-1 gen-

erated data, the reconstruction loss L2rec must include
the dual-view normalized faces and can be written as
follows:

L2rec = |xf − x̂f ,f ,f | + |xf − x̂f ,s,f | + |xf − x̂s,f ,f |

+ |xf − x̂s,s,f | + |xs − x̂f ,f ,s| + |xs − x̂f ,s,s|

+ |xs − x̂s,f ,s| + |xs − x̂s,s,s| + |ỹf − ŷf ,f |

+ |ỹf − ŷs,f | + |ỹs − ŷf ,s| + |ỹs − ŷs,s|

+ |xf − x̃f ,f | + |xf − x̃s,f |

+ |xs − x̃f ,s| + |xs − x̃s,s| (14)

The overall objective function for training the DVN can be
summarized in the following composite losses:

L1G,f = λaL
1
f ,a + λrecL

1
rec + λidL

1
id + λsymL

1
sym

L1G,s = λaL
1
s,a + λrecL

1
rec + λidL

1
id

L2G,f = λaL
2
f ,a + λrecL

2
rec + λidL

2
id + λsymL

2
sym

L2G,s = λaL
2
s,a + λrecL

2
rec + λidL

2
id

(15)

D. THREE-PHASE TRAINING
To better train the DVN framework, we adopt a three-phase
training scheme. In the first phase, we train the Layer-1 gener-
ators G1

f and G
1
s by using the normal sets and source set until

the performance reaches a steady level, i.e., the rank-1 iden-
tification rate reaches 95% within 45◦ of yaw on Multi-PIE
and 88% on IJB-A. In the second phase, we train the Layer-2
generators G2

f and G
2
s by using the trained G1,∗

f and G1,∗
s as

the initial models with the generated data [x̃, ỹ], the normal
sets, and source set as the training set. The training continues
until the performance reaches some steady level, i.e., the
rank-1 identification rate reaches 97% within 45◦ of yaw on
Multi-PIE and 90% on IJB-A. The last phase concatenates
Layer-1 and Layer-2 and allows G1,∗

f , G1,∗
s , G2,∗

f and G2,∗
s to

interact with each other within the DVN framework to further
improve the overall performance.

IV. EXPERIMENTAL EVALUATION
In the following, we first present the experimental settings
and protocols in Sec. IV-A, then an ablation study for deter-
mining the model parameters and settings in Sec. IV-B, and
then the performance comparison with other state-of-the-art
methods in Sec. IV-C.

A. SETTINGS AND PROTOCOLS
Both of the constrained and unconstrained settings were
considered in our experiments. The constrained setting
was experimented on the Multi-PIE dataset [21], and the
unconstrained setting was experimented on the IJB-A [22]
and IJB-C [23] datasets. For the constrained settings,
the Multi-PIE was split into a training set and a testing set.
The former was used to train the DVN framework, and the
latter was used to evaluate the performance of using the
DVN-generated images for face recognition. For the uncon-
strained settings, the DVN was trained on the combination of
theMulti-PIE and CASIA-WebFace, and the face recognition
performance was evaluated on the IJB-A and IJB-C datasets.

1) CONSTRAINED SETTINGS
The Multi-PIE [21] is one of the most popular in-the-house
databases, and it contains more than 750,000 images
of 337 people recorded in four sessions over the span of five
months. The subjects were imaged under 15 view points and
19 illumination conditions with a range of facial expressions.
To demonstrate how DVN maintains the identity of input
faces, we used the face images of the 250 subjects in Session-
1 for the experiments on the constrained settings. The first
150 subjects were chosen for training and further divided into
two normal sets and a source set. Both normal sets, i.e., the
frontal- and side-view normal sets, contain 750 face images
in neural expression with 5 illuminations conditions and the
rest 37,500 face images form the source set. The frontal-
and side-view sets were chosen from two poses, labeled
in 05_1 and 19_0, under the illumination conditions with
Lighting-labels 05∼09 and 06∼10, respectively. For perfor-
mance testing, the frontal-view pose with evenly distributed

147770 VOLUME 8, 2020



G.-S. Hsu, C.-H. Tang: DVN for Face Recognition

illumination (Lighting 07) and neutral expression was chosen
as the gallery image for each of the remaining 100 people,
and the rest images were used as probes. Similar recognition
protocol can be found in previous work, e.g., [2], [8] [5].

To demonstrate the recognition performance, we followed
the generation-for-recognition protocol that all probe images
are first normalized and matched against the gallery images.
For the constrained setting on the Multi-PIE, the gallery
images are by nature normalized, and only the non-frontal
faces are normalized. We employed both ArcFce [1] and
Light-CNN [24] as feature extractor for distilling the identity
feature of each normalized face, and compared the cosine
distance between the probe and gallery features. For the
unconstrained setting on the IJB-A database, both the gallery
images and probe images are normalized, then the features
are extracted by the feature extractor, and then the cosine
distances are computed.

For pre-processing, each image was first processed by the
Face Alignment Network [17] for face and facial landmark
detection. All faces were aligned to the eyes, and normalized
in scale to make the distance between the mouth and the
center of both eyes 86 pixels. Each normalized image is
250 × 250 in scale. The DVN training was proceeded via
the Adam optimizer [25] with initial learning rate 0.001,
momentum 0.5, and batch size 16. The implementation was
on the Tensorflow [26] using a two NVIDIA TITAN RTX
GPU with 48G memory.

2) UNCONSTRAINED SETTINGS
For the unconstrained settings, we trained the DVN network
on the Multi-PIE and CASIA-WebFace [27], and evaluated
face recognition on the IJB-A [22] and IJB-C [23]. The
normal sets were formed by the frontal- and side-view images
with the same pose and illumination labels as those selected
in the above constrained settings, but taken from all 337 sub-
jects of the entire Multi-PIE. The CASIA-WebFace offers
494,414 images of 10,575 people taken in the wild. The
images in the CASIA-WebFace form the source set. Due to
the label noise in the original database, we cleaned it and
extracted 455,577 face images.

The IJB-A offers 5,396 images and 20,412 video frames
of 500 subjects. It defines template-to-template test protocol
and each template has one or more images. The evaluation
protocol in IJB-A consists of template-to-template verifi-
cation and identification over 10 splits. Each split contains
around 11,748 pairs (1,756 positive and 9,992 negative pairs)
for verification and 112 gallery templates and 1,763 probe
templates for identification on average. Moreover, some
templates contain only one challenging image, i.e., large
pose and low image quality. These factors essentially make
IJB-A challenging face recognition dataset. The IJB-C is
an extension of IJB-A, which contains 3,134 still images
and 117,542 frames from natural scene video of 3,531 dif-
ferent individuals. It is designed to have a more uniform
geographic distribution of subjects across globe, which make
it possible to carefully evaluate many covariates in details.

The IJB-C 1:1 mixed verification protocol provides
19,557 genuine pairs and 15,638,932 imposter pairs for
evaluations of performance. The preprocessing was the same
as that for the constrained settings on the Multi-PIE.

The verification and identification were performed based
on those normalized gallery and probe images. This is slightly
different than that in the constrained case where the gallery
images are all frontal, evenly lit and in neural expression,
i.e., already normalized by their nature.

B. ABLATION STUDY
As the characteristics of the proposed DVN include 1) the
generation of two normalized views, 2) the double layers of
dual-view generators, the ablation study was designed for the
following inspections:

1) Due to the fact that the Multi-PIE offers the
ground-truth of cross-pose faces for the same sub-
jects, the experiments under the constrained settings
allow the comparison of the ground-truth with the
DVN generated dual-view faces, which can further
be used for evaluating the generation-for-recognition
performance.

2) To better compose the DVN, we have to determine the
best weights λa, λid , λrec, λsym in the loss function (15)
through experiments. In all our experiments, we use the
penalty coefficient λpen = 10 in (7), (8), (9) and (10),
which is empirically validated in [19]. To shorten the
time consumption, the experiments were carried out
on the single-view normalization network, which only
generated one of the three views (frontal, side and
profile), under the unconstrained settings. The results
in Table 3 denote the single frontal view as ‘‘SF’’,
the single side view as ‘‘SS’’, and we also added in
a single profile view (SP) solely for the comparison
purpose as forensics often collect frontal and profile
views. Note that for the experiment in the constrained
settings, we ran a similar experiment on the training
dataset for determining the weights.

3) As theDVN can generate two normalized views, we ran
experiments to compare the performance of using only
one single-view normalized faces generated by the
DVN and that by using the single-view normalization
network mentioned in the above 2). The former is
denoted as SF (DVN-S) and SS (DVN-S) in Table 3
when using Layer-1 generators only (see the following
item 4 for more details).

4) As the DVN is composed of double layers of genera-
tors, the experiments were designed to compare the per-
formance of using Layer-1 generators only and that of
using both layers of generators. The former is denoted
as DVN-S for single layer, and the latter as DVN-D for
double layers.

5) Two schemes were attempted to fuse the features of
the dual-view normalized faces, one is the average
of the dual-view latent vectors, denoted as DVN-Sm,
DVN-Dm, and the other is the concatenation of the
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FIGURE 2. DVN generated faces compared with the ground truth. Top row
shows the input faces. Row-2 to 4, enclosed by the red bbox, are the
ground-truth in frontal, 45◦ side and profile poses, respectively. Row-5 to
7, enclosed by the green bbox, are the generated faces in corresponding
poses.

dual-view latent vectors, denoted as DVN-Sc and
DVN-Dc.

The comparison of the DVN generated face images with
the ground-truth of several subjects randomly selected from
theMulti-PIE is shown in Figure 2. The generated normalized
images preserve the identity characteristics of each face to
some extent, and the frontal-views appear to preserve better
than the side- and profile-views. Table 2 shows the Rank-1
cross-pose recognition rates. The DVN (Light-CNN) and

TABLE 2. Performance comparison on Multi-PIE.

DVN (ArcFace) refer to using the DVN-normalized face
images as input, and the Light-CNN [28] and ArcFace [1]
respectively as the feature extractor. For comparison purpose,
we also include the performance of the original Light-CNN
and ArcFace with the un-normalized faces as inputs. Note
that the encoder En in our framework is made of the ArcFace,
using the ArcFace as the feature extractor will lead to better
performance, which is also shown in Table 2.

While the performance of many other methods degrades
for extreme pose, i.e., ≥ 75◦ in yaw, the DVN outperforms
others for almost all viewing angles, except for 90◦, where
the DVN is the second best, outperformed by the HF-PIM
[4]. The HF-PIM requires paired data for learning and may
capture the intrinsic characteristics between the frontal and
profile poses. Such pair-wise characteristics will be consid-
ered in the improvement phase of the DVN.

The experiments for the determination of the best weights
are shown in the top part of Table 3, where all experi-
ments were conducted on the single-view normalization net-
work under unconstrained settings and the Light-CNN was
exploited as the feature extractor. The weight for the identity
loss λid changes from 0 (i.e., no identity loss) to 5500 while
other weights are kept as follows: λa = 1, λsym = 0.01
and λrec = 0.001; and for cases when λa, λsym and λrec
are switched to zero, i.e., excluding these losses. The afore-
mentioned weights for λa, λsym and λrec were determined
through similar experiments; however, the influences of these
three weights were not as strong as λid . We show 4 cases of
λid , 0, 1000, 3500 and 5500 in Table 3. Figure 3 shows the
corresponding normalized faces for visual comparison.

TABLE 3. Quantitative results of ablation study. All experiments exploit
the ArcFace as the feature extractor.

The faces generated with λid = 0 are almost impossible
to recognize as those faces show a clear collapsed mode. The
performance improves substantially with increasing λid , and
reaches the best when λid = 3500. In the case without the
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FIGURE 3. Face normalization on IJB-A for different weight setups,
including, (a) λid = 1000, (b) λid = 3500, (c) λid = 5500, (d) λid = 0,
(e) λa = 0, (f) λsym = 0, (g) λrec = 0. Based on the optimal setup above,
we also show the normalized faces in multiple-view, including
(g) Side-view, and (h) Profile-view.

adversarial loss (λa = 0), the generated faces demonstrate
strong artifacts and collapsed mode. The poor quality of
the generated faces are also revealed by the low recognition
rates in Table 3. The contributions of the symmetry loss and
reconstruction loss are marginal, and the former is slightly
more important than the latter, as shown in the table.

The performance of SF (Single-View Frontal, λid = 3500),
SS (Single-View Side) and SP (Single-View Profile) shows
that the frontal view performs the best, then the side view, and
then the profile view. The performance gaps can be partially
due to the imbalanced pose distribution of the test dataset
which contains far less data with extreme poses than those
with the frontal and frontal-to-side poses. As the SP degrades
the recognition performance, we exclude it from the desired
dual views.

The middle part of Table 3 shows the performance of
SF (DVN-S), SS (DVN-S), SF (DVN-D) and SS (DVN-D).

The DVN architecture is verified capable of improving
the performance of the single-view normalization on both
frontal- and side-views, even by using only Layer-1 gener-
ators. It also demonstrates that the double-layer generators
lead to better performance than the single-layer generators

As far as the feature fusion scheme is concerned, the mean
feature, i.e., the average of the latent vectors of the frontal-
and side-views performs better than the concatenated one.
This is demonstrated in the bottom part of Table 3 by the
performances of both the single-layer generators (in DVN-Sc
and DVN-Sm), and the double-layer generators (in DVN-Dc
and DVN-Dm). Several dual-view normalized faces with the
original inputs from the IJB-A are shown in Figure 4. The
normalized faces made by the Layer-1 generators appears
slightly worse than those made by the Layer-2 generators,
especially the side-view faces

TABLE 4. Performance comparison on IJB-A.

TABLE 5. Performance comparison on IJB-C.

C. COMPARISON WITH STATE-OF-THE-ART APPROACHES
Table 4 shows the verification and identification rates on the
IJB-A with a comparison to state-the-art approaches. As it is
verified in the above ablation study that the double-layered
DVN-D outperforms the single-layered DVN-S, we only
report the comparison with the DVN-D and simply write
it as DVN. For comparison purpose, we also include the
performance of using the Light-CNN as the feature extractor,
and denote it as DVN (Light-CNN). The DVN (ArcFace)
outperforms all selected methods for both verification and
identification, and the performance gaps for the verification
rate at FAR 0.001 and Rank-1 identification rate are clear to
observe. Furthermore, as expected, the DVN (ArcFace) per-
forms better than DVN (Light-CNN) since the face encoder
in the DVN is made of the ArcFace.
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FIGURE 4. The frontal- and side-view synthesized faces on the IJB-A. The top row shows the input faces. Rows 2 and 3, labeled by (a) and
enclosed by a red bounding box, are the normalized dual-view faces made by Layer-1 generators. Rows 4 and 5, labeled by (b) and enclosed
by a green bounding box, are the normalized dual-view faces generated by Layer-2 generators.

Table 5 shows the performance evaluation on the IJB-C
verification protocol with other state-of-the-art approaches.
The IJB-C is generally considered more challenging than the
IJB-A. However, similar results are obtained, as shown in
the table. The DVN (ArcFace) outperforms all, and performs
better than the DVN (Light-CNN). The comparisons verify
the effectiveness of the proposed DVN.

V. CONCLUSION
Frontal face is generally considered as the only standard for
face normalization. It is, however, also commonly acknowl-
edged that a face can be better characterized by multiple
views, as the case in forensics, where both frontal and profile
poses are kept. The proposed DVN (Dual-View Normaliza-
tion) can be the first that proposes face normalization in dual
poses, and verifies the effectiveness of the dual-view normal-
ization with a specially designed double-layer architecture.
The design of the DVN consists of identity preservation,
normalized pose transformation and (source-target) domain
transformation. Experiments show that the DVN outperforms
many state-of-the-art approaches for face normalization, and
can lead to better performance for face recognition. As
for the potential extension of this research, we consider the
unsupervised clustering of facial attributes for preprocessing
the constrained and unconstrained datasets, so that the learn-
ing for normalization can be made attribute-oriented. The
approach proposed in [32] can be a decent example.
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